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Physics Goals
Diverse physics program covering wide range of energy scales

• Low Q2: 1 GeV2 < Q2 < 50 GeV2.

– exploration of perturbative QCD with multiple scales.

– explore transition of perturbative QCD to non-perturbative regime.

This will not be covered by any other accelerator except perhaps the NLC.

• Medium Q2: 10 GeV2 < Q2 < 15×103GeV2.

“Bread and butter” precision QCD physics, e.g. precision measurements of
parton densities, αS.

• High Q2: 103 GeV2 < Q2 < 25×104GeV2.

Precision QCD and electroweak physics, e.g.

– most precise measurement of αS, precision measurement of MW , sin2 θW .

– confirmation of weak-radiative corrections and Higgs physics.

• Very High Q2: 5×104 GeV2 < Q2 < 106GeV2.

Search for new and exotic physics, e.g.

– leptoquarks up to MlQ ∼ 750GeV, SUSY particles up to M ∼ 500 −
800GeV.

– lepton number violating processes.

Alternatives

• CERN: LEP⊗LHC: 90GeVe ⊗ 7TeVp

• DESY: TESLA⊗HERA-p: 250GeV⊗ 1TeVp

VLHC booster e− p DESY CERN
Time scale within 10yrs within 10yrs after 2014
Luminosity 10 1 10
Energy 1 1 1.6



What do we want

• Center of mass energy ≥ 1 TeV

• Luminosity > 1032 cm−2 sec−1.

• Adequate lifetime > 10 hrs

• Low backgrounds in detectors

• Operate with both e+/e−.

• Longitudinally polarized beams would be very desirable.

• Turn on around 2007



Physics Goals Lattice  Design Insertion Region

Beam  Physics Vacuum System

RF System

Alignment/Support
Tunnelling/Constr.

Cost

Diagnostics

Magnets

VLHC-e  Issues



Lattice Design

• Arcs - FODO cell, emittance...

• Interaction Region

• Dispersion Suppressors

• RF sections

• Nonlinear chromaticity correction

• Wigglers

Beam Physics

• Luminosity.

• Lifetime.

• Instabilities.

• Beam-beam effects.

• Polarization.

• Dynamic Aperture.

• Injection and Acceleration.

Interaction Region Design

• Optics.

• Beam Separation scheme.

• Synchrotron radiation shielding.

• Backgrounds.

• Design of beam pipe, heating.

• Vacuum

• Detector size and geometry.

• Other Machine-Experiment interface
issues



Luminosity

L =
1

4π

 Npγp√
εN,xεN,y

1√
β∗p,xβ

∗
p,y

 Ie (1)

assuming the beam sizes are matched at the IP.
Goal: Maximize the luminosity within known constraints.
The proton beam brightness factor Npγp/

√
εN,xεN,y is set by the injector chain

and the energy of the booster.
To increase the luminosity we must

• Make β∗x, β
∗
y as small as possible.

• Make the electron beam current Ie as large as possible.

Constraints on β∗x, β
∗
y

• Maximum beam size in the IR (limited by the aperture of the IR quadrupoles)
is ∝ 1/β∗.

• Chromaticity(linear and non-linear) of the IR is ∝ 1/β∗.

• Lowest value of β∗ also depends on the distance of closest approach of the IR
quads to the IP.

• β∗⊥ >∼ σs to avoid losing luminosity due to the hourglass effect.

• Matching the electron and proton beam sizes at the IP requires
β∗p,y
β∗p,x

= κ
β∗e,y
β∗e,x

(2)

where κ = εe,y/εe,x < 1.

• The beam divergence at the IP is σ′ =
√

ε/β∗. The width of the synchrotron
radiation fan and the resulting background increases with the electron beam
divergence.

Constraints on Ie

• Primarily limited by the available RF power= 50MW.

• Should be lower than thresholds for instabilities.

• The heat load due to synchrotron radiation should be tolerable.

• Beam-beam tune shifts of the proton beam < 0.005.



FODO Cell
Given Parameters

Beam Energy 80 GeV
Arcs length 30.4km
Straight section length 3.6km

Design Criteria

• Small emittance beam

• Large bending radius

Design Choices

Length of cell 100m
Length of dipole 46m
Length of quadrupole 1.5m
Phase advance per cell 90◦

Consequences

Bend angle/dipole 10.334mrad
Dipole field 600G
Quadrupole field 5.03 T/m

Beam Emittance

ε = Cq
γ2θ3

Jx

1

2 sin µC

5 + 3 cos µC
1− cos µC

LH

LB

= 28.15 nm− rad

With κ = 0.25,

εx = 22.5nm− rad, εy = 5.6nm− rad

Energy spread

σδ =

√√√√ Cq

Jsρ
γ = 1.03 × 10−3



IP protons

electrons

soft bend soft bend

e-p IR Design

• Minimize bend angles of electrons close to the IP.

• Displace quadrupoles close to the IP, both to start the separation of the elec-
trons early and to ensure that the synchrotron radiation fan passes through the
quadrupole apertures. Quadrupoles on the downstream end have to be offset
more.

• Electrons should not be subject to the fields of the proton magnets. The
first proton quadrupoles can start either when

– separation between the beams dsep = rp,BP + re,BP , or

– use a half quadrupole in which the electrons go through a field free region
(as in HERA). Separation can start earlier. Triplets should be used for fo-
cusing electrons to make the e-beam size small.

• Vertical IR chromaticity should preferably be smaller. Dispersion next to
the defocusing quadrupoles is smaller.

• Matched beam sizes to avoid beam blow up and poor lifetime.

• Main sources of background are the synchrotron radiation photons emit-
ted in the IR magnets and electrons which have lost energy due to collisions
with the residual gas hitting the beam pipe. Require very good vacuum in the
IR.
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0.0 5. 10. 15. 20. 25. 30. 35. 40.
s (m)

E/p0c = 0.
Table name = TWISS

VLHCe Antisymmetric IR: drift space = +/- 6m
SUN version 8.16/6 14/03/99  18.03.42

0.0

200.

400.

600.

800.

1000.

1200.

1400.

1600.

(m
)

Drift space [m] ±6
β∗x, β

∗
y [cm] 11.5

Maximum rms beam size σMax[mm] 5.96

Quadrupole parameters
Quadrupole Length [m] Gradient [T/m]
Q1 2.1 29
Q2 1.7 78
Q3 2.9 37



0.0 3.2 6.4 9.6 12.8 16.0 19.2 22.4 25.6 28.8 32.0
s (m)

E/p0c = 0.
Table name = TWISS

VLHCe Antisymmetric IR: drift space = +/- 3m
SUN version 8.16/6 14/03/99  18.00.34

0.0

100.

200.

300.

400.

500.

600.

700.

800.

(m
)

Drift space [m] ±3
β∗x, β

∗
y [cm] 11.5

Maximum rms beam size σMax[mm] 4.20

Quadrupole parameters
Quadrupole Length [m] Gradient [T/m]
Q1 2.1 47
Q2 1.7 99
Q3 2.9 62



0.0 2.4 4.8 7.2 9.6 12.0 14.4 16.8 19.2 21.6 24.0
s (m)

E/p0c = 0.
Table name = TWISS

VLHCe Antisymmetric IR: drift space = +/- 1m
SUN version 8.16/6 14/03/99  18.05.24
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20.

40.

60.
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100.

120.

140.

160.

180.

200.

(m
)

Drift space [m] ±1
β∗x, β

∗
y [cm] 11.5

Maximum rms beam size σMax[mm] 2.30

Quadrupole parameters
Quadrupole Length [m] Gradient [T/m]
Q1 1.0 213
Q2 1.7 150
Q3 2.2 73



Beam-beam parameters

Electrons Protons
Ne 3.26×1010 Np 1.25×1011

εe:x/εe:y [πnm-rad] 22.52/5.63 εN
p:x/εp:yN [πmm-rad] (95%) 25/25

β∗e:x/β
∗
e:y [m] 0.115/0.115 β∗p:x/β

∗
p:y [m] 2.0/0.5

σ∗e:x/σ
∗
e:y [µm] 51/25.5 σ∗p:x/σ

∗
p:y [µm] 51/25.5

Beam-beam tune shifts

ξp:x =
rpβ

∗
p:x

2πγp

Ne

σ∗e:x[σ∗e:x + σ∗e:y]
= 0.0013

ξp:y =
rpβ

∗
p:y

2πγp

Ne

σ∗e:y[σ
∗
e:x + σ∗e:y]

= 0.0065

ξe:x =
reβ

∗
e:x

2πγe

Np

σ∗p:x[σ∗p:x + σ∗p:y]
= 0.011

ξe:y =
reβ

∗
e:y

2πγe

Np

σ∗p:y[σ∗p:x + σ∗p:y]
= 0.021

The optics limit on luminosity is set by the proton β∗.

• Lowering β∗p increases the proton beam size in quadrupoles. These
are further from the IP.

• Proton bunch length σp:s also sets the lower limit for β∗p .



Normal RF

Scaling from the HERA parameters with conducting cavities:

HERA VLHC-e
Beam energy [GeV] 27.5 80
Energy lost/turn [MeV] 91 814
RF voltage [MV] 125 1090
Shunt resistance per cavity[MΩ] ∼ 18 18
Peak voltage/cavity [MV] ∼ 1.5 1.5
Number of cavities 82 727
Power absorbed in a single cavity [kW] 62.5 62.5
Total power absorbed in cavities [MW] 5.1 45.4
Total RF power [MW] ∼10 50
Achievable current[mA] 58 6

Assuming other IR parametersand proton intensity and emittanceare unchanged,
Ie = 6mA⇒

L = 2.8× 1031cm−2sec−1

• Any increase of the luminosity must come from optics manipulations and
increasing proton intensity.

• A large number of cavities are required. Increases the machine impedance.
All of them cannot be placed in low dispersion, low β locations.

• Bunch length ∝ 1/
√

Vrffrf . Higher frequencies are preferred, reducing
the power consumed.



Scaling of Luminosity with Energy
Requirements on the RF

• RF must supply the energy lost.

• RF acceptance∼ 10 Energy spread for a good quantum lifetime.

1. Higher energy with a fixed number of cavities.

Pcav(E1)

Pcav(E0)
∝ [

U1

U0
]2

The luminosity scales as

L1

L0
= (1 +

P 0
cav

P 0
beam

)
[
E0

E1

]4

−
sin φ0

s

sin φ1
s

2 [
E1

E0

]4 P 0
cav

P 0
beam

(3)

2. Higher energy with increased number of cavities, fixed peak voltage per cav-
ity.

Pcav(E1)

Pcav(E0)
∝ [

U1

U0
]

The luminosity scales as

L1

L0
= (1 +

P 0
cav

P 0
beam

)

[
E0

E1

]4

− sin φ0
s

sin φ1
s

P 0
cav

P 0
beam

(4)

3. Superconducting cavities. Negligible power loss in the cavities.
The luminosity scales as

L1

L0
=

[
E0

E1

]4

(5)
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Parameters

BEAM PARAMETERS
Energy [GeV] 80
Circumference [m] 34000
Luminosity [cm−2 s−1] 2.6 ×1032

β∗x/β
∗
y [m] 0.115/0.115

RMS beam size at IP (H/V) [µm] 51/25.5
Beam-beam tune shifts (H/V) 0.0106/0.021
Beam Current [mA] 55.3
Bunch spacing [m] 28.33
Number of bunches 1200
Particles/bunch 3.26×1010

Energy Loss/turn [MeV] 814
Damping times (τx, τy, τs) [msec] (22, 22, 11)

TRANSVERSE RF/LONGITUDINAL
Cell Length [m] 100 Total RF power[MW] 50
Main Dipole field [T] 0.06 RF Voltage[MV] 1090
Bending radius [m] 4451.25 RF frequency[MHz] 529.046
Length of main dipole [m] 46 Harmonic Number 60,000
Number of dipoles/cell 2 Longitudinal emittance[eV-sec] 0.0067
Length of arc quadrupole [m] 1.5 Synchronous phase 48.3◦

Quadrupole gradient [T/m] 5.03 Energy spread 1.03×10−3

Phase advance/cell [degrees] 90 Bunch length [cm] 0.77
βmax/βmin in cell [m] 171/29 Momentum compaction 0.000167
Dmax
x /Dmin

x in cell [m] 1.4/0.67 Synchrotron tune 0.120



Lifetime due to photo-desorption
The lifetime due to inelastic nuclear scattering alone, in the absence of intensity

dependent pressure changes, is

τ0 =
X0

Wd0c

X0is the radiation length of residual gas [gm/cm2]. W ∝ 1/ ln[∆E/E].
Usual gases present: H2, CO, CO2, CH4, Ar. The lifetime (without current

dependent effects) is

1

τ0
=

WcmuP0

kBT

 2fH2

X0(H2)
+

28fCO
X0(CO)

+
44fCO2

X0(CO2)
+

16fCH4

X0(CH4)
+

40fAr
X0(Ar)


With P0 = 10−9Torr, and reasonable assumtions on the fractional amounts of gases,
the “zero-current” lifetime is

τ0 = 66 hrs

At HERA, lifetime at low current is τ0 = 15hrs.

Synchrotron radiation dependent pressure.
Critical energy Ec

Ec = 2.218
E3

ρ
[keV] = 255.1[keV]

The linear photon flux which desorbs gases from the walls of the vacuum cham-
ber is

Φγ =
Nγ

2πρ
= 1.28× 1017 [photons/m/sec]

At HERA Φγ = 5.8× 1017photons/m/sec.
The flux of molecules per unit length desorbed by synchrotron radiation photons

Φmol = ηΦγ

The gas load per unit length is

Qγ =
3

2
kBTΦmol = 4.5 × 10−20Φγη

Pressure rise due to the gas load

∆P =
Qγ

〈S〉



where 〈S〉 is the average pumping speed in litres/m/sec. The specific pressure rise
is

αP =
∆P

I
= 3.64× 10−2 ηE

2πρ〈S〉 [Torr/mA]

The specific current Iα (the current at which the pressure rise due to photo-desorption
equals the initial pressure)

Iα =
P0

αP
Due to the photo-desorption, the pressure depends on the current.

P = P0 + ∆P = P0[1 +
I

Iα
]

Lifetime

τ =
τ0

1 + I/Iα

Time dependent current

I(t) = I0
e−t/τ0

1 + I0
Iα

(1− e−t/τ0)

Integrated Luminosity ∝
∫

Idt = τ0Iα ln[1 +
I0

Iα
(1− e−t/τ0)]

Assuming 〈S〉= 100 litres/m/sec, P0 = 10−9 [Torr],

Aluminium Copper
η [molecules/photon] 2×10−5 2×10−6

αP [Torr/mA] 1.21 ×10−11 1.21×10−12

Iα [mA] 51.5 515.1
τ(I0) [hrs] 31.7 59.4

After a 10hour run.

No. Material Integrated current [mA-hrs] % decrease
0 αP=0 513.0 -
1 Aluminum 477.7 6.9%
2 Copper 509.2 0.75%



Inelastic Electron-Proton scattering
Electrons lose energy to photons emitted in the bremmstrahlung process

e + p→ e + p + γ

If Ei, Ef are the initial and final energies of the electron and k is the energy of the
emitted photon, the differential cross-section is

dσ

dk
= 4αr2

e

Ef

kEi

Ei

Ef
+

Ef

Ei
− 2

3

 ln

4EpEiEf

MeMpk
− 1

2


where Ep is the proton energy, h̄ = c = 1. The change in the proton energy is very
small, so

Ei ≈ Ef + k

The maximum energy kmax imparted to the photon occurs when the final state
electron is nearly at rest, i.e.

kmax ≈ Ei

In the scattering cross-section for events leading to the loss of an electron from the
beam pipe we can set

kmin = δacceptEi

where δaccept = (∆E/E)accept. The total cross-section, integrating k from kmin to
kmax, is

σ =
16αr2

e

3

(− ln δaccept −
5

8
) ln(

4EpEi

MeMp
+

1

2
) +

1

2
(ln δaccept)

2 − π2

6
− 3

8


Using δaccept = 9.91× 10−3, the total cross section is

σ = 2.906× 10−25 [cm2]

The rate Ṅ at which electrons are lost from the beam is

Ṅ = NIPLσ

where NIP is the number of interaction points in the ring. Hence the lifetime of the
electron beam is

τp−bremm =
Ne,tot

NIPLσ
where Ne,tot is the total number of electrons in the beam initially.

Ie = 65.88mA, Ne,tot = 4.66×1013, proton energy is Ep = 3000GeV. Assuming
that there is only one interaction point in the ring, the lifetime is

τp−bremm = 142 hours



Quantum Lifetime
Horizontal plane:

τquant;x =
1√
2π

exp[rx,δ]

(2rx,δ)3/2

1

(1 + f)
√

f(1− f)
tdamp,x (6)

where

rx,δ =
1

2
(
xApert
σT

)2, σ2
T = σ2

x + D2
xσ

2
δ , f =

D2
xσ

2
δ

σ2
T

(7)

Vertical plane:

τquant;y =
erβ

2ry
tdamp,y (8)

where

ry =
1

2
(
yApert

σy
)2

σmaxT (Arcs) = 2.43mm, σmaxy (Arcs) = 0.98mm, σδ = 1.03× 10−3
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(Ax, Ay) = 10(σT , σy) + (XCOD, YCOD) (9)

Required beam chamber half-aperture

Ax × Ay = 40mm × 20mm (10)



Beam Lifetime
Touschek lifetime

τTousch ∝ γ3 σxσx′σyσs
Ne

(
∆E

E
)2
accept

= 5.4× 105 hrs

Quantum lifetime at 10σ in each plane

τQx = 5.6× 1012 hrs, τQy = 2.3× 1015 hrs, τQs = 3.8× 106 hrs

e− p bremmstrahlung lifetime

τe−p = 142 hrs

Synchtrotron radiation induced photo-desorption lifetime

η = 2× 10−5; τphoto = 32 hrs

η = 2× 10−6; τphoto = 59 hrs

Total lifetime

1

τT
=

1

τTousch
+

1

τQx
+

1

τQy
+

1

τQs
+

1

τep
+

1

τphoto

τT = 26 hrs [η = 2× 10−5]

τT = 42 hrs [η = 2× 10−6]

Not included

• Effects of orbit distortion, larger emittances and energy spreads on the quan-
tum lifetime.

• Ion or “dust trapping”.

• Scattering of thermal photons.



Polarization
Sokolov-Ternov polarization time

τST =
8

5
√

3

mec
2ρ3

e2h̄γ5 = 0.9 hrs

Electrons are polarized anti-parallel to the field, positrons are polarized parallel.
Closed orbit distortions lead to spin diffusion and depolarization.
Energy dependent spin tune

νspin = aγ = 181.54

Depolarizing resonances

νspin = k + mxqx + myqy + msqs

Dangerous resonances

• First order resonances: mx = ±1, my = ±1, ms = ±1

• Next, synchrotron side-band resonances of first order resonances: ms a small
integer. Modulation of spin tune by synchrotron oscillations. Measure of the
strengths of these resonances

κspin =

[
aγσδ
qs

]2
= 2.4

Preferably κspin � 1 for depolarization to be weak.

Possible solution:

• Include polarization wigglers to enhance S-T rate. This however increases en-
ergy spread, κspin and depolarization.

• Incorporate asymmetric snakes a la Derbenev: spin tune is almost 0.5 inde-
pendent of energy via a “spin echo” effect due to the two spin flips. Resonant
depolarization is weak.
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Main Features

• Low field (600 Gauss), air cooled, dipoles.

• Small Aluminium vacuum chambers.

• Ion pumps, every ∼ 8m section.

• 50MW total RF power. Water cooling required.

• Superconducting cavities.

• Possibly superconducting IR quadrupoles.

• Low β∗ (11.5 cm), head on collisions.

•Many bunches (1200)

• Feedback system for multi-bunch instabilities.

• Polarization must be designed in.

• Relatively low cost.


