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e-p PHYSICS

Deep Inelastic Scattering
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Physics Goals

Diverse physics program covering wide range of energy scales

o Low Q% 1 GeV? < ()? < 50 GeV?.
— exploration of perturbative QCD with multiple scales.
— exploretrangition of perturbative QCD to non-perturbative regime.
Thiswill not be covered by any other accel erator except perhapsthe NLC.
e Medium Q?: 10 GeV? < ()? < 15x10°GeV?.

“Bread and butter” precision QCD physics, e.g. precision measurements of
parton densities, a.

e High Q?: 10° GeV? < (% < 25x10'GeV?.
Precision QCD and electroweak physics, e.g.
— most precise measurement of «vg, precision measurement of My, sin® Oy
— confirmation of weak-radiative correctionsand Higgs physics.
e Very High Q%: 5x 10" GeV? < ()? < 10°GeV?,
Search for new and exotic physics, e.g.

— leptoquarks up to M;g ~ 750GeV, SUSY particlesup to M ~ 500 —
800GeV.

— lepton number violating processes.

Alternatives
e CERN: LEP®QLHC: 90GeVe @ 7TeVp
e DESY: TESLA®HERA-p: 250GeV® 1TeVp

VLHC booster e — p DESY CERN
Time scale within 10yrs within 10yrs after 2014
L uminosity 10 1 10

Energy 1 1 1.6



What do we want

e Center of massenergy > 1 TeV

e Luminosity > 10%* cm 2 sec™.

e Adequatelifetime > 10 hrs

e Low backgroundsin detectors

e Operatewith both ¢ /¢

e Longitudinally polarized beamswould be very desirable.

e Turn on around 2007



VLHC-e Issues
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Lattice Design Interaction Region Design

e Arcs- FODO cell, emittance... e Optics.

e Interaction Region e Beam Separation scheme.

e Dispersion Suppressors e Synchrotron radiation shielding.
e RF sections e Backgrounds.

e Nonlinear chromaticity correction e Design of beam pipe, heating.
e Wigglers e Vacuum

e Detector size and geometry.

Beam Physics
. e Other Machine-Experimentinterface
e Luminosity. issues
e Lifetime.
e Instabilities.

e Beam-beam effects.

e Polarization.

e Dynamic Aperture.

e Injection and Acceleration.



Luminosity
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assuming the beam sizes are matched at the IP.

Goal: Maximize the luminosity within known constraints.

The proton beam brightness factor N,v,/,/éx.€x, is set by the injector chain
and the energy of the booster.

To increase the luminosity we must

L D)

e Make 37, 3; assmall as possible.
e Maketheelectron beam current I, aslargeaspossible.
Constraintson 3y, 3,

e Maximum beam sizeinthe IR (limited by the aperture of the IR quadrupol es)
isoc 1/5%.

e Chromaticity(linear and non-linear) of the IR is 1/3".

e Lowest value of 5* also depends on the distance of closest approach of the IR
guadsto the IP.

e 31 >~ o4 toavoidlosing luminosity due to the hourglass effect.
e Matching the electron and proton beam sizes at the | P requires

* *
Py __ Y

il (2)
p,xr e,xr

whererx = €., /€., < 1.

e The beam divergence at the IPiso’ = \/e/3*. The width of the synchrotron
radiation fan and the resulting background increases with the electron beam
divergence.

Constraintson I,
e Primarily limited by the available RF power= 50MW.

e Should be lower than thresholds for instabilities.
e The heat |oad due to synchrotron radiation should be tolerable.
e Beam-beam tune shifts of the proton beam < 0.005.



FODO Cadll

Given Parameters

Beam Energy 80 GeV
Arcslength 30.4km
Straight section length  3.6km

Design Criteria

e Small emittance beam

e L arge bending radius

Design Choices

L ength of cell 100m
L ength of dipole 46m
Length of quadrupole 1.5m
Phase advance per cell 90°

Consequences

Bend angle/dipole 10.334mrad
Dipolefield 600G
Quadrupolefield 5.03T/m

Beam Emittance

v 1 5+3cosuc Ly
e = C, :
Jr 2sinpuc 1 —cospuc Lp
= 28.15nm — rad

With x = 0.25,

€, = 22.5nm —rad, ¢, =5.6nm — rad

C
05 = 1| —Lv =1.03 x 107
Jsp

Energy spread




electrons

soft bend soft bend

P protons

e-p IR Design

e Minimize bend angles of electronscloseto thelP.

e Displacequadrupolescloseto the | P, both to start the separation of the elec-
trons early and to ensure that the synchrotron radiation fan passes through the

quadrupol e apertures. Quadrupoles on the downstream end have to be offset
more.

e Electrons should not be subject to the fields of the proton magnets. The
first proton quadrupoles can start either when

— separation between the beams d, = 7, pp + e P, O

— use a half quadrupolein which the electrons go through afield free region
(asin HERA). Separation can start earlier. Triplets should be used for fo-
cusing electronsto make the e-beam size small.

e Vertical IR chromaticity should preferably be smaller. Dispersion next to
the defocusing quadrupolesis smaller.

e Matched beam sizesto avoid beam blow up and poor lifetime.

e Main sour ces of background arethe synchrotron radiation photons emit-
ted inthe IR magnetsand electronswhich havelost ener gy dueto collisions

with the residual gas hitting the beam pipe. Require very good vacuum in the
IR.
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VLHCe Antisymmetric IR: drift space = +/- 6m
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Quadrupole parameters
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VLHCe Antisymmetric IR: drift space = +/- 3m
SUN version 8.16/6 14/03/99 18.00.34
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Drift space [m] +3
" Bylem] 11.5
Maximum rmsbeam size ,;,.[mm] 4.20

Quadrupole parameters
Quadrupole | Length [m] | Gradient [T/m]
Ql 2.1 47
Q2 1.7 99
Q3 2.9 62




T ]
b L

VLHCe Antisymmetric IR: drift space = +/- 1m
SUN version 8.16/6 14/03/99 18.05.24
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Beam-beam parameters

Electrons Protons
N, 3.26x10" | N, 1.25x 10"
€cxr/€cyy [TNM-rad]  22.52/5.63 6;]9\:733 /€.~ [mmm-rad] (95%)  25/25
=5, m] 0.115/0.115| . /3%, [m] 2.0/0.5
0 ./os, [um] 51/255 | o;../0;., [pm] 51/25.5

Beam-beam tune shifts

* N,

gp:x - Tpﬁp'x » = 0.0013
277—,‘)/]7 O-;kzx[o-;k:x + Oe:y]
T3 N,

Epy = oy - — = 0.0065
277—,‘)/]7 O-e:y[o-e:x + Oe:y]
oM N,

Eer = Tele ————=10.011
271—”)/6 O-p:x[o-p:x + O-p:y]
re3r. N

ey = Dey K — 0.021

271—”)/6 O-;:y[o-;:x + O;:y]

The optics limit on luminosity is set by the proton 5*.

e Lowering 3, increasesthe proton beam sizein quadrupoles. These
are further from the IP.

e Proton bunch length o, also sets the lower limit for B,



Normal RF

Scaling from the HERA parameterswith conducting cavities:
HERA VLHC-e

Beam energy [GeV] 27.5 80
Energy lost/turn [MeV] 91 814
RF voltage [MV] 125 1090
Shunt resistance per cavity[M(]] ~ 18 18
Peak voltage/cavity [MV] ~ 1.5 15
Number of cavities 82 727

Power absorbed in asingle cavity [kKW]  62.5 62.5
Total power absorbed in cavitiesfMW] 5.1 45.4
Total RF power [MW] ~10 50
Achievable currentmA] 58 6

Assuming other | R parametersand proton intensity and emittanceare unchanged,
I, = 6mA =
L =28x10*cm 2sec?

e Any increase of theluminosity must come from optics manipulationsand
Increasing proton intensity.

e A largenumber of cavitiesarerequired. I ncreasesthemachineimpedance.
All of them cannot be placed in low dispersion, low (5 locations.

e Bunch length o< 1/,/V,+f.;. Higher frequenciesare preferred, reducing
the power consumed.



Scaling of Luminosity with Energy

Requirements on the RF

e RF must supply the energy lost.
e RF acceptance ~ 10 Energy spread for a good quantum lifetime.
1. Higher energy with a fixed number of cavities.

Pcav(El) Ul 2
CX JE—
Pcav(EO) [UO]

The luminosity scales as

Li_ (4 Pow [@r sin ¢ Zl&r Pl 3
Ly Peam LEA sing}) LEo] P

2. Higher energy with increased number of cavities, fixed peak voltage per cav-
ity.

Pcav(El) x [ﬂ]
Pcav(EO) UO
The luminosity scales as
L PO [Ep* sing? PO
=) || - @
[’0 Pbeam E1 Sin ¢s Pbeam
3. Superconducting cavities. Negligible power lossin the cavities.
The luminosity scales as
Ly Eor
I 5
Ly [E1 ®)




Scaled Luminosity

Luminosity scaling with energy
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Parameters

Energy [GeV]

5/ 6,; [m]

BEAM PARAMETERS

Circumference[m]
Luminosity [cm~2 s71]

RMSbeam sizeat IP (H/V) [um]
Beam-beam tune shifts (H/V)
Beam Current [mA]
Bunch spacing [m]
Number of bunches
Particles/bunch

Energy Loss/turn[MeV]
Damping times (7., 7,,, 75) [msec]

80
34000
2.6 x 1032
0.115/0.115
51/25.5
0.0106/0.021
55.3
28.33
1200
3.26x 100
814
(22,22, 11)

TRANSVERSE
Cell Length [m]
Main Dipolefield [T]
Bending radius [m]
Length of main dipole[m]
Number of dipoles/cell
L ength of arc quadrupole [m]
Quadrupolegradient [T/m]
Phase advance/cell [degrees]
ﬁmaw/ﬁmin incell [m]
Dmar / pmin in cell [m]

100
0.06
4451.25
46
2
1.5
5.03
90
171/29
1.4/0.67

RF/LONGITUDINAL

Total RF power[MW] 50

RF Voltage[MV] 1090
RF frequency[MHZ] 529.046
Harmonic Number 60,000
Longitudinal emittance[eV-sec]  0.0067
Synchronous phase 48.3°
Energy spread 1.03x1073
Bunch length [cm] 0.77
Momentum compaction 0.000167
Synchrotron tune 0.120




Lifetime due to photo-desorption

Thelifetimedue to inelastic nuclear scattering alone, in the absence of intensity
dependent pressure changes, is

B Wdoc
Xyistheradiation length of residual gas[gm/cm?]. W « 1/ In[AE/E).

Usual gases present: H,, CO, CO,, C'Hy, Ar. The lifetime (without current
dependent effects) is

I Wem,FPy | 2fg, 28 fco 44 fco, 16fcn, 40 f 4y

n kgT | Xo(Ha)  Xo(CO) = Xo(COy) '~ Xo(CHy) = Xo(Ar)

70

With Py = 10~ Torr, and reasonabl e assumtionson thefractional amountsof gases,
the “zero-current” lifetimeis
Ty = 66 hrs

At HERA, lifetimeat low current is 7y = 15hrs.

Synchrotron radiation dependent pressure.
Critical energy E.
ES
E.=2218— [keV] = 255.1[keV]
P
Thelinear photon flux which desorbs gases from the walls of the vacuum cham-
ber is N
®, = =1.28 x 10'" [photons/m/sec|
2mp

At HERA &, = 5.8 x 10'"photons/m/sec.
Theflux of moleculesper unit length desorbed by synchrotron radiation photons

(I)mol = T]CI),Y
The gasload per unit lengthis
Q= ngchmol =45 x 107 ®,n

Pressure rise due to the gasload

_ @
AP=1



where (S) isthe average pumping speed in litress/m/sec. The specific pressurerise
IS
AP nkE
=~ =3.64x10*
ap 7 3.64 x 10 27p(S)
Thespecific current /,, (thecurrent at whichthe pressurerise dueto photo-desorption

equalstheinitial pressure)

[Torr/mA]

P,
I,=—"
ap
Due to the photo-desorption, the pressure depends on the current.
I
P:P0+AP:PO[1+I—]
Lifetime
T/
Time dependent current
—t/TQ
I(t) =1, ‘

14 Lo(1 —et/m)

I
Integrated Luminosity o /Idt = 70, In[1 + I—O(l — e_t/TO)]

«

Assuming (S)= 100 litres/m/sec, P, = 10~ [Torr],

Aluminium Copper
n [molecules/photon] ~ 2x107° 2x107°
ap [Torr/mA] 1.21 x107'" 1.21 x107'2
I, [mA] 51.5 515.1
7(1y) [hrs] 31.7 59.4

After a 10hour run.

No. Materid Integrated current [mA-hrs| % decrease
0 ap=0 513.0 -

1 Aluminum 477.7 6.9%

2  Copper 509.2 0.75%




|nelastic Electron-Proton scattering

Electronslose energy to photons emitted in the bremmstrahlung process

e+p—e+p+7y

If E;, By aretheinitial and final energies of the electron and k isthe energy of the
emitted photon, the differential cross-sectionis

do _ 9 Ef (Ez Ef 2) In {4EpEzEf 1

Ey E 3 MM,k 2
where E, isthe proton energy, . = ¢ = 1. The changein the proton energy isvery
small, so

B~ E;+k
The maximum energy k... imparted to the photon occurs when the final state
electronisnearly at rest, i.e.
kmaz =~ E;
In the scattering cross-section for eventsleading to the loss of an electron from the

beam pipe we can set
kmin - 6acceptEi

where dyecept = (AE/E)qecept- Thetotal cross-section, integrating & from k., to
kmax; IS

2 2
o 16?)47‘6 (—In bgccept — g) ln(% + %) + %(m Saceent)? — % _ %
USINg Geeepr = 9.91 x 1073, the total cross sectionis
o =2906 x 107 [cm?]
Therate N at which electronsare lost from the beam is
N = NipLo

where N;p isthe number of interaction pointsinthering. Hencethelifetimeof the
electron beamis

. _ Ne,tot
p—bremm N[P[,O'
where N, ;. isthe total number of electronsin the beam initially.
I. = 65.88mA, N, s = 4.66x 103, protonenergy is £, = 3000GeV. Assuming
that thereis only one interaction point in thering, the lifetimeis

Tp—bremm = 142 hours




Quantum Lifetime

Horizontal plane:

L 1 exp[rys) 1 " ©)
where 1($Apert)2 ) 2, D22 ¢ DiUg %
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\ertical plane:
e's
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Beam Lifetime

Touschek lifetime
5040410y 0 (AE)2

Ne E accept
= 5.4 x 10° hrs

TTousch X 7

Quantum lifetimeat 100 in each plane
7o = 5.6 x 10" hrs, 70, = 2.3 x 10" hrs, 79, = 3.8 x 10° hrs
e — p bremmstrahlung lifetime
Te—p = 142 hrs

Synchtrotron radiation induced photo-desorption lifetime

n = 2x107% Ty = 32 hrs
n = 2x 10_6; Tphoto = D9 hrs
Total lifetime
1 1 1 1 1 1 1
— = + + + +— +
T TTousch TQux TQy TQs Tep Tphoto
7p=26hrs  [p=2x1077]
r = 42 hrs [n=2x 1079
Not included

e Effectsof orbit distortion, larger emittances and energy spreads on the quan-
tum lifetime.

e lon or “dust trapping”.
e Scattering of thermal photons.



Polarization

Sokolov-Ternov polarizationtime

8 mec?p
ST = 5v/3 e2hAP
Electrons are polarized anti-parallel to the field, positrons are polarized parallel.

Closed orbit distortions lead to spin diffusion and depolarization.
Energy dependent spin tune

= 0.9 hrs

Vspin = ay = 181.54
Depolarizing resonances

Vspin = k+m.q, + My qy + Msqs
Dangerous resonances
e First order resonances: m, = +1, m, = £1, my, = +1

e Next, synchrotron side-band resonances of first order resonances. m a small
integer. Modulation of spin tune by synchrotron oscillations. Measure of the
strengths of these resonances

avyos
ds
Preferably r,;,, < 1 for depolarizationto be weak.

2
=24

Rspin =

Possible solution:

e Include polarizationwigglersto enhance S-T rate. Thishowever increasesen-
ergy spread, x i, and depolarization.

e Incorporate asymmetric snakes a la Derbenev: spin tune is ailmost 0.5 inde-
pendent of energy viaa“spin echo” effect due to the two spin flips. Resonant
depolarization is weak.



SNAKE DISTRIBUTION FOR POLARIZATION
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Main Features

e Low field (600 Gauss), air cooled, dipoles.

e Small Aluminium vacuum chambers.

e |ON pumps, every ~ 8m section.

e SOMW total RF power. Water cooling required.

e Superconducting cavities.

e Possibly superconducting IR quadrupoles.

e Low 3* (11.5 cm), head on collisions.

e Many bunches (1200)

e Feedback system for multi-bunch instabilities.

e Polarization must be designed in.

e Relatively low cost.



