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Abstract

We report on the extraction of the structure functions F2, �xF3 = xF �
3 �xF �

3 ,

and R from neutrino-nucleon di�erential cross sections measured with the Chicago-

Columbia-Fermilab -Rochester (CCFR) detector. The extraction is performed in

a physics model independent (PMI) way for the �rst time. This �rst measurement

of �xF3, which is useful in testing models of heavy charm production, is higher

than current theoretical predictions at low values of Q2. The F2 (PMI) values

measured in the CCFR neutrino experiment are now in good agreement with the F2

measured in muon scattering above Q2 = 1 GeV2, thus resolving the long-standing

discrepancy at low value of x region between the two sets of data. The CCFR

values for R(=�L=�T ) are in good agreement with muon and electron data. We

report on an investigation of R in neutrino scattering for possible anomalous large

nuclear e�ects (at low x and Q2 < 1 GeV2) of the type recently reported by the

HERMES electron scattering experiment. We also report on a study leading to a

signi�cant improvement in our knowledge of the valence d and u parton distribution

functions at high x through a re-analysis of structure function data from the New

Muon Collaboration (NMC) and Stanford Liner Accelerator Center (SLAC). The

standard parton distributions functions (PDFs) with our proposed modi�cations

are in good agreement with quantum chromodynamics (QCD) predictions for d=u

near x = 1, the �p and �p data from the CDHSW (CERN, Dortmund, Heidelberg,

Saclay, and Warsaw) experiment, the charged current cross section data from the

HERA positron-proton collider experiment, the high-Pt jet data, and with the W

asymmetry data from the proton-antiproton collider experiment at Fermilab. With

the inclusion of target mass and higher twist corrections, the modi�ed PDFs also

describe all deep inelastic scattering data up to x = 0:98 and down to Q2 = 1

GeV2.
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Chapter 1

Introduction

Elementary particle physics deals with the fundamental particles of matter and

their interactions. Since the discovery of quarks [1, 2, 3] inside the nucleon by the

MIT-SLAC collaboration in a series of deep inelastic electron-nucleon scattering

at the Stanford Linear Accelerator (SLAC), the investigation of nucleon structure

has been used as a tool to study fundamental particles and their interactions. In

the Standard Model, the nucleon is composed of quarks and gluons which are

bound by the strong interaction. Thus, probing the nucleon has become one of

major research areas in the study of the properties of quarks, gluons, and the cor-

responding dynamics. Deep-inelastic lepton-nucleon scattering experiments (with

electrons, muons, and neutrinos) provide the cleanest tool to explore the structure

of the nucleon. In this thesis, we report on measurements of nucleon structure

in neutrino-nucleon deep-inelastic scattering experiments at the Fermi National

Laboratory. We also present a global study of nucleon structure functions mea-

surements from various deep inelastic nucleon scattering experiments with electron,

muon, and neutrino beams.

This thesis is organized as follows: This introductory chapter outlines the the-
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oretical background and why nucleon structure is of great interest. The remaining

chapters describe the setup of the experiment and beamline, and details of the

data analysis.

� Chapters 2 describes the high-energy neutrino beam and the neutrino detec-

tor.

� Chapters 3 describes how to reconstruct neutrino events observed in the

detector.

� Chapter 4 describes the Monte Carlo which is used to simulate neutrino

events in the detector.

� Chapter 5 describes the method of extracting di�erential cross sections and

comparison with other neutrino data.

� Chapter 6 reviews the comparison of structure functions measurements in

charged-lepton scattering and neutrino scattering experiments. A Physics

Model Independent (PMI) method for the measurements of F2 and �xF3 is

introduced, and the results are compared with theoretical predictions.

� Chapter 7 describes the extraction of R and the search for possible anomalous

nuclear e�ects in R in the low x and Q2 < 1 GeV2 region.

� Chapter 8 focuses on the important issue of quark distributions in the high

x region. It concludes that we are able to obtain a good understanding of

the d and u valence quark distributions up to x = 0:98 (with a proposed d=u

correction to the standard parton distribution functions).

� Chapter 9 provides a summary and implications of all the results, and ad-

dresses future prospects.
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l (k) l (k/)

γ,Z,W (q=k-k/)

p (P) X (p+q)

Figure 1.1: Schematic diagram of lepton-hadron scattering via Vector-Boson Ex-
change

1.1 Deep inelastic scattering

In the most general case, lepton-nucleon inelastic scattering proceeds via the ex-

change of a virtual vector boson (
, Z, and W ) as shown in Figure 1.1,

lN ! l0X (1.1)

where l; l0 represent initial and �nal state leptons �. N represents the nucleon

and X represents the hadronic �nal state particles. After the scattering, the ex-

cited nucleon fragments into a hadronic �nal state X. The associated four vectors

for the incoming and outgoing leptons are k and k0, respectively. Here P is the

four momentum for the target (or incoming) nucleon. The following variables are

�In the case of charged current ��N scattering, l0 is muon.
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conventionally used to describe lepton-nucleon scattering:

Q2 = �q2 = �(k � k0)2 > 0; (1.2)

s = (P + k)2; (1.3)

W 2 = (P + q)2; (1.4)

x =
Q2

2P � q ; (1.5)

y =
P � q
P � k ; (1.6)

� =
P � q
M

: (1.7)

The variable s and W 2 are the square of the center-of-mass energy of the lepton-

nucleon, and of the virtual boson-nucleon systems, respectively. The square of

the four momentum transfer (Q2, the mass squared of the virtual boson) deter-

mines the \hardness" of the interaction, or in other words, the resolving power of

the interaction. The exchanged boson plays the role of a \parton-meter" with a

resolution �r, which is given by:

�r =
1p
Q2

=
0:197p
Q2

GeV-fm: (1.8)

In the rest frame of the target, � is equal to the energy of the intermediate boson

Ehad. The variable y is the inelasticity of the interaction, which is equal to the

fractional energy transferred between the lepton and the hadron systems. The

y distribution also re
ects the spin structure of the interaction, as discussed in

following sections. The variable x (�rst introduced by Bjorken [4]) is interpreted

in the quark-parton model [5] as the fractional momentum of the incoming nucleon

carried by the struck quark. Only three of the above quantities are independent

variables in two-body deep inelastic scattering.
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1.2 Charged-current cross section

In neutrino (��) nucleon scattering experiments, the three independently measured

variables in a charged-current event are the outgoing muon momentum (p�), the

outgoing muon angle (��), and the observed energy of the �nal state hadrons

(Ehad). >From these measured variables the neutrino energy is equal to E� =

Ehad + E� as required by energy conservation.

The derivation of the formulae for inclusive charged-current neutrino scattering

is very similar to the case of e� � scattering. Both do not require any knowledge

of the dynamics inside the nucleon. The unknown couplings of the lepton-current

to the nucleon are absorbed in the de�nition of the structure function Fi. In

the case of elastic (muon,electron) or quasi-elastic (neutrino) scattering, these can

be interpreted as the Fourier transforms of the spacial charge distribution in the

nucleon.

The general form of the di�erential cross section for neutrino-nucleon scattering,

mediated by the W boson (in the case of charged-current scattering) is given in

terms of three structure functions y:

d2�

dxdy

�(�)

=
G2ME

�

"
(1� y � Mxy

2E
)F2 +

y2

2
2xF1 � y(1� y

2
)xF3

#
; (1.9)

where the +(�) terms correspond to neutrino (antineutrino) scattering. Here GF

is the Fermi weak coupling constant. The structure function, Fi are process depen-

dent, and are functions of the kinematics variable, x and Q2. If the cross section is

re-written in terms of the absorption cross-sections by left-handed, right-handed,

and longitudinally polarizedW bosons, then the structure function F1 corresponds

to the contribution from the sum of left-handed and right-handed bosons, F2 cor-

yA full derivation can be found in many books, for example Halzen and Martin [6].
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responds to the contribution from all boson polarizations, whereas F3 corresponds

to the contribution from the di�erence of right-handed and left-handed polarized

bosons. The structure function F3 is non-zero only in weak interactions (for which

parity is violated). The relationship between the experimentally extracted struc-

ture functions and the parton distributions in the nucleon (and their dependence

on kinematic variables) is determined within the framework of the quark-parton

model.

1.3 The naive quark-parton model

The quark-parton model (QPM) was �rst introduced by Feynman [5] in order to

provide a simple physical picture of the phenomenon of scaling in deep-inelastic

scattering. Scaling has been predicted theoretically using current algebra consider-

ations by Bjorken [4] and �rst observed experimentally in high energy deep-inelastic

electron scattering experiments at SLAC [3]. In those experiments, F2 was observed

to be only a function of x and independent of Q2 for x values around x � 0:3. The

model states that the nucleon is composed of point-like non-interacting scattering

centers now known as partons. The lepton-hadron reaction cross-section is ap-

proximately eaual to the incoherent sum of elastic lepton-parton scattering cross-

sections, as shown in Figure 1.2. In the in�nite momentum frame, it is easy to

show that the variable x is identi�ed with the fraction of the nucleon's momentum

carried by the quark which participates in the hard scattering process.

The parton model had to be reconciled with the static quark model which

pictures the nucleon and other baryons as composed of three constituent quarks

which account for the 
avor properties of baryons. This reconciliation is imple-

mented in the QPM by considering the nucleon as composed of valence quarks,

which give it its 
avor properties, and a `sea' of quark-antiquark pairs which have
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Figure 1.2: Schematic diagram of lepton-hadron scattering in the quark-parton
model.

no overall 
avor. All of these quarks are identi�ed as partons. Hence the antiquark

distributions within the nucleon are purely sea distributions, whereas the quark

distributions have both valence and sea contributions

xq(x) = xqv(x) + xqs(x); x�q(x) = x�qs(x); (1.10)

and

xqs(x) = x�qs(x): (1.11)

In addition, since the integral of the structure function F2, as �rst measured

in the deep-inelastic scattering experiments at SLAC, only accounted for half of

the nucleon momentum, it was proposed that the other half of the momentum is

carried by �eld particles called gluons, which mediate the strong interaction be-

tween the quarks. Based on these ideas, we consider the neutrino-nucleon inelastic

scattering process as elastic neutrino-parton scattering. Neutrinos are left-handed

and antineutrinos are right-handed. Because of the V � A structure of the weak
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qν q ν

No angular dep.                             Angular dep. (1-y)
2

zz S  = 0 S  = 1

Figure 1.3: Two possible helicity con�gurations for high energy neutrino scattering
from quarks.

interaction, only left-handed particles and right-handed antiparticles participate in

the interaction of the massless (very light) partons. Thus, there are only two pos-

sible helicity con�gurations for high energy neutrino-quark scattering as shown in

Figure 1.3. Similary, there are also two helicity con�gurations for the anti-neutrino

scattering case. When the total spin is equal to 1 there is a angular suppression

factor of (1� y)2.

If we denote q(x) as the probability to �nd a parton with momentum fraction x

in a frame of a fast moving nucleon, the di�erential cross section for the scattering

from a parton is given by

d�2

dx dy
/ G2

FME

�(1 +Q2=M2
W )2

xq(x): (1.12)

Therefore, the cross sections for neutrino (and antineutrino) nucleon scattering

are the sums of all parton contributions in the nucleon, with the proper angular

dependence factors, as follows:

d2��N

dxdy
=

G2
FME�x

�(1 +Q2=M2
W )2

h
q�N(x) + (1� y)2q�N(x) + 2(1� y)k�N(x)

i
(1.13)

d2��N

dxdy
=

G2
FME�x

�(1 +Q2=M2
W )2

h
q�N(x) + (1� y)2q�N(x) + 2(1� y)k�N(x)

i
: (1.14)

The contribution of possible spin-0 constituents (k) is also shown. The angular

dependence factor for this contribution, (1�y), is the same as for the terms which
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originate from the small intrinsic transverse (pt) of spin 1/2 partons.

A comparison of the above parton-level cross sections with Equation 1.9 yields

the following relations between the structure functions and parton distributions:

2xF
�(�)N
1 = 2

h
xq�(�)N (x) + xq�(�)N (x)

i
F
�(�)N
2 = 2

h
xq�(�)N (x) + xq�(�)N (x) + 2xk�(�)N (x)

i
(1.15)

xF
�(�)N
3 = 2

h
xq�(�)N (x)� xq�(�)N (x)

i
; (1.16)

where terms proportional to Q2=�2 have been neglected. Thus, in the parton

model, nucleon structure functions are related to the momentum distributions

carried by the partons in the nucleon.

If the scattering takes place exclusively from free spin-1
2
constituents, the Callan-

Gross relation [7]

2xF1 = F2 (1.17)

is satis�ed. However, the partons also have non-negligible transverse momenta,

which at present energies yields an apparent spin-0 type behavior, in the in�nite

momentum frame. This transverse momentum leads to a di�erence between F2 and

2xF1 that diminishes as the momentum transfer Q2 increases. The exact relation

between 2xF1 and F2 is obtained by using R, the ratio of the longitudinal strucutre

function (FL) and transverse strucutre function (2xF1).

R =
FL
2xF1

=
F2

2xF1

(1 +Q2=�2)� 1: (1.18)

The analogous expressions for charged-lepton scattering via virtual photon ex-

change follow from the pure vector nature of the electromagnetic current. Thus,

electromagnetic scattering probes the charge of the partons, whereas neutrino scat-
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tering probes the 
avor composition of the nucleon constituents.

2xF `N
1 =

X
i

e2i
h
xq`Ni (x) + xq`Ni (x)

i
(1.19)

F `N
2 =

X
i

e2i
h
xq`Ti (x) + xq`Ni + 2k`Ni (x)

i
; (1.20)

where ei is electric charge of parton i. Comparison of neutrino and charged-lepton

scattering data provdies the measurement of the mean-square charge of the nu-

cleon's interacting constituents.

Neutrino scattering has the ability to resolve the 
avor of the nucleon con-

stituents. Becaues of charge conservation at the quark vertex, charged current

neutrino scattering happens only with d, s, u and c quarks. Similarly, antineutri-

nos can scatter only from d, s, u and c quarks. For a proton target, the parton

densities that contribute to the structure functions are:

q�p(x) = dp(x) + sp(x) ; q�p(x) = up(x) + cp(x) (1.21)

q�p(x) = up(x) + cp(x) ; q�p(x) = d
p
(x) + sp(x): (1.22)

Isospin invariance (also called charge symmetry) requires symmetry between the

light quark densities in the proton and neutron:

dp(x) = un(x); up(x) = dn(x); d
p
(x) = un(x); up(x) = d

n
(x): (1.23)

Using these symmetries, the quark distributions in the neutron are described in

terms the quark distributions in the proton. All of the parton distributions are

de�ned with respect to the proton.

q�n(x) = u(x) + s(x) ; q�n(x) = d(x) + c(x) (1.24)
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q�n(x) = d(x) + c(x) ; q�n(x) = u(x) + s(x): (1.25)

Finally, the parton densities for an isoscalar nucleon, 1
2
(proton + neutron), are

given by:

q�N(x) =
1

2
[u(x) + d(x) + 2s(x)] ; q�N(x) =

1

2

h
u(x) + d(x) + 2c(x)

i
(1.26)

q�N(x) =
1

2
[u(x) + d(x) + 2c(x)] ; q�N(x) =

1

2

h
u(x) + d(x) + 2s(x)

i
:(1.27)

The quark content of the isoscalar structure function 2xF1 for neutrino scattering

is obtained by substituting these densities into Equations 1.15:

2xF �N
1 (x) = xu(x) + xu(x) + xd(x) + xd(x)

+xs(x) + xs(x) + xc(x) + xc(x)

= 2xF �N
1 (x): (1.28)

In the following discussion (for simplicity) we assume xs(x) = xs(x). The charm

quark distributions, which are small when compared to the strange quark distri-

butions, are also neglected.

The electromagnetic structure functions 2xF `p
1 and 2xF `n

1 are constructed from

Equation 1.20 using the same parton densities as above, and including the quark

charges:

2xF `p
1 =

�
1

3

�2 h
xd(x) + xdx+ xs(x) + xs(x)

i

+
�
2

3

�2
[xu(x) + xu(x) + xc(x) + xc(x)] (1.29)

2xF `n
1 =

�
1

3

�2
[xu(x) + xux + xs(x) + xs(x)]

+
�
2

3

�2 h
xd(x) + xd(x) + xc(x) + xc(x)

i
: (1.30)
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(1.31)

The 2xF `N
1 for an isoscalar nucleon is found by averaging:

2xF `N
1 =

1

2

�
2xF `p

1 + 2xF `n
1

�

=
5

18

�
xu+ xu+ xd+ xd

�

+
1

9
(xs+ xs) +

4

9
(xc + xc) : (1.32)

Under the assumption that the value of R is the same for electromagnetic neutral-

current and weak charged-current structure functions, the ratio of electromagnetic

and neutrino structure functions for 2xF1 is equal to the ratio for F2:

F `N
2

F �N
2

=
5

18

 
1� 3

5

xs+ xs� xc� xc

xq + xq

!
; (1.33)

where xq + xq = 2xF �N
1 . This relationship is known as the 5/18ths rule. The

observation that charged-lepton scattering and neutrino-scattering structure func-

tions are approximately related by a factor of � 5=18, was a signi�cant triumph

for the QPM. More detailed comparisons are discussed in Chapter 6.

The structure function xF3 (which is only present in parity violating weak

interactions) represents the momentum density of valence quarks. Substitution of

the isoscalar parton densities into Equation 1.16 yields:

xF �N
3 (x) = xuV (x) + xdV (x) + 2xs(x)� 2xc(x) (1.34)

xF �N
3 (x) = xuV (x) + xdV (x)� 2xs(x) + 2xc(x); (1.35)

where uV � u � u and dV � d � d are the valence densities in the proton. The

average value of xF �N
3 and xF �N

3 yields the total valence quarks distribution. The
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di�erence of xF �N
3 and xF �N

3 is very sensitive to both the strange sea and charm

sea in the nucleon as shown below:

xF3(x) =
h
xF �N

3 (x) + xF �N
3 (x)

i
=2 = xuv(x) + xdd(x) (1.36)

�xF3(x) =
h
xF �N

3 (x)� xF �N
3 (x)

i
= 2 [s(x) + s(x)� c(x)� c(x)] : (1.37)

1.4 QCD calculations for structure functions

The parton model explains the scaling of the structure functions in terms of point-

like constituents. However, the model alone o�ers no explanation for the dynamics

between these constituents. Partons cannot be non-interacting because they are

con�ned within the nucleon by the strong interaction. Although the early SLAC

structure function data con�rmed the QPM in a qualitative way, a closer look at

the data indicated that the QPM should be modi�ed . For example, the sum over

the distributions of the momentum fractions of all types of quarks and antiquarks

in the nucleon should integrate to 1. However the experimental data integrated to

about 0:5. This implied that there are other particles in the nucleon that account

for the momentum that is not carried by the quarks and antiquarks. This early

observation led to the birth of the theory of Quantum Chromodynamics (QCD) [8]

(in which this momentum de�cit is carried by gluons).

1.4.1 Renormalization Scheme

QCD is a non-Abelian gauge theory of the strong interactions between quarks and

gluons, because the gluon itself carries a strong force. This gauge theory accommo-

dates free-particle-like behavior at short distances, along with particle con�nement

at long distances. This is commonly known as \asymptotic freedom". It can be
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Figure 1.4: Schematic diagram of the q�qg vertex diagram plus virtual loop correc-
tions

understood in terms of the behavior of the strong coupling constant, �s, which

appears in the q�qg vertex diagram, as shown in Figure 1.4. The experimentally

measured coupling constant �s includes the virtual diagrams (only one loop correc-

tions are shown in Fig. 1.4). However, if we try to calculate this series of diagrams

we get in�nities in the calculations. These in�nities are controlled by a renormal-

ization procedure, in which one de�nes the coupling to be �nite at some scale �2,

and expresses �s(Q
2) at any other scale in terms of this �xed value. However, the

results for the value of any physical quantities should not depend on the arbitrary

choice of scale �2. This independence is expressed in terms of a renormalization

group equation which can be solved to give the renormalization scale dependence

of the coupling �s as is given by the � function.

�
d�S(�

2)

d�
= � �0

2�
�2
S(�

2)� �1
8�2

�3
S(�

2); (1.38)

where the coeÆcients are given by

�0 = 11� 2nf=3

�1 = 102� 38nf=3: (1.39)
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The one loop solution of this equation is expressed by

�s(Q
2) =

4�

�0ln(Q2=�2)
; (1.40)

where nf is the number of quark 
avors. The quantity � (a parameter of QCD)

depends on the renormalization scale and scheme z and on the number of active


avors ni at a scale equal to Q
2. Equation 1.40 illustrates the non-Abelian nature

of QCD, i.e. the apparent charge becomes weaker at short distances. When the

momentum transfer Q2 is large �s is small and the quarks are asymptotically free.

1.4.2 Factorization Scheme

The quark-gluon interaction introduces aQ2 dependence of the quark distributions,

and thus the measured structure functions. The e�ect is that the quark distribution

increase with Q2 at small values of x, and decrease with Q2 at large values of x,

as shown in Figure 1.5.

The calculations of structure functions results in infrared divergent quantities

which originate from interactions at large distance scales (involving very low mo-

mentum partons). The factorization theorem of QCD provides a way to avoid this

problem by seperating the short distance processes from large distance e�ects [9].

Below the factorization scale �F , all large distance processes are absorbed into par-

ton distribution funtions. Above this scale, the hard scattering coeÆcient functions

describe the physics at short distance, which can be calculated using pertubative

QCD (pQCD). Thus, the structure function calculation can be decomposed into

two parts, namely parton distribution functions and hard scattering coeÆcients as

zThe most commonly used scheme is the modi�ed minimal subtraction (MS) scheme. In the
minimal subtraction scheme, �2 is chosen to be the same for every divergent integral
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Figure 1.5: A demonstration of valence quark evolution in Q2

follows:

Fa(x;Q
2) =

X
l

Z 1

x

dy

y
ql(y; �F )Ca(

x

y
;Q2; �F ; �S(�R)); (1.41)

where ql is the parton distribution function for a parton l, and Cl is the hard

scattering coeÆcient.

The parton distribution, ql depends on the spec�c parton l, and �F , but is

universal (independent of the particular hard scattering process). The hard scat-

tering coeÆcient, Ca depends on the renormalization and factorization scale, but

is independent of large distance e�ects. It is a generalization of the Born elastic

scattering cross section in the quark parton model. Conventionally we select these

two arbitrary scales (�R, �F ) to be equal. The two quantities are both denoted by

the single scale �2, unless othewise spec�ed.

Using the factorization theorem, the parton distributions can be determined

experimentally. The structure functions Fa(x;Q
2) in Equation 1.41 are measured

and the hard scattering coeÆcients are calculated in a given order by pQCD. Thus,

the remaining unknown parton distribution can be extracted from the data, having
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speci�ed the QCD order and scheme.

Perturbative QCD cannot be used to calculate the parton distributions. How-

ever, once the parton distributions are measured at one momentum scale, QCD

predicts how they evolve to any other scale. The evolution of parton distri-

butions is governed by the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP)

equations [10],

dqNS(x; t)

dt
=

Z 1

x

dy

y
PNS
qq

 
x

y
; t

!
qNS(y; t) (1.42)

dqS(x; t)

dt
=

Z 1

x

dy

y

"
P S
qq

 
x

y
; t

!
qS(y; t) + 2nfPqG

 
x

y
; t

!
g(y; t)

#
(1.43)

dG(x; t)

dt
=

Z 1

x

dy

y

"
PGq

 
x

y
; t

!
qS(y; t) + PGG

 
x

y
; t

!
g(y; t)

#
; (1.44)

where t = ln(�2=�2) and g(y; t) represents the gluon distribution with momentum

momentum fraction y (> x). The non-singlet and singlet quark distributions are

given by

qNS(x; t) =
X
i

[qi(x; t)� qi(x; t)]

qS(x; t) =
X
i

[qi(x; t) + qi(x; t)] : (1.45)

The splitting functions Ppp0(x=y) represent the probability of a parton p0 emitting

a parton p with momentum fraction x=y. The evolution of the non-singlet quark

(valence quarks) distribution does not involve the gluons. Thus, theQ2 dependence

of the valence quarks distribution provides a unique window to test QCD.

Using the factorization theorem of Equation 1.41, the measured structure func-

tions are related to the parton distributions, which evolve according to the DGLAP
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evolution equations. The structure functions are given by

2F1(x;Q
2) =

Z 1

x

dy

y

"
Cq1
 
x

y
; �2

!
qS(y; �

2) + CG1
 
x

y
; �2

!
g(y; �2)

#
(1.46)

F2(x;Q
2)=x =

Z 1

x

dy

y

"
Cq2
 
x

y
; �2

!
qS(y; �

2) + CG2
 
x

y
; �2

!
g(y; �2)

#
(1.47)

F3(x;Q
2) =

Z 1

x

dy

y
Cq3
 
x

y
; �2

!
qNS(y; �

2); (1.48)

where the Ci are the hard scattering coeÆcients. The QCD behavior of the quarks

(evolution with scale) leads to logarithmic scaling violations, which have been

observed in the measured structure functions.

In leading-order (order �0
s), the hard scattering coeÆcients for the quarks (C

q)

are just proportional to Æ(1 � x=y), and the coeÆcients for the gluon term (CG)

vanish. Therefore, in leading order, the structure functions are simply given by

quark distributions.

F2(x;Q
2) = xqS(x; �

2)

xF3(x;Q
2) = xqNS(x; �

2); (1.49)

where the �2 scale dependence appears only in the parton distribution functions

from the splitting functions (of order �1
s). In leading order, this dependence of the

parton distributions is usually chosen simply with �2 = Q2.

In next-to-leading order (NLO), all hard scattering coeÆcients are proportional

to �1
s, and the NLO parton distributions come from the two loop DGALP evolution

equation (to order �2
s). One of the complete NLO diagrams initiated by quarks

in the structure function is shown in Figure 1.6. In the high x region, where

the gluon contribution is small, structure function measurements can be used to

perform an unambiguous test of perturbative QCD by investigating the predicted
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W

Qµ=

Figure 1.6: One of the full NLO diagram for the structure functions. It is of order
�1
s in the hard scattering coeÆcient above � = Q factorization scale, and to order

�2
s in the splitting functions below � = Q factorization scale

logarithmic Q2 dependence. In the low x region, the gluon contribution to the

scaling violations is dominant. Therefore, here the gluon distribution can also be

extracted from the Q2 evolution of the measured structure functions.

1.4.3 Higher twist

So far we have only considered the predictions of QCD in leading twist. Twist

refers to the (dimension - spin) of the operators entering into the operator product

expansion. At lowQ2, lepton-nucleon scattering involves double partons scattering.

Here, the resolving power of the virtual boson is not large enough to probe a single

parton inside the nucleon, as shown in Figure 1.7. The contributions from higher

twist diagrams are suppressed by powers of 1=Q2 as compared to the leading twist

diagrams. Therefore, higher twist e�ects can become important at low Q2. This is

also the region where perturbative QCD becomes inapplicable (since the coupling
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W

Figure 1.7: A diagram for a higher twist contribution (twist 4).

constant �s becomes too large). In the low Q2 and high x region, nucleon target

mass e�ects also become important. Thus, the identi�cation of x with the fraction

of the nucleon's momentum taken by the struck quark cannot be maintained when

Q2 ' M2, and corrections to the formulae are necessary [12]. Since these involve

powers of 1=Q2, the target mass e�ects are often called kinematic higher twist

e�ects, whereas terms coming from operators of higher twist are called dynamic

higher twist e�ects. We expect that at low Q2, the Q2 dependence of the structure

function could be modi�ed by a multiplicative factor of the form (1+h(x)=Q2) [11],

where h(x) is size of the higher twist contribution. This is discussed in detail in

Chapter 7.

1.4.4 Nuclear binding e�ects

Experiments with muons [13] and electrons [14] on nuclear targets have shown that

the structure functions as measured with iron targets are not simply the sum of

the structure functions of free nucleons (smeared with the e�ects of Fermi motion).

The nuclear environment also modi�es the e�ective x distribution of the quarks



21

Figure 1.8: Nuclear binding e�ects in F2. A �t to the ratio of iron and deuteron
structure functions, F2(Fe)=F2(d) is shown.

inside the nucleon, as seen by the scattered electron or muon. The experimental

data is shown in Figure 1.8. The size of the nuclear binding e�ects has been well

established by electron scattering experiments at SLAC, and by muon scattering

experiments at Fermilab and CERN (at low x). However, this e�ect is very poorly

known in neutrino scattering. This is because neutrino scattering experiments are

usually done with massive heavy nuclear targets (in order to get large statistical

samples). Therefore, it would be interesting determine if the nuclear e�ects as seen

by charged-leptons and neutrinos are the same.
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Figure 1.9: A schematic view of the Q2 dependence of F2 at x = 0:45 for the naive
quark-parton model (no QCD), perturbative QCD only, perturbative QCD with
higher twist e�ects, and perturbative QCD with higher twist e�ects and nuclear
binding e�ects in iron.

1.5 What do we learn from structure function

data?

As discussed in previous sections, the measurements of the structure functions

contribute to our understanding of perturbative QCD, non-perturbative QCD,

and nuclear binding e�ects. Figure 1.9 shows each of these contributions to the

Q2 dependence of F2 at x = 0:45.

The �rst observation of Bjorken Scaling by the MIT-SLAC experiments pro-

vided the foundation for the quark-parton model. More precise observation of

logarithmic scaling violations with electrons at SLAC and later with muons at

Fermilab and CERN indicated that the non-Abelian gauge theory of Quantum
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Chromodynamics (QCD) is the correct theory of the strong interactions. There-

fore, recent e�orts have focused on the extraction of accurate parton distributions

within the framework of perturbative QCD (which is now taken for granted). Ac-

curate parton distribution functions are also of vital importance as the input for

calculations of high energy scattering processes in high energy colliders. The Stan-

dard Model processes must be precisely understood when we search for deviations

to discover signatures of physics beyond the Standard Model.

In the extraction of parton distribution, the structure functions measured in

neutrino scattering play a major role. As mentioned earlier, charged-current charm

production events provide direct information on the strange quark contents in the

nucleon. This is possible because of the 
avor selection in the neutrino scatter-

ing processes. Furthermore, the structure functions F2 and xF3 provide separate

information on the sea and valence quark distributions.

A outstanding experimental complication was the fact that in previous analyses,

the quark distributions determined from muon [15] and neutrino [16] experiments

were found to be di�erent at small values of Bjorken x. This disagreement in the

extracted structure functions was unresolved.

In this study, we perform the �rst Physics Model Independent (PMI) analysis

to extract structure functions from neutrino and antineutrino di�erential cross

section data. These neutrino (PMI) structure functions are compared to the muon

scattering results. By also extracting the structure function �xF3 for the �rst

time, we can study various models of heavy charm production in lepton-nucleon

scattering.

In addition to the investigation of the structure function in the low x region,

we also study the intermediate x region where the valence quarks distribution has

been thought to be relatively well understood. We perform this study by doing a

global analysis of precise electron and muon scattering experiments. The recent
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W asymmetry data from the CDF proton-antiproton collider experiment, and new

NMC structure function data indicated that the d quark distribution might be

underestimated in the standard PDFs. This could be very important for collider

experiments at high energies, where searches for signals from new physics processes

at high Q2 are performed. As a part of this study we also investigate the very high

x region, which has never been investigated before. Our global analysis study

of the valence quark distributions covers both the intermediate and very high x

region, up to x = 0:98.
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Chapter 2

The Neutrino Beam and Detector

High-energy precision neutrino experiments require high intensity neutrino beams

and massive neutrino detectors in order to achieve statistically signi�cant samples

of neutrino interactions. Because neutrinos only interact via the weak interac-

tion, the neutrino-nucleon cross section is extremely small (a factor of almost 1011

smaller than the proton-nucleon cross section). For example, 100 GeV neutrinos

can pass through 200 thousand miles of steel before interacting. Therefore, the de-

tection of neutrinos experimentally challenging. Because of these factors, neutrino

experiments in general use high intensity neutrino beams in combination with a

massive detectors (hundreds of tons) in order to increase the neutrino interaction

rate to signi�cant level.

Neutrino beams are produced from the decays of mesons which are produced in

the collisions of protons with a light nuclear target. There are two high statistics

high-energy neutrino experiments, namely the CCFR experiment at Fermilab and

the CDHSW experiment at CERN.

The CCFR experiment (presented in this thesis) uses the Fermilab 800 GeV

proton beam to produce a wide-band beam of neutrinos and antineutrinos. The
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detector consists of a 690 ton total absorption sampling calorimeter followed by a

muon spectrometer. The data were collected in two runs: Experiment E744 which

ran from February to August 1985, and Experiment E770 which ran from June

1987 to February 1988.

This chapter describes the experimental apparatus which includes the acceler-

ator facilities at Fermilab, the neutrino beam, and the CCFR detector. The last

section of this chapter describes the data acquisition system.

2.1 Neutrino beams at the Fermilab

During the E744 and E770 experiments, 800 GeV protons produced a mixed beam

of neutrinos and antineutrinos with average energy of about 140 GeV (and maxi-

mum neutrino energies as high as 600 GeV). High energy proton beams are pro-

duced using the Fermilab accelerator complex which is shown in Figure 2.1.

First, H� ions are produced by interactions with a cesium cathode in hydrogen

gas. The ions are accelerated to 750 keV by the electrostatic Cockroft-Walton

machine. Then, the energy of the H� ions is increased to 200 MeV by a linear

accelerator (LINAC). The two electrons in the H� ion are stripped while passing

through a carbon foil. The proton beam is injected into a synchrotron (the Booster)

which accelerates the protons to an energy of 8 GeV. The main ring, which consists

of conventional dipole and quadrupole magnets, accelerates the protons up to 150

GeV. Finally, a superconducting proton synchrotron (the Tevatron) accelerates

proton beam to an energy of 800 GeV (an optimal choice of energy with reliable

machine performance).

In the �xed-target mode (as opposed to collider mode), the Tevatron operates

on a 60 second cycle during which it is �lled with approximately 2� 1013 protons.

The proton beam is extracted in fast and slow spills. The duration time of each
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Figure 2.1: Layout of the Fermilab neutrino beamline to the Lab E CCFR detector.
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Figure 2.2: Tevatron magnet current versus time for one cycle in the �xed-target
mode. Here P1, P2, and P3 are the three pings used for production of the neutrino
beam.

type of spill is 1 millisecond and 2 seconds, respectively. The fast spills (called

pings) are used to produce short bursts of neutrinos (short in order reduces the

cosmic ray background). Figure 2.2 shows the three fast spills, P1, P2, and P3.

Approximately 1012 protons are extracted in each ping. These protons interact

with a 33 cm long beryllium oxide target. The secondary beam of mesons (mostly

pions and kaons) produced in the target is collimated into a decay region (about

320m long) by a triplet of quadrupole magnets. In order to produce a high intensity

secondary beam, no sign or momentum selection is required. This con�guration is

called a wide-band neutrino beam. The two body decays of the secondary pions

and kaons result in muon-neutrinos (��) as shown below.

�+ ! �+�� BR = 99:99%

K+ ! �+�� BR = 63:5%: (2.1)
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The production of electron-neutrinos (�e) is highly suppressed by helicity conser-

vation. Because of very small neutrino mass �, the maximum neutrino energy is

given by the ratio of the mass of the muon to the mass of the parent meson (pion

or kaon):

Emax
� = E�;K

2
41�

 
m�

m�;K

!2
3
5: (2.2)

Consequently, the energy spectrum of the neutrino beam shows a dichromatic

structure as discussed in Chapter 5. The muons and neutrinos from the decay

of pions and kason pass through a long shield (composed of dirt, concrete, and

steel) before reaching the detector. All particles, except neutrinos, are absorbed

by this long shield. In addition, since the front face of the CCFR detector is 915m

from the end of the decay region, the incident angle of the neutrino beam has a

divergence which is less than 1 mrad. About 109 neutrinos are produced in each

ping yielding a total of � 10 neutrino interactions per ping in the CCFR detector.

2.2 The CCFR neutrino detector

The CCFR detector is a relatively coarse and massive detector. It is designed for

high statistics neutrino scattering measurements. The detector consists of an un-

magnetized iron-scintillator target calorimeter instrumented with drift chambers,

followed by a solid iron toroidal magnet muon spectrometer, as shown in Figure 2.3

(with a cartoon of a charged-current neutrino event). The hadronic energy, event

vertex, and the outgoing muon angle in a neutrino interaction are measured in the

calorimeter. The muon momentum is measured by the toroidal spectrometer.

�We assume the mass of neutrino is zero in this thesis
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Figure 2.3: Schematic view of the CCFR detector. The neutrino beam enters from
the right. A cartoon of typical charged-current event is also shown.

2.2.1 The target calorimeter

The transverse dimensions of the target-calorimeter are 10x10 ft2. The calorimeter

is constructed with 690 tons of 168 steel plates, 84 liquid scintillation counters and

42 drift chambers which are con�gured into six identical carts. The arrangement

of the components in each cart is shown in Figure 2.4.

The scintillation counters (which are used to measure hadronic energy) are con-

structed from acrylic vessels �lled with mineral oil doped with organic scintillating


uors. There is a 1-inch thick scintillation counter for every two steel plates (i.e.

� 1:7 hadronic interaction lengths between counters). A charged particle passing

through a counter excites the primary 
uors which emit ultraviolet (UV) light.

The UV light is absorbed by secondary 
uors which re-radiate blue light. The

blue light has a longer attenuation length in the counter which allows the light to

reach to the edges of the counter by total internal re
ection. The blue light which

exits the edge of the counter is absorbed by the wave-shifter bars which re-radiate

green light. The wave-shifter bars transfer the light by total internal re
ection to

the four corners of the counter. Finally, the green light is collected by four RCA

6342A photomultiplier tubes located at each of the four corners. A muon pass-
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Two 5.15 cm Steel Plates

5.15 cm Steel Plate

Drift Chamber (8.87 cm)

Scintillation Counter (6.48 cm)

Figure 2.4: Side view of a CCFR target cart. A scintillation counter is located
between every two steel plates, and a drift chamber is positioned after every other
counters.

ing through the center of counter produces 2.5 photoelectrons in each of the four

phototube (the photocathodes have a quantum eÆciency of about 10%).

The signals from the phototubes are digitized by LeCroy FERA ADC system

with a dynamic range of 11 bits. Because of the broad dynamic range ranging

from the small amount of light produced by a single muon to the large amount of

light produced by 400 GeV hadron showers, the phototube outputs are digitized by

four di�erent ADC channels (Low, Combination low, Super low, and High

ADCs) as shown in Figure 2.6.

� The Low ADC channel digitizes the direct output of each phototube's analog
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Figure 2.5: A CCFR scintillation counter.
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Figure 2.6: Readout electronics for a single scintillation counter. The threshold of
the s-bit discriminator is set at one quarter of minimum ionizing level.

signal.

� The Combination low channel digitizes the analog sum of the four Low

signals for each counter.

� The Super low channel digitizes the sum of 8 lows (from every 10th con-

secutive counter) attenuated by a factor of ten.

� The High channel digitizes the Combination low signal ampli�ed by a

factor of ten.

The use of these four di�erent kind of ADC channels results in an e�ective dynamic

range of 19 bits.
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Each drift chamber station is constructed with two perpendicular (x and y)

drift chamber planes. Each of the two planes has 24 drift cells. In each drift

cell there are two very close gold-plated tungsten sense wires at +1750 volts, and

one copper-beryllium �eld wire at +350 volts (between the two sense wires). The

cathodes are strips of copper clad on a G-10 cover substrate. The strips produce

a 690 Volts/meter uniform electric �eld in the drift region. The G-10 cover is

supported by parallel aluminum I-beams which are held at -4500 Volts, as shown

in Figure 2.7. The chambers are �lled with an equal mixture of argon and ethane

gas. Argon gas does not have vibrational or rotational modes. When a charged

particle passes through a chamber, the atoms are ionized. The liberated electrons

drift towards the anode wires with a drift velocity of 50 �m/nsec. The role of the

ethane gas is to absorb the ultraviolet radiations emitted by the argon gas (thus

preventing large ionization breakdown).

The signal from the sense wires is ampli�ed by pre-ampli�er cards which are

located on the chambers. The ampli�ed signal is sent to two coupled TDCs. The

drift time determines the position of the particle. The usual left-right ambiguity

in the position is not present in these chambers because there are two sense wires.

2.2.2 Muon spectrometer

The muon spectrometer, which is located downstream of the target-calorimeter,

consists of 3 large toroidal iron magnets instrumented with acrylic counters and

with 5 sets of drift chambers. There are two additional sets of drift chambers at

the downstream end of the tororidal system. Although the drift chambers in the

muon spectrometer have only one sense wire, the left-right ambiguity is resolved

by locating chambers in staggered positions (o�set by a quarter of a cell width).

Each magnet is constructed from 8 cylindrical 8 inch thick washers. Each
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Figure 2.7: a. CCFR target drift chamber station. There are two perpendicular
planes.

washer has a 70 inch outer radius and a 5 inch inner radius. The magnetic �eld

varies from 1.9 Tesla near the center (at a radius of 5 inches) to 1.55 Tesla near the

outer edge (at a radius of 70 inches). The �eld is azimuthally uniform throughout

the magnet except for a small radial component near the iron legs. For a muon

which transverses the entire length of the toroidal system, the transverse momen-

tum kick is about 2.4 GeV. A detail description of the muon spectrometer can be

found in reference [26].
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2.3 Data acquisition

The raw signals (the counter pulse heights, the drift chamber hits, and the tim-

ing pulses) are used to trigger on interesting events and to discriminate against

background events. Figure 2.8 shows typical neutrino events (with correspond-

ing reaction diagrams) observed in the CCFR detector. These are neutral-current

events (top), single muon charged-current events (middle), and dimuon charged-

current events (bottom).

Event triggers

The recording of raw data for interesting events is activated by triggers, which use

only the fast signals from the target scintillation counters and the toroid trigger

counters. We designed 6 separate triggers to collect charged-current and neutral-

current neutrino events, and other speci�c events of interest, while rejecting cosmic-

ray and beam related backgrounds.

The following six triggers were used during the experiment:

� Trigger 1 (charged-current): This trigger is designed to select charged-

current events in which a muon originates in the target and penetrates into

the toroid (i.e. the muon is momentum analyzed). It requires both the pres-

ence of a charged particle in the most downstream target cart and in the

toroid (with no activity in the upstream veto wall). The charged-current

events from this triger are used in this thesis.

� Trigger 2 (neutral current): This trigger is designed to select neutral-current

events. It requires at least 8 GeV of hadronic shower energy in the target

(there is no muon requirement).
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Figure 2.8: Typical netrino interactions observed in the CCFR detector. A neutral-
current event (top), a single muon charged-current event (middle), and a dimuon
charged-current event (bottom).

� Trigger 3 (penetrating muon): This trigger is used to study muons from the

charged-current events, in which muons range out inside the calorimeter. It

requires that 16 counters in the target �re their s-bits (and with no activity

in the veto wall), along with 4 GeV of hadronic energy deposited in a set of

8 consecutive counters.

� Trigger 4 (redundant charged-current): This trigger is used to measure the
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trigger 1 ineÆciency. All events which pass this triger should �re trigger 1.

The ineÆciency of trigger 1 is found to be less than 10�4.

� Trigger 5 (test beam): This trigger is the test beam trigger (used when

muon or hadron test beams are directly incident on the target).

� Trigger 6 (straight through muon): This trigger is designed to select muons

(produced by charged-current interactions in the berm upstream of Lab E)

that pass through the entire detector. These muons are used for calibration

and drift chamber alignment.

Data collection

The raw data collected during the E744 and E770 experimental running periods

have the following information recorded on tape: the 6 trigger bits; TDC informa-

tion and 7-channels of ADC information for each of the 84 target counters; ADC

and TDC information for the toroid acrylic counters; and TDC information for

each drift chamber hit.

The number of events recorded by each trigger type is listed in table 2.1.

The raw data pass through three o�ine programs in order to produce data

Table 2.1: Number of triggers recorded in E744 and E770. Multiple triggers can
be assigned to a single event.

Trigger type E744 E770

1 1740427 1981136
2 2267724 2915707
3 1611230 2001988
4 696664 806985
5 16447 64627
6 166682 1406410

Total 3235717 5095487
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summary tapes (dst). For each events, the DST record also contains all the

reconstructed physics variables such as muon angle and energy. The �rst program

(Stripper) unpacks the ADC pulse heights and substract the pedestal values from

the raw data. The next program (Cruncher) converts the ADC pulse heights

to hadron energies and the TDC times to particle positions. Most of the event

reconstruction (including muon tracking) is done here. All of reconstructed physics

observables for each event are recorded on DST tapes by the third program (DST

Reader/Writer).

The next chapter describes how the kinematic variables for each charged-

current event are reconstructed from the raw data.
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Chapter 3

Event Reconstruction

Deep inelastic scattering charged-current events are described by three independent

kinematic variables: the outgoing muon energy E�, the outgoing muon angle ��,

and the total hadron shower energy in the �nal state, Ehad. This chapter describes

how each of these variables is measured and reconstructed to yield real physics

quantities.

3.1 Hadron energy measurement

In a charged-current neutrino interaction, the nucleon is broken apart and frag-

ments into a number of hadrons (mostly pions). These hadrons interact in the

calorimeter and produce a hadron shower. Typically, a 100 GeV hadron shower

traverses 10 counters, which corresponds to more than 100cm of steel. Therefore,

if the event occurs within the �ducial volume (away from the wedge) the hadron

shower is completely absorbed by the calorimeter. The hadron shower energy in

the iron is sampled by using the energy deposition in the scintillation counters. The

energy deposited in the scintillation counters is about 3% of the total energy en-
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ergy deposited by the hadron shower. Therefore, the calibration of hadron shower

energy (as measured by the scintillation counters in the calorimeter) involves using

a test beam to measure the ratio of the energy deposited in the counters to the

total hadron energy.

Each of the 84 counters scintillation counters has a slightly di�erent response

to the passage of charged particles. The di�erence in response originates from

variations in the geometry, phototube gain, and electronic channels. In addition,

the response of each single counter varies with time, and depends on the trans-

verse location of the passage of charged particles. Therefore, corrections for all of

these variations must be applied before the determination of the hadron shower

calibration constants.

Counter gain calibration

The energy deposited by a muon provides the standard for the determination of

counter gain corrections. The amount of energy deposition in the counters by

high energy muons is almost independent of energy (there is a small logarithmic

dependence on the muon energy which is taken into account). In the CCFR ex-

periment, we de�ne the energy deposition of a 77 GeV muon as the deposition of

a \minimum ionizing particle" (MIP). The straight through muon event sample

(Trigger 6) is used to set the gain of each counter, and determine the dependence

of the counter response as a function of transverse position (counter maps) and

time (time dependent gain variations).

The spectrum of the muon energy deposition in a counter is described by a

Landau distribution. It has a pronounced peak due to ionization and a long high

energy tail, as shown in Figure 3.1. The sharp peak comes from ionization losses,

and the high energy tail originates from bremstrahlung, pair production, and delta
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Figure 3.1: Muon energy loss distribution in a scintillation counter.

ray production processes. The response of the counter is calculated from the

\truncated mean" of the muon energy loss distribution (to remove bias from the

high energy tail). An iterative process is used to calculate the truncated mean

until the result for the truncated mean converges. In each step, the distribution

is truncated from 0.2 to 2.0 times the previous truncated mean. The truncated

mean for the energy deposition of a 77 GeV muon in one counter is de�ned as one

MIP.

Using a large sample of straight through muons, the truncated means are mea-

sured as a function of location away from the center of the counter and as a function

of time. This procedure yields the counter map corrections for each counter. The
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Figure 3.2: Contours of the relative muon response for counter number 37.

response of all the muons traversing the counter is normalized to the response at

the center of the counter, using the counter map correction given by

Rmap
i (x; y; 0) =

�Ei(x; y; t = 0)

�Ei(0; 0; t = 0)
: (3.1)

A typical counter map is shown in Figure 3.2. The time variation of a counter's

gain is measured using muons which traverse close to the center of the counter.

Map and gain corrections are applied to the data such that all counters yield the

same response for a MIP (as a function of position and time).
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Hadron energy calibration

The target-calorimeter was calibrated with hadron, electron and muon test beams [18].

These calibration runs took place before experiment E744, and at the end of ex-

periment E770. The hadron test beam was dominated by pions. The electron

content of the beam was about 10% at 50 GeV (and higher at lower energies). In

the beginning of the test beam run, the entire target-calorimeter was moved out of

beam. Subsequently, every one of the six target carts was moved in and out of the

test beam in order to determine an independent calibration for each target cart.

The energy response of the calorimeter was determined by comparing the known

test beam hadron energy to the deposited energy in the counters. In order to sam-

ple the deposited energy in all regions of the hadron shower, we de�ne the shower

region in the following way; The beginning of a shower (place) is the most up-

stream counter for which the energy deposition in two consecutive counters is more

than 4 MIPs of energy. The end of the shower (shend) is the �rst downstream

counter from place, where the energy deposition in three consecutive counters

is less than 4 MIPs. The total sampled shower energy is de�ned as the sum of

the energy in all counters from place to (shend �5). (Note that the counters

are numbered from downstream to upstream). Figure 3.3 illustrates a shower re-

gion with pulse heights for a typical charged-current event. For charged-current

neutrino events the deposited muon energy (about 1 MIP in each counter) is

subtracted from the measured hadron shower energy.

Figure 3.4 shows the energy response of the calorimeter hE=pi as a function of

test beam momentum p. The ratio hE=pi has a mean value of 4.74 MIPs/GeV.

The calorimeter response is very linear (hE=pi is independent of test beam energy

within 1%). As expected, the hadron energy calibration (in units of MIPs) was

found to be the same for all six carts.
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Figure 3.3: Pulse heights of a charged-current event with an illustration of the
shower region from PLACE to SHEND-5. These are actual corrected pulse heights
from event #111 in run #289 of experiment E744.

The resolution of the calorimeter is also measured in the test beam. The

distributions of the energy measured in the calorimeter for 25 and 200 GeV incident

hadrons are shown in Figure 3.5. The energy resolution is parametrized as:

�

E
=

0:847� 0:015p
E

+
0:30� 0:12

E
; (3.2)

where E is in GeV. It is plotted in Figure 3.6 as a function of the test-beam hadron

energy. The �rst term originates from sampling 
uctuations and the second term

originates from electronic noise.

The calorimeter response to electrons was measured using the electron compo-

nent in the test beam for 25 and 50 GeV tunes. The calorimeter energy resolution

for electrons is �e=E = 0:60=
p
E.
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Figure 3.4: Energy response of the CCFR calorimeter, for E744 (squares) and E770
(diamonds). The horizontal line is a mean of the E770 points, 4.737 MIPs/GeV.

The response to minimum ionizing muons is measured from a subsample of

neutrino charged-current events in which the muons range out in the target. Neu-

trino events with range-out muons provide a sample of low energy muons. At low

energy, the muon energy loss is dominated by the ionization process which is inde-

pendent of muon energy. Thus, the muon energy can be independently measured

by comparing the total length of the track to known range-energy tables [19].

The resolution of the energy measured in the calorimeter for ionization energy

deposited by muons is ��=E = 0:17.

Table 3.1 shows a summary of the calorimeter calibration constants for pions,

electrons, and muon ionization.
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Figure 3.5: Energy distributions in the calorimeter for 25 and 200 GeV incident
hadrons. The curves are Poisson-like parameterizations of the resolution functions.

3.2 Muon angle and energy measurement

Muons are highly penetrating particles. In the CCFR detector, muons penetrate

about 3 (of the 42) target drift chambers for every GeV of energy loss in the target.

Therefore, the energy loss of muons from charged-current interactions which pass

through the entire CCFR detector is about 14 GeV. A tracking algorithm is usedc

to �t the hits in the drift chambers and determines the muon track. The muon

track in the target-calorimeter, which is almost straight line, is used to measure

the muon production angle. The muon track in the toroid is bent by the magnetic

�eld. This yields a measurement of the muon momentum. Both of these mea-

Table 3.1: Calibration constants and energy resolution of the CCFR target
calorimeter.

Type of signal Calibration (MIPs/GeV) �=E

� 4:73� :02 0:847=
p
E + 0:30=E

e 5:25� :10 0:60=
p
E

� 6:33� :17 0:17
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Figure 3.6: The hadron shower energy resolution of the CCFR calorimeter from
25 to 450 GeV as determined from test beam hadron calibration data. The curve
is the parameterization from Equation 3.2

surements are complicated by the e�ects of multiple Coulomb scattering (in the

target or in the toroid steel). Since the amount of multiple scattering depends on

the muon momentum, the multiple scattering introduces a correlation between the

measurements of the muon angle and the muon momentum.

The tracking is based on a pattern recognition algorithm. At the start of the

iterative track �tting procedure, straight-line track segments are searched for in

the eight most downstream chambers of the target calorimeter. The track segment

is extrapolated upstream to the z location of the interaction vertex as determined

by the scintillation counters (PLACE). The algorithm searches for all hits which

are associated with the extrapolated track.

In the toroidal spectrometer, track segments are searched for in each set of �ve

chambers which follow behind each toroid cart. Then, using the di�erent track
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segments in the toroid and target, the best matched overall combined muon track

is formed. In the next iteration, the initial estimated muon momentum from the

bend of the track segments (in the toroid) is used to include multiple Coulomb

scattering MCS e�ects. The estimated MCS de
ection for each of each of the

track segments is included in the overall �2 de�nition in the track �tting program.

The muon angle is determined by �tting the track near the location of inter-

action vertex in z (PLACE). All drift chamber hits near PLACE are omitted

because of the extra hits produced by the hadron shower. The number of drift

chamber planes which are omitted from the �t is a function of hadron energy. For

higher hadron energies, a larger number of drift chambers planes are removed from

the muon tracking �t. Therefore, uncertainty in the determination of the muon

angle (hich is dominated MCS e�ects) depends on both the muon momentum

and the energy of the hadron shower. This angular resolution as a function of

muon momentum and hadron energy was obtained using a sample of the trigger

6 muons. It is determined by comparing the angles as measured by upstream and

downstream track segments (separated by a number of drift chamber planes in

the middle to mimic the chambers which are omitted due to the hadron shower

energy). The angular resolution is found to be [17]:

�� = a +
b

P�
(mrad); (3.3)

where the dependence of a and b on hadron energy and track length is given in

Table 3.2.

Because of the correlation between the measurements of muon angle and muon

momentum, the measurement of the muon angle (��) is iterated again using the

�nal measurement of p� from the muon track-�tting in the toroidal spectrometer.

The resolution on the measurement of the muon momentum is obtained from
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120 GeV muon test-beam data [20]. Figure 3.7 shows the resolution function

measured in the test beam. The shape is mostly Gaussian with an rms width of

10.1% in 1=P�, dominated byMCS e�ects. The tail on the negative side originates

from hard single scattering processes. The tail on the positive side originates from

catastrophic energy losses. The results of the Monte Carlo simulation is also shown

in Figure 3.7.

The total muon energy at the production vertex is the muon energy at the front

face of the toroid (EFF
� ) plus the muon energy loss contributions in the target-

calorimter both inside and outside the region of the hadronic shower. The muon

energy loss downstream of the region of the hadronic shower (i.e. from the counter

located at (SHEND-6) to counter 1) is measured using the energy deposition in in

each counter. If the energy deposition in a counter inMIPs is less than 3MIPs, it

is attributed to ionization loss and is multiplied by the muon-ionization calibration

constant C� = 0:158 GeV/MIP. If the energy deposition in a counter in MIPs is

greater than 3MIPs, the excess over 3MIPs is attibuted to catastrophic loss and

multiplied by the electron calibration constant Ce = 0:190 GeV/MIP. The muon

energy loss outside the region of the hadron shower is given by

ELOSS =
SHEND�6X

i=1

[C� �MIN(3;MIPsi) + Ce �MAX (0;MIPsi � 3)] : (3.4)

Table 3.2: Muon angular resolution.
Track Length Ehad < 25 GeV 25 < Ehad < 50 GeV Ehad > 50 GeV
(chambers) a b a b a b

4 0.535 35.4 0.547 46.0 0.407 75.0
5 0.366 49.5 0.393 57.3 0.343 77.8
6 0.294 56.6 0.361 59.4 0.260 84.9
7 0.235 61.5 0.337 62.2 0.235 87.0
8 0.235 61.5 0.337 65.8 0.235 87.7
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Figure 3.7: Muon momentum resolution function for 120 GeV muons as measured
in a test beam. The Monte Carlo prediction is shown as a solid line.

The muon energy loss cannot be directly measured inside the hadron shower.

Therefore, we use the average muon energy loss as parameterized by the following

function:

RLOSS =
SHEND�5X
i=PLACE

h
0:9315 + 0:02359� ln(Eest

i )
i
� C�

cos��
; (3.5)

where Eest
i is the estimated muon energy loss given by

Eest
i = EFF

� + 0:1595� SHEND: (3.6)

Note that the average muon energy loss per counter is 0.1595 GeV.
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The total muon energy E� at the interaction vertex is given by

E� = EFF
� + ELOSS +RLOSS: (3.7)

Rare catastrophic muon energy losses inside the region of the hadron shower cannot

be measured, thus cannot be subtracted from the hadron shower. Therefore, the

measured hadron shower energy includes the catastrophic energy loss of muons in

this region. In order to account for this e�ect, the same muon energy and hadron

energy reconstruction procedures are used in the reconstruction of Monte Carlo

events.

3.3 Analysis cuts

Additional data quality cuts are applied after the events are reconstructed.

Fiducial volume cuts

The �ducial volume cuts are designed to make sure that the event occurred at

a time period during which the beam and detector were fully operational. In

addition, the cuts are designed to ensure that the interaction took place in a

geometrical region for which the response of the detector is well understood.

� RUN + IGATE: The RUN cut eliminates the bad runs during which the

quality of the neutrino beam was poor, or the detector was malfunctioning.

The IGATE cut removes all events which occurred during non-neutrino spills

in the accelerator cycle.

� NSTIME: This cut eliminates all multiple interaction events.
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� 20 < PLACE < 80: This assures good longitudinal containment of the

hadron shower within the calorimeter.

� jVxj < 50 in, jVyj < 50 in: This assures good transverse containment of the

hadron shower within the calorimeter.

Geometric cuts

The following cuts are to ensure good momentum resolution in the toroid spec-

trometer.

� TRIGGER 1: This is the charged-current trigger. This cut is required

to ensue that the muon ( produced in charged-current interactions in the

calorimeter) passes through the muon spectrometer.

� Target T rack: This cut requires a good muon track within the target

calorimeter. It is necessary for an accurate measurement of the muon angle.

� Toroid Containment:

The muon track in the target is extrapolated from the event vertex through

the toroid using a straight line. The extrapolated track must have a radius

< 64 inches at the front face of the toroid, and must have a radius at the T2

counter of less than 55 inches. This cut (based on the extrapolated track)

is used to make sure that the muon trajectory in the toroid is in regions for

which the acceptance is well understood.

� Toroid Track: This cut requires a minimum number of hits in the toroid

drift chambers to ensure that the muon track can be reconstructed in the

toroid.

� Good F it: This cut requires a �tted muon track in the toroid.
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� Fit Quality: The �2 of the �t is required to be less than 10. Here, the

number of degrees of freedom is the number of toroid chambers traversed by

the muon.

� Two Gaps: This cut requires that the muon track must pass through both

the �rst and second toroid carts, to assure good reconstruction eÆciency of

the muon momentum.

Dimuon cut

This cut eliminates events with a second muon track that either enters the toroid

spectrometer, or penetrates more than 19 counters (implying a muon energy >

3 GeV). These events are removed because the selection of neutrino species for

dimuon events (which is based on the charge of the highest energy muon) introduces

a signi�cant contribution of neutrino events into the antineutrino sample at low x

and high y. This misidenti�cation can signi�cantly a�ect the xF3 analysis at low

values of x.

Total cross section cuts

These cuts are used in the total cross-section analysis to assure that the muon is

well-measured. In this analysis, the total cross section data sample is only used in

the determination of the overall normalization and in the extraction of the relative


ux (versus neutrino energy, and for neutrinos relative to antineutrinos).

� �� < 150 mr and RFF > 8 in: The muon angle cut assures good acceptance

of the muon track as it passes through the toroid spectrometer. Here, RFF

is the radius of the actual muon track at the front face of the toroid. This
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radial cut assures that the muon does not pass through the hole in the center

of the toroidal spectrometer where the magnetic �eld is close to zero.

� 15 < E� < 600 GeV and EFF
� > 3 GeV: Very high energy muons have poor

momentum resolution because of the �nite position resolution of the drift

chambers. In addition, the probability of a catastrophic energy loss (such as

bremstrahlung) rises linearly with energy. Catastrophic energy loss processes

create additional background hits which can confuse the tracking algorithms.

Very low energy muons are also removed because of a lower reconstruction

eÆciency that can originate from large multiple Coulomb scattering.

Di�erential cross section cuts

These are cuts based on the reconstructed kinematic quantities of each event.

These cuts (along with previous cuts) are used in the di�erential cross section

analysis.

� Ehad > 10 GeV: Events at low hadron energy are used in the determination of

the 
ux of neutrinos (in a parallel analysis). Therefore, we require Ehad > 10

GeV to minimize the correlation between the 
ux and structure-function

data samples.

� Q2 > 0:3 GeV2: Very low Q2, \quasi-elastic" events are not well modeled in

the di�erential cross section Monte Carlo. This cut minimizes their e�ect on

the analysis.

� 30 < E� < 360 GeV: The cut is to ensure a reasonable set of both 
ux and

structure function (SF) data. The lower limit is chosen because of the large

acceptance corrections below 30 GeV. The upper limit is chosen because the

error on the Monte-Carlo smearing corrections is larger than 10% above 360
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GeV. Since the number of anti-neutrino events above 360 GeV is small, this

cut does not result in a signi�cant impact on the statistical sample.
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Chapter 4

Monte Carlo Event Simulation

The kinematic quantities in Monte Carlo simulated events are smeared by the

detector resolution to yield reconstructed Monte Carlo events. Because of the lim-

ited geometry of the detector and the structure function sample kinematic cuts,

not all generated Monte Carlo events are fully reconstructed or pass all the cuts.

Therefore, the reconstructed data must be corrected for detector resolution e�ects

and acceptance (which are calculated from the Monte Carlo). The acceptance and

the e�ects of detector resolution are modeled by a detailed Monte Carlo simu-

lation program called the Fast Monte Carlo. The Fast Monte Carlo simulation

includes: (a) the event generation, which produces a sample of events according to

a physics model, and (b) the detector simulation, which mimics the reconstruction

of the generated events by simulating experimental e�ects such as acceptance and

resolution smearing. The Fast Monte Carlo is designed for an inclusive study of

charged-current events. Such an inclusive study does not require a detailed sim-

ulation of every individual particle in the �nal state (e.g. in the hadron shower).

The Fast Monte Carlo does not simulate background events such as cosmic rays.

Background events are removed from the event sample by a stringent set of cuts.
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4.1 Methodology

The two experiments (E744 and E770) were not identical. The di�erences between

the two experiments include di�erent 
uxes and slightly di�erent detector calibra-

tions. The 
ux spectra for incident neutrinos and anti-neutrinos are di�erent. In

addition, events taken during the di�erent periods for which the muon spectrometer

was set to focus positively or negatively charged muons have di�erent acceptance

corrections for neutrino and antineutrino events. A separate Monte Carlo simula-

tion is done for each of these eight di�erent categories (two experiments times two

neutrino species times two toroid polarities). The simulated Monte Carlo events

undergo the same reconstruction procedure used for real data events.

The Monte Carlo event simulations consists of two parts. (a) Generating

charged current neutrino events for a given 
ux and di�erential cross section model.

(b) Simulating the detector e�ects for each generated event. Since the 
ux and

di�erential cross sections are not known a priori, and the extractions of both the


ux and di�erential cross cross section require a Monte Carlo simulation, an iter-

ative approach is used. The Monte Carlo Simulation is done with an initial model

for the 
ux and di�erential cross sections. Then, the 
ux and di�erential cross

sections are extracted after corrections for the acceptance and detector resolution

e�ects (calculated using the initial set of Monte Carlo simulated events), as shown

in Figure 6.15. The whole process is repeated until the �nal results converge.

4.2 Event generation

A charged-current event in the Fast Monte Carlo is generated according to following

procedure:

1. Randomly select the neutrino type: neutrino versus antineutrino, and toroid
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polarity (toroid focusing versus de-focusing negatively-charged muons). The

ratio of di�erent neutrino types generated by the Monte Carlo is approxi-

mately the same as that in the data. The �nal ratio of total antineutrino to

neutrino Monte Carlo events is normalized to the data. Therefore, this ratio

in the generated Monte Carlo is not required to be precisely the same as in

the data.

2. Randomly generate a neutrino energy ENEUG, according to the input 
ux

distribution �(E). Randomly generate the transverse vertex of the events,

V ERTX and V ERTY from the vertex 
ux distribution measured from the

data.

3. Randomly generate the physics kinematic quantities XG (the generated x)

and Y G (the generated y) according to the input di�erential cross section

model d�=Edxdy. From these generated ENEUG, XG, and Y G, the vari-

ables EHADG (the generated hadron energy), EMUG (the generated muon

energy), and THETAG (the generated muon angle) are calculated. The

quantity PHIG (the azimuthal angle of the muon) is generated uniformly

between 0 and 2�.

4. Randomly generate a uniform distribution in PLACE, which is the location

of the neutrino interaction along the z-axis of the calorimeter. The hadron

shower length (PLACE�SHEND+5) is generated randomly from a set of

EHADG-dependent shower-length distributions determined from the data.

5. The muon track is propagated through the calorimeter using a standard

energy-loss algorithm. Simulated energy losses for muons with more than

5 GeV at the vertex include ionization, bremsstrahlung, pair production,

and Æ-ray production. For muons with less than 5 GeV, the ionization loss is
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simulated according to range-energy tables. The multiple Coulomb scattering

of the muon is modeled as well.

6. The Monte Carlo keeps track of the restricted energy loss, RESLOS, and

the catastrophic energy loss, CATLOS in the material between consecutive

chambers.

7. When the muon track reaches the front face of the toroid spectrometer, the

total energy loss of the muon (RESLOS + CATLOS) is subtracted from

EMUG, yielding the muon energy at the front face of the toroid EMUFFG;

the position of the muon at this point is given by V XFF and V Y FF .

4.3 Resolution smearing and reconstruction

For a charged-current event, following quantities ENEUG, EHADG, EMUG,

THETAG, PHIG,RESLOS, CATLOS, EMUFFG, V ERTX, V ERTY , V XFF ,

and V Y FF are generated from the Monte Carlo. The �rst eight variables in this

list are smeared to simulate detector resolution e�ects. The smearing of the last

four variables is not signi�cant in the charged-current analysis, because the position

resolution of the muon track is measured to better than 0.1 in.

4.3.1 Muon energy and angle

The muon energy in the data is reconstructed by the sum of three quantities: (a)

the muon energy at the front face of the toroid, determined by track �tting in

the spectrometer, (b) the muon energy loss in the calorimeter downstream of the

shower, which is converted to GeV using the muon calibration constant, (c) the

unseen muon energy loss in the hadron shower region (PLACE to SHEND� 5),

which is assumed to be equal to an average value.
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The muon momentum resolution function was measured in a test beam run with

120 GeV muons. A detailed simulation of the muon path in the toroid spectrometer

(not included in this Fast Monte Carlo) is used to extrapolate the muon momentum

resolution function to other energies. This detailed simulation included multiple

scattering, energy loss, and variations in the magnetic �eld of the spectrometer as a

function of position. The reconstructed momentum of the muon is then calculated

using the same momentum-�tting procedure used in the analysis of the events in

the data. The fractional muon momentum measurement generated by this detailed

monte carlo,

R =
1=P�(meas)� 1=P�(gen)

1=P�(gen)
(4.1)

is histogrammed in bins of momentum. In the Fast Monte Carlo, the generated

muon momentum EMUFFG is smeared according to this muon resolution his-

tograms. The muon momentum resolution functions are shown in Figure 3.7. The

muon energy loss in the target calorimeter originates from several processes. These

include the restricted energy loss (due to ionization), and the catastrophic energy

loss (due to bremsstrahlung, pair production, and d-ray production). These are

calculated for the muon as it passes from one drift chamber location to the next

in the calorimeter. This energy loss is reconstructed in the same way in both the

analysis of data and Monte Carlo events.

� The sum of RESLOS and CATLOS is smeared according to an electromag-

netic shower energy resolution function determined from the test beam [18].

� Inside the hadron shower region, the energy loss of the muon cannot be

directly observed in data events. Therefore, in the reconstruction of data

events, an approximation to the average restricted loss RLOSSH is used.
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The energy loss in the reconstruction of Monte Carlo events is handled in

the same way as in the analysis of data.

� Outside the region of the hadron shower (between SHEND� 6 and counter

1), the energy loss is also reconstructed from the pulse height information

in the calorimetry counters in the same way as in the data. The portion of

the energy deposition in each counter which is less than 3 MIPs is multiplied

by the muon calibration constant, while the portion greater than 3 MIPs is

multiplied by the electromagnetic calibration constant Ce.

ELOSS =
SHEND�6X

i=1

8><
>:

C� �MIN(3; (RESLOS + CATLOS)i=c�)

+Ce �MAX [0; (RESLOS + CATLOS)i=c� � 3] :
(4.2)

Thus, the reconstructed muon energy from the Monte Carlo is given by

E� = EMUFFGsmeared + ELOSS +RLOSSH: (4.3)

4.3.2 Hadron energy

Since the catastrophic energy loss from muons inside the hadron shower cannot

be determined on an event by event basis, this contribution is absorbed into the

reconstructed hadronic energy. The energy loss in the Monte Carlo is treated in

the same way as in the data. The reconstructed hadron energy is given by:

Ehad = EHADGsmeared + ELOSSH � (RLOSSH � ch=c�): (4.4)

� EHADG, the generated hadron energy, is smeared according to the resolu-

tion function given by Equation 3.2. The quantities THETAG and PHIG,
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Figure 4.1: Comparison of the distribution of Monte Carlo and neutrino data
events in E�, Ehad, ��, and y.

the generated muon angle parameters, are projected onto the x- and y- axes

and separately smeared according to the angular resolution given by Equa-
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Figure 4.2: Comparison of the distributions of Monte Carlo and antineutrino data
events in E�, Ehad, ��, and y.

tion 3.3.

� ELOSSH is the smeared total muon energy loss inside hadron shower given
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by:

ELOSSH =
SHEND�6X
i=PLACE

(RESLOS + CATLOS)smri � ch
c�
: (4.5)

Note that it is multiplied by the ratio ch=c�(= 0:211=0:158), the ratio of the

hadronic to the muonic calibrations constants in MIPs/GeV. This is because

in the data analysis, all the energy observed in the hadron shower region

is interpreted as hadronic energy. This ratio is also applied to the quantity

RLOSSH.

Figure 4.1 and Figure 4.2 show the distributions of the reconstructed variables,

E�, Ehad, ��, and y = Ehad=(E� +Ehad), which are the most important quantities

for the structure function analysis. These distribution show excellent agreement

between data and Monte Carlo in both neutrino and antineutrino running modes.

4.4 Physics models

The Monte Carlo simulation depends on a model of the physical cross-sections

in terms of parton distribution functions (PDFs which are discussed in the next

section). The parameters of this model are determined by a �t to the measured

di�erential cross sections as described in Chapter 5. This physics model is used to

extract the neutrino 
ux from the low-hadron-energy data, and then used again

in the determination of corrections for detector acceptance. Finally, it is used

to apply phenomenological corrections for non-isoscalarity, radiative corrections,

propagator corrections and charm production threshold.

The basic di�erential cross-section model follows the standard V � A form
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outlined in Chapter 1:

1

E

d2�

dxdy
=

G2M

�

"
(1� y � Mxy

2E
)F2 +

y2

2
2xF1 � (1� y

2
)xF3

#
; (4.6)

where the symbols � represents the neutrino (+) and antineutrino (�) cross-

sections, respectively. In leading order, the structure functions can be parameter-

ized in terms of the parton densities as described in Chapter 1.

2xF1(x;Q
2) =

h
xuv(x;Q

2) + xdv(x;Q
2) + 2xus(x;Q

2) + 2xds(x;Q
2) + 2xss(x;Q

2)
i

F2(x;Q
2) = 2xF1(x;Q

2)� 1 +R(x;Q2)

1 + 4M2x2=Q2

xF3(x;Q
2) = xuv(x;Q

2) + xuv(x;Q
2): (4.7)

Here, the di�erential cross-sections can be expressed in terms of parton distribu-

tions, which are the momentum densities of the valence and sea quarks inside a

nucleon. The contribution of charm sea assumes to be zero. These structure func-

tions should be smooth functions which describes the CCFR data over the full

range of x and Q2. These functions should also be valid outside the CCFR region

when extrapolated beyond the CCFR visible kinematic range. This is needed in

order to properly calculate the e�ects of events which are generated outside the

accepted kinematic range, but smeared into the accepted region by detector resolu-

tion smearing e�ects. The parameterization should allow for a QCD scaling form,

but should not be restricted to QCD forms or else we would be pre-supposing the

functions that we are proposing to measure. The �t should have a relatively small

number of parameters so that it is assured of �nding a unique solution. Finally,

the calculation of the �t should take a minimal amount of computer time.

The basic method was originally suggested by Buras and Gaemers (BG) [21].

They suggested a leading order calculation in QCD, using 13 parameters to simply
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describe the known structure functions at that time. The BG type �t as used by

CCFR adds some terms which allow it to vary from a strict leading order QCD

calculation. The BG model is equivalent to a leading order model in QCD, but

does not depend on any speci�c QCD assumptions.

Basically, this model is only used for detector resolution smearing and accep-

tance corrections. It should not be relied upon to extract accurate QCD parameters

from the data. The advantage of of this model is that its implementation requires

a minimal number of calculations. This is a crucial factor since a generation of a

large sample of Monte Carlo events is required.

4.4.1 Parameterization of parton distributions

Valence-quark and sea-quark momentum distributions are parameterized at a spe-

ci�c Q2
0, chosen to be Q2 = 12:6 GeV2 (mean of previous Fermilab experiments

E616/E701, which is approximately central to our range). The parameterizations

of the valence quarks are given by:

uv(x) = uTOT � FV (x) (4.8)

dv(x) = dTOT � FV (x)� (1� x); (4.9)

where

FV (x) =
h
xE

0

1 (1� x)E
0

2 + AV2x
E0

3 (1� x)E
0

4 + AV3x
E0

5 (1� x)E
0

6

i
: (4.10)

The three terms in the general shape FV allow variations of the high x, intermediate

x, and low x regions with the constraint that the valence quarks are zero both at

x = 0 and at x = 1. The d valence quark has a lower average x. Thus, (1 � x)

factor allows a more rapidly falling function in the d valence distribution as x! 1.
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In general, neutrino scattering for an isoscalar target is insensitive to dv=uv. The

ratio dv=uv are constrained by using the precise NMC F n
2 =F

p
2 data [22] and is

mostly used to correct for the small non-isoscalar contribution in an iron target.

This is discussed later in this chapter.

The function for the sea quarks is similarly chosen based on the simple require-

ment of a rising function as x! 0. The BG parameterization is given by

SEA(x) = AS(1� x)ES + AS2(1� x)ES2: (4.11)

The original Buras-Gaemers article has a single term, (1 � x)ES. The additional

term allow a large 
exibility in both small x and large x regions. The strange

sea is constrained by the dimuon events [23], since charm production is dominated

by the contribution of the strange sea. Flavor symmetry of the non-strange sea

(us = ds) is assumed in this model (as the default set).

4.4.2 Q2 evolution of parton distributions

The evolution of parton distributions in Q2 is obtained using functional forms

similar to QCD evolution. However, the parameters are not required to match

any QCD calculation. This is done to remove any possible bias (in favor of QCD)

that could be introduced into the extraction of the structure functions, if a fully

QCD-based calculation is used in the acceptance and resolution calculation.

The total normalization of the valence quarks is contrained using the GLS sum

rule, which is equals to the number of valence quarks (i.e. three with a QCD

correction as shown below). The normalization value is allowed to vary according

to a QCD parameter (A0) which is related to �QCD.

GLS =
Z 1

0
dx
h
uv(x;Q

2) + dv(x;Q
2)
i
= ATOT (Q

2)
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= 3

 
1� A1

log(Q2=A2
0)
� A2

[log(Q2=A2
0)]

2

!
: (4.12)

The relative normalization of uv to dv quark distributions is done by the quark

counting rule inside the proton.

Z 1

0
uv(x;Q

2)dx = 2
Z 1

0
dv(x;Q

2)dx =
2

3
ATOT (Q

2): (4.13)

TheQ2 dependence of the valence quarks distribution is obtained using the function

originally proposed by Buras-Gaemers. In their proposal, it is claimed that their

forms approximates the Leading-Order QCD scaling behavior to within 10% for

the �rst twelve moments of the distribution.

FV (Q
2) = FV (Q

2
0)� xE

1

1
s(1� x)E

1

2
s (4.14)

s = log

"
log(Q2=A2

0)

log(Q2
0=A

2
0)

#
: (4.15)

Here Q2
0(= 12:6) GeV2 is chosen as the value which is approximately in the center

of our Q2
0 range. This function is not used for any QCD-based extraction of

parameters from the data. However, it provides a good �t to the data.

The Q2 dependence of the sea quarks is controlled by the second and third mo-

ments of the distribution in x, de�ned by
R
x(SEA)dx and

R
x2(SEA)dx, which

are constrained by QCD-like functions, but are allowed to 
oat. These basic pa-

rameters, are the total 2nd and 3rd moments of the sea at Q2
0 (S2; S3), and 3rd

gluon moment at Q2
0 (G3). Note that the evolution of the sea is coupled to that of

the gluon density. The remaining parameters AS2 and ES2 are constrained to be

linear in log of Q2. Thus, we have:

AS2 = AS0
2 + AS1

2 log(Q2) (4.16)
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ES2 = ES0
2 + ES1

2 log(Q2): (4.17)

This is a semi-arbitrary choice for the behavior inQ2, but since the overall moments

including both terms are constrained, this can only deviate from QCD-like behavior

via the fourth moment in x.

All of these parameters in the parton distributions are �tted to the CCFR

di�erential crosss sections in the kinematic regions ( 30 < E� < 360 GeV, and

x < 0:7). The �nal values for each of the parameters of the best �t (�2=DOF =

2676=2750) are given in Table 4.1. These are the best values found after several

iteration.

Previous BG parameterizations which have been used in earlier CCFR anal-

yses had 9 parameters, with a total �2=DOF of the �ts to the di�erential cross

sections of 3117=2761. Details of these earlier parameterizations can be found in

theses and reports on previously published CCFR structure function [16] analyses.

These previous parameterizations had only the �rst term in the valence function

(equivalent to setting AV2 = AV3 = 0), and the normalization of valence quarks

was done with only two parameters (A0 and A1). The GLS sum was allowed to be

di�erent from 3 even as Q2 ! inf. In addition, the previous BG �ts used only the

1st term of the sea function, (equivalent to setting AS2 = 0).

There are two corrections to the BG PDFs before �tting to the di�erential cross

sections.

� The d=u correction: As we mentioned earlier, neutrino scattering for an

isoscalar target is insensitive to d=u. The CCFR calorimter target has a

small non-isoscalarity (5.67% more neutrons than protons). This e�ect is

shown up at high x region, where there is a large di�erence between the u

and d parton densities. We constrain the d=u (for valence quarks) using the

NMC F d
2 =F

p
2 data [22]. The d=u correction for the BG model is obtained by
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Table 4.1: The �nal parameters for the best BG �t, with qualitative description
for each parameter. The �2=DOF for this �t is 2676=2750.

Parameter Description Value
A0 Lambda 0.61693
A1 LO Valence Normalization 0.39775
A2 NLO Valence Normalization -0.22510
E0
1 1st Valence term x exponent at Q2

0 0.60216
E1
1 Valence x exponents' slope in Q2 0.010534

E0
2 1st Valence term (1� x) exponent at Q2

0 2.8465
E1
2 Valence (1� x) exponents' slope in Q2 1.6477

AV2 2nd Valence term constant 268.55
E0
3 2nd Valence term x exponent at Q2

0 4.4592
E0
4 2nd Valence term (1� x) exponent at Q2

0 12.151
AV3 3rd Valence term constant 61.016
E0
5 2nd Valence term x exponent at Q2

0 2.0071
E0
6 2nd Valence term (1� x) exponent at Q2

0 59.767
S2 Total Sea 2nd moment in x at Q2

0 0.14458
S3 Total Sea 3rd moment in x at Q2

0 0.012639
G3 Gluon 3rd moment in x at Q2

0 0.034981
AS0

2 2nd SEA term constant at Q2
0 0.22446

AS1
2 2nd SEA term constant slope in Q2 0.71041

ES0
2 2nd SEA term (1� x) exponent at Q2

0 41.775
ES1

2 2nd SEA term (1� x) exponent slope in Q2 1.6477

looking at the di�erence of the F d
2 =F

p
2 data and BG prediction after nuclear

e�ects (binding and fermi motion) in the deuteron have been removed [30].

Figure 4.3 show the d=u correction, Æ(d=u) to the BG PDFs as a function of

x. A simple parameterization to this correction is given by

Æ(d=u)0(x) = 0:1208� 1:3303x+ 4:9829x2

� 8:4465x3 + 5:7324x4: (4.18)
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Thus, the modi�ed d=u, (d=u)0 is expressed by

(d=u)0(x) = (d=u)(x) + Æ(d=u)(x): (4.19)

In this formalism, the total valence quarks should be conserved (d0v + u0v =

dv + uv), because they are constrained by the measured xF3 data. The

modi�ed u and d valence quarks distributions are:

u0v(x) =
uv(x)h

1 + uv(x)Æ(
d
u
)(x)=(uv(x) + dv(x))

i (4.20)

d0v(x) =

h
dv(x) + uv(x)Æ(

d
u
)(x)

i
h
1 + uv(x)Æ(

d
u
)(x)=(uv(x) + dv(x))

i : (4.21)

The non-isoscalar target corrections to the total and di�erential cross sec-

tions are presented in next two chapters.

� The low Q2 model correction: The BG PDFs are not very stable in

the low Q2 region. In previous analyses, the PDFs below Q2 = 1:0 have

been set to the same values of the PDFs at Q2 = 1:0 GeV2. Thus, the

BG predictions were overestimated at this kinematic region. This has a

signi�cant e�ect on the determination of the acceptance correction to the

di�erential cross sections and the 
ux normalization factors. Because the

GRV94 PDFs [29] are generated dynamically, we use the Q2 dependence

of the GRV94 PDFs to extend the BG PDFs down to Q2 = 0:23 GeV2.

The GRV94 PDFs are normalized to the BG PDFs at Q2 = 1:35 GeV2.

Figure 4.4 show the BG predictions of the di�erential cross sections with

and without this low Q2 GRV modeling. Indeed, the prediction without the
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Figure 4.3: The dv=uv correction, Æ(d=u) to the BG PDFs as a function of x. The
solid curve is a simple parameterization to �t this correction.

low Q2 GRV modeling overshoot the CCFR di�erential cross sections data �.

The improved modeling of the low Q2 PDFs results in a non-negligible change

in the radiative corrections and absolute 
ux normalization factors. This is

discussed in detail later in this section.

�The extraction of these di�erential cross sections data is discussed in the next chapter
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Figure 4.4: The LO BG predictions of the di�erential cross sections with and with-
out the low Q2 modeling (for a neutrino energy E� = 170 GeV). The predictions
are compared with the CCFR data. Note that the predictions are based on the
one of the BG �ts among a few iterations.

4.4.3 Higher twist e�ects

In the leading order(LO) BG �t to the di�erential cross sections data, some of

the non-perturbative e�ects (target mass and higher twist e�ects) are absorbed in

the BG �t, because the parameters are extracted from a �t to the CCFR data.

However, since we do not have data in the low Q2 and high x region, there are some

residual higher twist e�ects which are not accounted for. Therefore, we constrain

the remaining higher twist e�ects using the precise SLAC and BCDMS F2 deuteron

data. Figure 4.5 shows that the LO BG predictions (dashed) underestimate the

SLAC F2 data at low Q2 region above x = 0:4. We extract the higher twist

contribution from the SLAC and BCDMS data by adding a term ht(x)=Q2 to the
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LO BG prediction F2(LO), as shown below

F2(x;Q
2) = F2(LO)

�
1 + ht(x)=Q2

�
(4.22)

ht(x) = max

"
0:672

 
x1:893

1:� 1:138x
� 0:236

!
; 5:0

#
x > 0:4

= 0: x < 0:4 (4.23)

The LO BG prediction with this empirical higher twist contribution describe the

SLAC F2 well, as shown in Figure 4.5. The same higher twist correction is also

applied to the LO BG xF3 predictions, because it is expected that the behaviour

of F2 and xF3 are very similar in the high x region.

4.4.4 Longitudinal structure function

In the leading-order formalism, the ratio of the longitudinal structure function

and transverse structure function R = FL=2xF1 is zero. However, perturbative

and non-perturbative QCD e�ects introduce non-zero value of the R. This is

discussed in detail in Appendix C. We use an empirical parameterization of the

world's available data for R (Rworld). The parameterization of Rworld is given by:

R(x;Q2) =
0:0635

ln(Q2=0:04)
� +

0:5747

Q2
� 0:3534

Q4 + 0:09
; (4.24)

where

� = 1 +
12Q2

Q2 + 1
� 0:1252

0:1252 + x2
: (4.25)

This parameterization is known to be good for the kinematic region, 0:07 < x < 0:7

and 1:0 < Q2 < 75 GeV2. In this analysis, it is assumed that this parameterization

is good over the CCFR kinematic region. This parameterization is compared with
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Figure 4.5: Comparison of the SLAC and BCDMS F2 data with the LO BG
predictions with and without the empirical higher twist corrections.
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our measured values of R in a later section.

4.4.5 Charm production

For charm production, the Bjorken scaling variable x no longer represents the

fractional momemtum carried by the struck quark in the in�nite momentum frame,

because of the non-zero heavy charm quark (mc � 1:3 GeV) in the �nal state.

Thus, the variable x need to be replaced by the slow rescaling variable � = (1 +

m2
c=Q

2)x. Under the transformation x ! �, the structure functions are changed

as following;

2xF1(x) ! x

�
2�F1(�) (4.26)

F2(x) ! F2(�) (4.27)

xF3(x) ! x

�
�F3(�): (4.28)

Note that only the arguments of the structure functions are changed. The quantity

R is still de�ned in the same way.

F2(�) =
1 +R(�)

1 + 4M2�2=Q2
2�F1(�) (4.29)

Thus, the structure functions for charm and non-charm production components

can be constructed as follows.

2xF cp+ncp
1 (x) = 2xF ncp

1 (x) +
x

�
2�F cp

1 (�) (4.30)

F cp+ncp
2 (x) =

1 +Rncp(x)

1 + 4M2x2=Q2
2xF ncp

1 (x) +
1 +Rcp(�)

1 + 4M2�2=Q2
2�F cp

1 (�)(4.31)

xF cp+ncp
3 (x) = xF ncp

3 (x) +
x

�
�F cp

3 (�): (4.32)
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Here, cp(ncp) indicates charm (non-charm) production. In our BG model, Rworld

is used for the Rncp and Rcp, The R in the inclusive charged current interaction, is

de�ned by R(x) = F cp+ncp
2 (x)(1 + 4M2x2=Q2)=2xF cp+ncp

1 (x) � 1, which we de�ne

as Reff .

Because of the slow rescaling e�ect in charm production, R in charged current

neutrino interaction is expected to be larger than R in charged lepton neutral

current interactions. Considering only the charm production part, Rcp(x) can be

expressed by

Rcp(x) =
F2(�)
x
�
2�F1

(1 + 4M2x2=Q2)� 1 (4.33)

= (1 +m2
c=Q

2)(1 +Rworld(�))
1 + 4M2x2=Q2

1 + 4M2�2=Q2
� 1: (4.34)

At low x region,

Rcp(x) � (1 +m2
c=Q

2)(1 +Rworld(�))� 1 > Rworld(x): (4.35)

Thus, the Rcp(x) in neutrino scattering is larger than Rworld(x) in the charged

lepton scattering at low x and low Q2, but is same at high Q2. Figure 4.6 shows a

comparison of the R�(eff) and Rworld with all available R data. At low x and low

Q2 region, the R�(eff) is higher than the Rworld, as we expected based on the slow

rescaling argument. This behaviour agrees with the most recent NLO calculation

which include the heavy charm quark e�ect in neutrino interactions.

4.4.6 Electroweak radiative corrections

Radiative corrections to the di�erential cross-section are calculated using Bardin's

calculation [32]. The Bardin calculation includes radiative photons from the outgo-
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Figure 4.6: Comparison of the R�(eff) and Rworld with world's available R data.

ing muon and quarks, and additional photon-exchange between the outgoing muon

and quark ,as shown in Figure 4.7. Since the Bardin calculation take a long time to

calculate on an event-by-event basis, we generate tables of corrections for a range
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Figure 4.7: Electroweak radiative correction diagrams included in the Bardin cal-
culation.

of values of E�, x, and y. The correction for a given bin is derived from the table

by a linear interpolation. Figure 4.8 shows the radiative corrections as a function

of y for various x bins at a given neutrino energy, E� = 150 GeV. The radiative

corrections calculated with the improved low Q2 modeling using the GRV PDFs

(for Q2 < 1:35 GeV2) shows an interesting shape at x = 0:01, when compared to

the radiative correction without the improved low Q2 modeling. As discussed in

the previous section, the previous BG PDFs were assumed to be 
at below Q2 = 1

GeV2 (which is not correct). In fact, if we take a similar incorrect 
at distribution

for the case of GRV PDFs, the same e�ect is observed (as shown in Fig 4.8). The

improved radiative corrections with better structure function modeling results in

lower values for the extracted F2 and xF3 structure functions at low Q2.
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Figure 4.8: Bardin radiative corrections as a function of y for various x at E� = 150
GeV. Figure. [a] shows the radiative corrections using the BG PDFs with and
without the low Q2 GRV modeling (Q2 < 1:35 GeV2). Note that there is an
interesting shape di�erence at low Q2 and x = 0:01. The same e�ect appears for
GRV PDFs (if assumed to be 
at at low Q2), as shown in Figure [b].
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Chapter 5

Di�erential Cross Sections

The extraction of the structure functions generally requires knowledge of various

physics corrections with good reliability. These include corrections for electro-weak

radiative processes, heavy charm mass, non-isoscalar target, and the longitudinal

structure function. In particular, previous extractions of structure functions from

neutrino scattering data have relied on these types of theoretical corrections (which

can change as our theoretical understanding of these various processes improve).

However, in general what are directly measured in neutrino experiments are not

structure functions, but neutrino and antineutrino di�erential cross sections. In

this chapter, we present measurements of di�erential cross sections for inclusive

charged-current neutrino-nucleon and antineutrino-nucleon interactions on iron.

These di�erential cross sections, which are purely measured experimental quanti-

ties, can then be analyzed within the framework of any theoretical model.

The determination of the di�erential cross sections requires knowledge of the


ux. In this chapter, the extraction of the di�erential cross sections and 
ux

for neutrino and anti-neutrino will be described. The experimental results are

compared with theoretical predictions and with other neutrino scattering data
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from the CDHSW collaboration.

5.1 Methodology

The di�erential cross sections, d2�=Edxdy are measured as a function of E, x, and

y in a 3-Dimensional phase space (for which the experiment has acceptance) for

neutrino and antineutrino interactions on iron. The di�erential cross sections are

extracted using the following expression:

1

E

d2�

dxdy
(< E >;< x >;< y >) =

D(E; x; y)MCgen(<E>;<x>;<y>)
MCsmr(E;x;y)

k�(< E >) < E > �x�y
; (5.1)

where D(E; x; y) is the number of data events in a particular E, x, and y bin,

and MCgen and MCsmr are the number of Monte Carlo events before and after

including detector resolution smearing e�ects and di�erential cross section event

selection cuts. The ratio of MCgen and MCsmr corresponds to the acceptance

correction (which includes detector resolution e�ects). Here, �x and �y are the

bin widths of the x and y bins, and � is the relative 
ux. The parameter k is

the 
ux normalization factor which adjusts the overall level of the relative 
ux,

�(< E >) (as described in the next section). The di�erential cross section is

determined as a function of the average values, < E >, < x >, and < y > in each

bin, as extracted from generated Monte Carlo events rather than the data. The

Monte Carlo values are used because the detector resolution smearing e�ects and

cuts introduce a bias in the true average values of these kinematic variables for

events within each bin.
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5.2 Flux extraction

The neutrino 
ux, in principle, can be directly measured from monitoring of the

secondary beam particles (e.g. pions and kaons), since the neutrinos originate

from the decays of these secondary particles. Because most pion and kaon de-

cays are two-body decays, the neutrino 
ux can be determined by using kinematic

constraints. This technique is known as the absolute 
ux method. However, the

wide energy spectrum and high intensity of the secondary beam in this experi-

ment make a direct 
ux measurement very diÆcult. Therefore, the extraction of

neutrino 
ux relies on the monitoring of the number of charged current interac-

tions in the detector. Basically, the 
ux can be determined from either the entire

charged current events sample, or from the subset of charged current sample with

low hadronic energy. The method using the total charge current events sample [25]

requires both, a knowledge of the energy dependence of the neutrino and antineu-

trino charged current cross section (e.g. from previous experiments), as well as

a good understanding of the acceptance in the quasi-elastic scattering and reso-

nance production region (which is crucial at low neutrino energy). In contrast,

the method which only relies on the low hadronic energy sample, although it is

indirect, is very robust. This method, which is called the \�xed-�\ technique is

used in this analysis.

The �xed-� method

The �xed-� method makes use of the subset of charged current events with low

hadronic energy (here, � = Ehad ) in order to extract the 
ux. Although this

method cannot provide the overall absolute normalization of the 
ux, it can be

reliably used to determine both the shape (energy dependence) of the 
ux, and

the ratio of neutrino and antineutrino 
ux as a function of beam energy. Therefore,
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this technique has also been called the relative 
ux method.

The �xed-� method is derived from the formalism of the charged-current neutrino-

nucleon cross section:

d2�

dxdy

�;�

=
G2ME

�

"
(1� y � Mxy

2E
+
y2

2

1 + 4M2x2=Q2

1 +R
)F2 � y(1� y

2
)xF3

#
: (5.2)

With y = �=E, this equation can be written as:
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Integrating this equations over all x for a �xed � and E, thus expressing the result

in terms of �
E
leads to;

d�
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G2M

�
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dxF2
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with

~R =
E� + 2Mx

(1 +R)E�

� Mx

E�

� 1: (5.5)

If both sides of the equation are multiplied by �(E�), we obtain:

dN

d�
= �(E�)

 
A +B

�

E
+ C

�2

2E2
)

!
; (5.6)

where

A =
G2M

�

Z 1

0
dxF2(x;Q

2) ; (5.7)

B = �G
2M

�

Z 1

0
dx
�
F2(x;Q

2)� xF3(x;Q
2)
�

(5.8)
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C = B � G2M

�

Z 1

0
dxF2(x;Q

2) ~R(x;Q2): (5.9)

The quantities A, B, and C do not depend on E�, and are relatively independent

of � (except for small variations from scaling violations of the structure functions).

The total number of events with � values smaller than a �xed �0 (also chosen to

be a small) at each neutrino energy is obtained by integrating Equation 5.6 over

� up to � = �0. This yields,

N(E�)�<�0 = �(E�)
Z �0

0
d�A

"
1 +

�

E
(
B

A
)� �2

2E2
(
B

A
�
R
F2

~RR
F2

)

#
: (5.10)

Therefore, N(E�)�<�0 is directly proportional to the 
ux at each energy bin,

�(E�) (times a correction factor which includes only weakly energy dependent

higher order terms). The energy dependence of the quantity B=A is small, except

in the lowest energy bins.

Flux extraction

In the 
ux analysis, all charged-current events which pass the standard charged

current analysis cuts, and an additional hadronic energy cut, Ehad < �0 = 20 GeV

are used. The choice of 20 GeV is designed to have suÆcient statistics in the higher

energy bins, while at the same time, minimizing the systematic correlations with

the di�erential cross sections data sample which includes all events with Ehad > 10

GeV. A total of 407,000 neutrino and 140,000 antineutrino events pass the 
ux

analysis cuts. For each E� bin, the 
ux sample events are binned in ten 2 GeV

wide Ehad bins. The relative 
ux is obtained using Equation 5.10:

�(E�) / N(E�)�<�0R �0
0 d�

�
1 + �

E
(< B

A
>)� �2

2E2 (<
B
A
> �

R
F2 ~RR
F2

)
� : (5.11)
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The number of raw data events, N(E�)�<�0 is corrected for detector acceptance and

detector resolution smearing e�ects, before the extraction of the 
ux. The value ofR
F2

~R=
R
F2 is calculated using the Buras-Gaemers di�erential cross section model

which is described in Chapter 4. The value of B=A for each E� bin is determined

from a �t to the N� distribution in eight 2 GeV wide Ehad bins. In the B=A �ts,

a low hadronic energy cut, � > 4 GeV is introduced to remove events from quasi-

elastic scattering and resonance productions processes. This is because events from

quasi-elastic scattering and resonance productions processes (which occur at the

very lowest �, as shown in Figure 5.1) are not implemented in the experiment's

Fast Monte Carlo. The extracted values of B=A do not show any strong energy

dependence, as shown in Figure 5.2 for the E744 data. Therefore, the B=A values

that are used are averaged over all the energy bins. Indeed, any small variations

in B=A due to scaling violation are minimized by integrating to the same �xed �0

value in each E� energy bin. (which means that the 
ux sample covers the same

range in Q2 at all energy bins). The average values of < B=A >�;� (for neutrinos

and antineutrinos) are used in the extraction of the 
ux using Equation 5.11.

For the case of neutrino running, the energy dependent correction term, which

is the denominator term in Equation 5.11 is small except that in the very low

energy region. However, in the antineutrino case, the energy dependence of this

correction at low energies is important as shown in Figure 5.3. The extracted 
ux

times energy distributions for both the E744 and E770 experiments are shown in

the Figure 5.4.

This 
ux extraction procedure requires that the number of raw events is cor-

rected for the detector acceptance and detector resolution smearing. These cor-

rections are obtained from a Monte Carlo simulation. The corrections from the

Monte Carlo simulation are sensitive to the functional form of the di�erential cross

sections ( e.g. the kinematic dependence of the structure functions and radiative
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Figure 5.1: The di�erential cross section d�=d� in the low y region for E� =
60 GeV. This plot shows that the conservative cut of � > 4 GeV removes the
contribution from quasi-elastic scattering events.

correction). Therefore, the extractions of the 
ux and the di�erential cross sec-

tions are performed iteratively until they converge. In the �nal iteration, the

model which best describes the measured di�erential cross section is also used in

the Monte Carlo to calculate the acceptance and detector resolution e�ects.
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Figure 5.2: B=A as a function of energy for the E744 data. The two lines show the
average B=A values of the data points in the 30 to 360 GeV range (for neutrinos
and antineutrinos).

The systematic errors in the relative 
ux extraction are (in order of impor-

tance): (a) the uncertainties in the value of < B=A >�;�, (b) the calibration error

in the measurement of E�, and (c) the error in the Ehad calibration. The relative


ux is insensitive to the hadron energy calibration, because the 
ux events are

added up to a �xed value Ehad (for all energy bins). In contrast, the measurement

of the neutrino energy for the low Ehad 
ux events mainly originates from the muon

energy. Therefore any mis-measurement of E� results in changing the extracted

relative 
ux. Typically, the e�ect from a 1% miscalibration of E� is less than 5%

for neutrinos and less than 10% for antineutrinos. The largest dominant system-

atic error comes from the error in the measurement of the value of < B=A >. This

e�ect is very large at low energy, as shown in the Figure 5.3. All these system-

atic errors are included in the determination of the errors in the di�erential cross

sections.
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Figure 5.3: The corrections to the 
ux, which originate primarily from the B=A
term, as a function of energy (i.e. the denominator term in Equation 5.11). The
bands represents the uncertainties from the measurement error in B=A

Flux normalization

The absolute normalization factor of the relative 
ux is obtained by normalizing to

average of all the neutrino-nucleon cross section [26] measurements for an isoscalar

iron target. Our measured average cross section, using the relative 
ux in the 30

to 200 GeV range, is normalized to the world average value of the neutrino cross

section of ��=E = 0:677� 10�38 cm2/GeV per nucleon. This value is used in the

following relation:

200X
30

D(Ei)
MC(Ei)gen
MC(Ei)smr

= k
�world;iso

E

200X
30

�(Ei)Ei �
"P200

30
�model;Fe

E
�(Ei)EiP200

30
�model;iso

E
�(Ei)Ei

#
: (5.12)

The left hand side is the total number of events from 30 to 200 GeV, corrected for

geometrical acceptance, resolution smearing e�ects and for the total cross section

kinematic cuts (single-muon charged current cuts) using the Monte Carlo. The
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Figure 5.4: The relative 
ux � energy distribution. Top plot is for the E744 data,
and bottom plot is for the E770 data.
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Figure 5.5: The ratio of the total cross sections for a non-isoscalar iron target to
that for an isoscalar target as a function of E�. The Buras-Gaemers LO calculation
is used for this prediction. This correction is nearly independent of neutrino energy.

correction is equal to the ratio of MC(E)gen and MC(E)smr events. The �rst

factor in the right hand side is the total number of predicted events for a isoscalar

target using the world average total cross section. The second factor in the right

hand side is a correction for the fact that iron is not an isoscalar target. It is equal

to the ratio of the number of Monte Carlo events from an isoscalar target and

from a non-isoscaler iron target. This correction is nearly independent of neutrino

energy, as shown in Figure 5.5. The overall normalization uncertainty is about 2%

and originates from the uncertainty in average value of all world total cross section

measurements.
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Other alternative 
ux extraction methods

The energy dependent neutrino 
ux can also be determined by using events with

nearly zero hadronic energy (y = Ehad=E� � 0). This method, which called the

\y-intercept" method is the limit of the low Ehad technique as Ehad goes to zero.

This method relies on the assumption that the inelastic di�erential cross section

in the y = 0 limit is independent of energy and is the same for neutrinos and

antineutrinos. The di�erential cross section for neutrino scattering in the y ! 0

limit reduces to:

"
1

E�

d��

dy

#
y=0

=

"
1

E�

d��

dy

#
y=0

=
G2
FM

�

Z 1

0
F2(x;Q

2 ! 0)dx = Const: (5.13)

This relationship hold true independent of incident neutrino energy or neutrino

type for scattering on an isoscalar target. Thus, for each bin in energy, the 
ux of

neutrinos or antineutrinos is given by:

lim
y!0

 
1

E�

dN�(�)(E�)

dy

!
= Const:� ��(�)(E�): (5.14)

Although this method has smaller theoretical uncertainties than the low Ehad tech-

nique which we use, the statistical errors on the 
ux extractions are much larger.

The neutrino 
ux also can be obtained from a Monte Carlo simulation of the

beam optics combined with measurements of parent particle spectra in the hadron

secondary beam. The uncertainties in the inputs to these types of simulations

can be reduced if the observed distributions of neutrino and antineutrino events

are also used to tune the pion and kaon spectra. However, in this experiment, the

detectors which monitored the secondary beam only measured the overall intensity

and beam divergence. The momentum spectra and particle fractions were not

measured. Therefore, this technique could only be used as a consistency check.
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5.3 Extraction of the di�erential cross sections

In order to extract the di�erential cross sections, the single muon charged current

events are selected with the following cuts (in addition to �ducial volume and

acceptance cut described in chapter 3):

� Ehad > 10 GeV: This lower hadronic energy limit is selected to to minimize

the correlations between the 
ux event sample (Ehad < 20 GeV) and the

di�erential cross section event sample.

� 30 < E� < 360 GeV: The lower energy limit of 30 GeV is chosen because

the 
ux has a large systematic error below this energy. The upper limit is

chosen because above that energy the errors in the Monte-Carlo resolution

smearing corrections become large.

� Q2 > 0:3 GeV2: Below Q2 = 0:3 GeV2, the Monte Carlo is not well modelled

(especially for \quasi-elastic" events).

The E�, x and y bins are chosen according to the population of the events (and

to match the subsequent structure function bins). The bin limits are shown in

table 5.1. The kinematic limits in x and y originating from the non-zero mass of

the muon have been carefully studied in order to remove the non-physical kinematic

region. If this e�ect is not included, it could arti�cially reduce the di�erential cross

section (because of the large bin widths of x or y).

The number of raw events, D(E; x; y), binned in E� , x, and y bins is corrected

for acceptance and resolution smearing e�ect, as discussed in section 1.1. The fast

Monte Carlo with high statistics is used to calculate the geometrical and kinematic

acceptance with detector resolution smearing e�ects (MCsmr(E; x; y)=MCgen(E; x; y)

in Equation 5.1). Although this ratio corrects for several e�ects, it is commonly re-

ferred to as the acceptance. The determination of the acceptance depends on how
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Table 5.1: Upper limits of bins used for the di�erential cross section measurements.
The bin number 0 de�nes a lower limit of the �rst bin.

Bin number x y E� (GeV)

0 .0001 .001 30.0
1 .03 .05 40.0
2 .06 .10 50.0
3 .10 .20 60.0
4 .15 .30 70.0
5 .20 .40 80.0
6 .25 .50 90.0
7 .30 .60 100.0
8 .40 .70 120.0
9 .50 .80 140.0
10 .60 .90 160.0
11 .70 .97 180.0
12 .80 200.0
13 1.00 230.0
14 260.0
15 290.0
16 320.0
17 360.0

well we model the detector response for the hadrons and muons, and also on how

well we model the neutrino interactions in the detector (as discussed in the previ-

ous chapter). Figure 5.6 shows the acceptance for the di�erential cross sections as

a function of x and y at E� = 150 GeV. The poor acceptance in the low y region is

mainly driven by the low hadronic energy cut, Ehad > 10 GeV. The requirement of

a muon track in the toroid which traverses at least two toroid gaps (used for good

muon momentum reconstruction) signi�cantly reduces the acceptance in the high

y region. In addition we impose the requirement that the acceptance in each bin

should be larger than 20%. A total of 2,770 bins (1389 for �, 1381 for �) pass this

requirement. The di�erential cross sections are extracted for the E744 and E770
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Figure 5.6: The acceptance due to detector geometry, resolution smearing, and
kinematic cuts is shown as a function of y for di�erent x bins at a typical neu-
trino energy of 150 GeV. Acceptances are compared for the case of focusing and
defocusing muons (in the toroid spectrometer). The acceptances for neutrino and
antineutrino events are shown on the left hand and right hand sides, respectively.

experiments separately. Subsequently, both sets of di�erential cross sections data

are combined together with their statistical and systematic errors.

5.4 Systematics uncertainties

The following systematic uncertainties are considered in the determination of the

di�erential cross section,

� A shift of the hadron energy scale by � 1%, independently of muon energy.
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� An o�set of the hadron energy by +150 MeV.

� A shift of the muon energy scale by � 1%, also regardless of hadron energy.

� A change of the 
ux due to the error of B=A by � �.

� A shift in the total �-nucleon cross section by 2.1%

� A shift in the ratio of �-nucleon and �-nucleon total cross section by 1.4%

� Backgrounds (�� neutral-current charm production and �e charged current

charm production, followed by semi-leptonic charm particle decays to muons)

� Dependence of the acceptance corrections on the cross section model imple-

mented in the Fast Monte Carlo.

The dominant systematic errors come from the uncertainties in the hadron en-

ergy and muon energy scales. The size of these errors in each bin is typically a

few percent (except at high x). The systematic errors related to the uncertainty

in the word average value of the neutrino-nucleon total cross section are indepen-

dent of x and y. This error is treated as an overall normalization error. A study

of backgrounds from �� neutral-current charm production and �e charged current

charm production, followed by a semi-leptonic charm particle decays to muons

indicate that these contributions are negligible. The acceptance corrections calcu-

lated using di�erent PDFs have been studied, and the di�erence in the acceptance

corrections is very small.
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5.5 CCFR results and comparison with QCD pre-

dictions

The resulting di�erential cross sections (about 2,770 points) are given in Appendix

B. Over a wide energy range, the CCFR di�erential cross sections shows the be-

havior expected from QCD. Figure 5.7 and Figure 5.8 show the di�erential cross

sections as a function of x and y at E� = 150 GeV and at E� = 80 GeV, respec-

tively. At large x, the y distribution of the di�erential cross sections is 
at for

neutrinos and is falling with y for antineutrinos. In the lower x region, a quadratic

y dependence for both neutrinos and antineutrinos is observed. In leading or-

der (LO) QCD, the di�erential cross section can be expressed in terms of quark

distributions as follows:

1

E

d2��

dxdy
=
G2
FM

�
x[q(x) + (1� y)2q(x)] (5.15)

1

E

d2��

dxdy
=
G2
FM

�
x[q(x) + (1� y)2q(x)]: (5.16)

At large x, the contribution of sea quarks (q(x)) is negligible. Therefore, the

neutrino cross sections should not have any y dependence, while the antineutrino

cross sections should have a (1� y)2 dependence. In contrast, the lower x region

is dominated by the sea quarks. Therefore, a quadratic y dependence for both

neutrinos and antineutrinos is expected. As shown in Figure 5.7 and Figure 5.8,

our LO Buras-Gaemers (BG) QCD model (light solid line) describes the data very

well over the entire x and y region. This LO BG model (which has been extracted

from �ts to the di�erential cross section data) is only used in the calculation of

acceptance and resolution smearing corrections. This �gure clearly demonstrates

that the production model implemented in the Monte Carlo describe the data very
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well, thus leading to reliable acceptance and resolution smearing corrections.

Over the entire x regions, the di�erential cross sections appear to also be in good

agreement with NLO Thorne-Robert Variable Flavor Scheme (TR-VFS) [27] QCD

calculation using the MRST99 [28] PDFs �. The MRST predictions are shown

as solid lines in Figure 5.7 and Figure 5.8. The MRST calculation includes an

improved treatment of massive charm production. These QCD predictions, which

are on free neutrons and protons, have been corrected for nuclear e�ects using a �t

to all available muon and electron scattering data on F2. Additional higher twist

e�ects [30, 31], and electroweak radiative corrections [32] have also be included.

This good agreement with the MRST predictions implies that extracted structure

functions which would be extracted from these di�erential cross sections would be

in agreement with the structure functions calculated using the NLO TR-VFS QCD

calculation with MRST99 PDFs. At the lowest x region (0:01 < x < 0:1), previous

extractions of the structure function F2 from these CCFR data were higher than

F2 measurements by the NMC muon scattering experiment. Because of this long

standing discrepancy with the NMC muon F2 data, the MRST group did not use

this low x CCFR F2 data in their PDF �ts, and only included the NMC data at

this controversial kinematic region. This issue is extensively discussed in the next

chapter.

5.6 Comparison with CDHSW data

The CERN-Dortmund-Heidelberg-Saclay-Warsaw collaboration (CDHSW) performed

neutrino experiments on iron at CERN. Their detector is similar to the CCFR de-

tector, except for the fact that the entire iron target has been magnetized. The

�The MRST PDFs are only valid for Q2 > 1:2 GeV2. They are extended to lower Q2 by using
GRV94 [29] PDFs (renormalized to the MRST99 PDFs at Q2 = 1:2 GeV2)
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Figure 5.7: Typical CCFR and CDHSW di�erential cross section data at E� =
150 GeV (both statistical and systematic errors are included). The data are in
good agreement with the NLO TR-VFS QCD calculation using MRST (extended)
PDFs (dashed line). The solid line is a leading order CCFR QCD inspired �t. A
disagreement is observed in the y distribution between CCFR data and CDHSW
data at small x, and in the level of the cross sections at large x.
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Figure 5.8: Typical CCFR and CDHSW di�erential cross section data at E� =
85 GeV (both statistical and systematic errors are included). The data are in
good agreement with the NLO TR-VFS QCD calculation using MRST (extended)
PDFs (dashed line). The solid line is a leading order CCFR QCD inspired �t. A
disagreement is observed in the y distribution between CCFR data and CDHSW
data at small x, and in the level of the cross sections at large x.



102

CDHSW energy range is 20 < E� < 212 GeV, compared to 30 < E� < 360 GeV for

the CCFR data. The CDHSW �nal data sample consists of 640,000 neutrino and

550,000 antineutrino events, while the CCFR data sample consists of 1,030,000

neutrino and 179,000 antineutrinos events. Therefore, the CDHSW and CCFR

experiments have similar detectors, kinematic regions and statistical samples.

However, previous results from the two experiments for the structure function

xF3 are di�erent. In particular, the extracted logarithmic slopes [26, 25] of xF3 ver-

sus Q2 as a function of x are di�erent. Figure 5.9 shows the xF3 logarithmic slopes

extracted by CDHSW and CCFR compared to the expectations from QCD. The

CDHSW results do not agree with the QCD predictions (solid line) for a non-singlet

evolution. In contrast, the CCFR xF3 logarithmic slopes are in good agreement

with QCD. The reason for this discrepancy between the two experiments was not

clear. One possible reason for the source of the discrepancy was a di�erence in the

extraction techniques of structure function. Another possibility was that the raw

data for two experiments would result in di�erent measurements of the di�erential

cross sections. In the case of the CDHSW structure function analysis, they started

with a measurement of the di�erential cross section, d2�
Edxdy

. Subsequently, they

extracted the structure functions from the y distributions of these cross sections.

However, the previous CCFR analysis extracted the structure functions directly

from the number of events in one combined procedure. Therefore, a comparison

of the di�erential cross sections measured by these two experiments is important

in resolving the origin of the di�erence in the extracted structure functions.

We compare our newly extracted CCFR di�erential cross section data with the

published CDHSW di�erential over wide energy range. The comparisons indicate

that there is good agreement in the overall level of the di�erential cross sections

between the two experiments. However, there is a discrepancy in the slopes of the y

distributions. The CDHSW data do not show the expected quadratic y dependence
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Figure 5.9: Comparison of the previous CCFR and CDHSW results for the log-
arithmic slopes of xF3 . The solid line is the prediction from a QCD �t based
on �QCD = 381. The CDHSW data do not show the behavior expected for the
non-singlet QCD evolution of xF3.

in the low x region (as they pointed out in their publication [25]). The shape of

the y distribution for a given E and x is very crucial in any QCD analysis. This

is because di�erent y values corresponds to the di�erent Q2(= 2MExy) values.

Therefore, we conclude that the di�erence between the CDHSW and the CCFR

results already appears at the level of the di�erential cross sections data. The

di�erence in the y dependence in the measured di�erential cross sections is the

reason for the di�erence in the extracted logarithmic slopes in Q2 for xF3.

A comparison between the new CCFR data and the published CDHSW neu-

trino di�erential cross sections at high x and low y shows another discrepancy. The

CDHSW cross sections at high x and low y are much higher than both CCFR neu-

trino data and QCD prediction. In contrast, the CDHSW � data in this region are

in agreement with the CCFR data. If parton distribution functions are extracted
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from the CDHSW data. this di�erence at high x and low y between neutrino and

antineutrino data would result in an asymmetry between the extracted strange and

anti-strange quark sea. The following equations illustrate how this comes about.

In leading order, the di�erential cross sections at y = 0 can be expressed by:

1

E

d2�

dxdy
(�; y = 0) � [q + q] = (u+ u) + (d+ d) + s (5.17)

1

E

d2�

dxdy
(�; y = 0) � [q + q] = (u+ u) + (d+ d) + s: (5.18)

Now in global PDF �ts, the u and d quark distributions are well constrained by the

charged lepton (muon and electron) F2 data. Therefore, the only way to account

for the enhanced CDHSW neutrino data at low y and large x is to enhance the s

quark content in the nucleon at large x. The fact that the CDHSW data favors a

large di�erence between the strange and anti-strange quark sea at large x was also

recently demonstrated by Barone, Pascaud, and Zomer's group [33] who performed

a next to leading analysis of the CDHSW di�erential cross sections. Their results

are shown in Figure 5.10. Since our CCFR di�erential cross sections do not show

this di�erence between neutrino and antineutrino di�erential cross sections at high

x and low y, an analysis which includes the CCFR data would result in a much

di�erent conclusion.
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Figure 5.10: Results of a �t to the CDHSW di�erential cross sections by Barone,
Pascaud, and Zomer. The CDHSW data indicate a di�erence between the s and s
distributions in the nucleon. Shown are (a) the extracted di�erence x(s � s) and
(b) the extracted ratio s=s at Q2 = 20 GeV2. The constraints on this ratio from
the CCFR dimuon data is also shown in the Fig. (b). The new CCFR di�erential
cross sections do not require a di�erence between the s and s distributions in the
nucleon.
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Chapter 6

Structure Function Analysis

Deep inelastic lepton-nucleon scattering experiments have provided the mechanism

to determine the quark distributions in the nucleon and test QCD in various ro-

bust ways. The quark distributions are derived from measurements of the structure

functions of the nucleon in electron, muon and neutrino scattering experiments.

As discussed in Chapter 1, individual quark distributions of various 
avors can be

extracted from neutrino-nucleon and antineutrino-nucleon scattering. However,

in previous experiments, the extracted quark distributions from muon [15] and

neutrino [16] scattering experiments were found to be di�erent at small values of

x. This disagreement in the extracted structure functions has generated numer-

ous theoretical papers which proposed a variety of possible explanations for this

discrepancy.

In this chapter, we review the previous measurements of the CCFR structure

functions and comparison with the charged-lepton scattering results. We introduce

a new physics model independent (PMI) method to extract F2 and �xF3 = xF �
3 �

xF �
3 from the di�erential cross sections measured in neutrino-nucleon scattering

experiments. This �rst measurement of �xF3 is used to test models of heavy
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charm production.

6.1 Method of Structure function extraction

The structure functions, F2 and xF3 measured in neutrino scattering are basically

extracted from the sum and di�erence of neutrino and anti-neutrino di�erential

cross sections, respectively.

The previous CCFR extractions of structure functions were directly determined

from the number of neutrino and antineutrino events, (using the 
uxes, �� and

��, as determined with the �xed-� method described in Chapter 5). The number

of events in each x and Q2 bin is related to the di�erential cross section by:

N�;� =
Z
x�bin

Z
Q2�bin

"Z
all energies

d2�

dxdQ2
��;�(E)dE

#
: (6.1)

Here, the di�erential cross section, d2�=dxdQ2 can be expressed by:

d2��;�

dxdQ2
=

G2

2�x

"
(1� y � Mxy

2E
+
y2

2

1 + 4M2x2=Q2

1 +R(x;Q2)
)F2(x;Q

2)� y(1� y

2
)xF3(x;Q

2)

#
:

(6.2)

If the bin sizes in x and Q2 are chosen such that the structure functions do not vary

signi�cantly within each bin, the number of events, N�;� , in each bin is described

by two linear equations with two unknown values, F2 and xF3.

N�(x;Q2) = A�F2(x;Q
2) +B�xF3(x;Q

2) (6.3)

N�(x;Q2) = A�F2(x;Q
2)� B�xF3(x;Q

2); (6.4)
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where

A�;� =
G2

2�

Z Z Z dx

x
dQ2dE��;�(E)

"
1� y � Mxy

2E
+
y2

2

1 + 4M2x2=Q2

1 +R(x;Q2)
)

#
(6.5)

B�;� =
G2

2�

Z Z Z dx

x
dQ2dE��;�(E)

"
y � y2

2

#
: (6.6)

Therefore, the structure functions F2 and xF3 =< xF �;�
3 >= (xF �

3 + xF �
3 )=2 can

be extracted by solving the two linear equations.

Another way to extract structure functions is to �rst do a di�erential cross sec-

tion measurement. This technique was �rst adopted by the CDHSW experiment.

The sum and di�erence of the neutrino and anti-neutrino di�erential cross sections

can be expressed as:

�

G2

"
d2��

dxdQ2
+

d2��

dxdQ2

#
=

"
1� y � Mxy

2E
+
y2

2

1 + 4M2x2=Q2

1 +R(x;Q2)

#
F2(x;Q

2)(6.7)

�

G2

"
d2��

dxdQ2
� d2��

dxdQ2

#
=

"
y � y2

2

#
xF3(x;Q

2): (6.8)

The quantities F2 and xF3 can then be extracted by solving these two coupled

equations. This derivation assumes that xF �
3 = xF �

3 . However, this is not valid in

the small x region. The quantity �xF3 = F �
3 � xF �

3 is related to the strange sea

and charm sea distributions. Within a LO QCD model, xF �
3 � xF �

3 = 4x(s � c).

In the previous extraction of the structure function F2 by CCFR, corrections for

the non-zero contribution of �xF3 have been applied using a leading order model.

In addition, a parameterization of R, namely Rworld [24] (an empirical �t to all of

available data on R) was used for R in Equation 6.8.
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6.2 Previous CCFR results and comparison with

charged lepton data

As discussed in Chapter 1, the structure function, F2, as extracted in charged

lepton scattering, was found to be di�erent from the F2 structure function extracted

in neutrino scattering experiments. Because of the di�erent coupling in these two

cases, a correction factor must be applied to convert one set of data to another when

comparing charged-lepton and neutrino experimental results. In leading order in

QCD, the correction factor is given by the following expression:

F �N
2 =

5

18
F �N
2

"
1� 3(s+ s� c� c)

5(q + q)

#
; (6.9)

where q+q is summed over all quarks 
avors. This relation is also true to all orders

in the DIS scheme in NLO QCD. Therefore, the F2 structure functions extracted

in charged-lepton experiments can be converted to e�ective F �
2 using the NLO

CTEQ4D (DIS scheme) parton distribution functions (PDFs).

Figure 6.1 shows the strange quark distribution at Q2 = 15 GeV2 as a function

of x for various PDF parametrizations. In addition, since the neutrino scattering

data are taken on a heavy iron target (to get high statistics), additional heavy

target nuclear corrections should be applied to the charged lepton scattering F2

data (which are typically measured with a deuterium target). A parameterized

function, which describes the ratio of F2 charged-lepton data on heavy nuclear

targets to charged-lepton data taken with deuterium (SLAC [34, 35], NMC [36],

E665 [37]), is used to correct for heavy nuclear target e�ects. The parametrized

function for the ratio of the structure functions as measured on an iron target to

the structure functions measured on deuterium is shown in Figure 6.2 (with the

estimated error band, which can be as large as 10% at the lowest values of x).



110

0.5 0.5

0.4 0.4

0.3 0.3

0.2 0.2

0.1 0.1

0.0 0.0

St
ra

ng
e 

se
a 

=
 x

s 
+

 x
s–

5

5

6

6

7

7

8

8

9

9

0.01

0.01

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

0.1

0.1

2

2

3

3

4

4

5

5

6

6

7

7

x

 CCFR NLO dimuon analysis
 MRS R2
 CTEQ 4M
 GRV 94
 CCFR LO dimuon analysis

Figure 6.1: A comparison of the strange sea distributions from various PDFs at
Q2 = 15 GeV2. A typical uncertainty in the strange sea distribution is 15%.

1.1 1.1

1.0 1.0

0.9 0.9

0.8 0.8

0.7 0.7

F 2
(X

) 
/ F

2(
D

)

0.001

0.001

2

2

3

3

4

4

5

5

6

6

7

7

0.01

0.01

2

2

3

3

4

4

5

5

6

6

7

7

0.1

0.1

2

2

3

3

4

4

5

5

6

6

7

7

1

1

x

 NMC Ca/D
 SLAC E87 Fe/D
 SLAC E139 Fe/D
 E665  Ca/D
 Parameterization
 Error in parameterization

Figure 6.2: The ratio of F2 for heavy nuclear target and deuterium as measured
in charged-lepton experiments (SLAC [34, 35], NMC [36], E665 [37]). The band
show the uncertainty of the parametrized curve from the statistical and systematic
errors in the experimental data (�t performed by Seligman [26]).



111

Figure 6.3 shows some of the comparisons between the previous CCFR F2

data and charged-lepton scattering F2 data (SLAC/NMC/BCDMS). The charged-

lepton data have been converted to represent the case of neutrino scattering on a

heavy nuclear target. As can be seen in the �gure, there is very good agreement

between the two sets of data for x values above x = 0:1. However, at lower values

of x there is a large discrepancy between the CCFR (neutrino) and NMC(muon)

data. The CCFR data is systematically higher than the NMC data at low x (about

10 � 20%). This discrepancy cannot be simply explained by increasing the level

of the strange sea, because the level of the strange sea is constrained by the CCFR

dimuon data. A complete comparison of the previous CCFR structure functions to

charged-lepton data in all available x regions can be found in the Ph.D. thesis [26]

of W. Seligman's (Columbia University).

6.3 Several attempts to resolve the discrepancy

A variety of interesting suggestions have been proposed in order to resolve the

discrepancy between the previous CCFR-neutrino and NMC-muon data at low x.

However, no single explanation has been successful in resolving this discrepancy. Of

course, there is always the possibility that one or both experiments have neglected

to account for an unknown experimental systematic e�ect in the low x region.

In this section, we review some of suggestions, including our own proposal of

how to resolve this problem.

� An underestimate of the strange-sea distribution at low x in current PDFs:

In order to fully resolve the discrepancy, the strange-quark distribution needs

to be increased by factor of two (below x = 0:1) over the entire Q2 region.

However, this explanation is disfavored by the CCFR dimuon measurement
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Figure 6.3: Comparison of the previous CCFR F2 neutrino data to NMC (muon)
and E665 (muon) scattering results at x = 0.0125, 0.0175, 0.090, 0.110, 0.350
and 0.450. A complete comparison of the previous CCFR structure functions to
charged-lepton data in all available x regions can be found in the Ph.D. thesis [26]
of W. Seligman's (Columbia University).
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(which directly determines the strange-sea) although some increase of the

strange sea at low Q2 is allowed.

� A large asymmetry between the s(x) and s(x) distributions in the nucleon: It

was hypothesized that there is a non-perturbative QCD phenomena [38] that

results in a strange-sea distribution which is not same as the anti-strange sea

distribution (xs(x) 6= xs(x)), while preserving the total integral of s(x) and

s(x) to be the same. Boros et al. [42] tested this hypothesis, using constraints

from the CCFR dimuon data. Their test shows that a negative anti-strange

sea is favored, which is an unphysical result.

� A di�erence in the nuclear heavy target corrections for neutrino and muon

scattering: In principle, there is no theoretical reason that the heavy target

corrections for neutrino and charged leptons should be same. Speci�cally,

there could be a di�erence if the heavy nuclear e�ects are related to the

properties of the exchanged �eld particle (i.,e. a W versus a photon). Boros

et al. [42]. have recently calculated the di�erence in the nuclear e�ects on

iron between neutrino and muon scattering within a speci�c model. Their

predictions can account for some of the discrepancy at the level of 5%. Note

that experimentally, the x dependence of the ratio of neutrino scattering

cross sections for heavy nuclear targets and deuterium is consistent with the

muon scattering results within a large experimental uncertainty.

� Charge symmetry violation between protons and neutrons (isospin violation):

Since a large asymmetry in the strange sea, or a possible di�erence in the

nuclear target e�ects between muon and neutrino scattering could not ex-

plain the entire discrepancy, Boros et al. [42] proposed a model in which

the discrepancy results from a signi�cant charge symmetry violation in the
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2) in charm production.

quark distributions in the nucleon. A charge symmetry violation (otherwise

known as a violation of isospin symmetry) implies that the d quark distribu-

tion in the proton is not the same as the u quark distribution in the neutron

(d(x)p 6= u(x)n) and d(x)p 6= u(x)n. Charge symmetry has been assumed in

all global analyses of parton distributions. However, we rule out this hypoth-

esis by using the CDF W charge asymmetry data, as discussed in detail in

the next session.

� E�ects of charm-quark-mass corrections in the extraction procedure: In the

extraction of F2 in neutrino scattering, a leading order slow rescaling correc-

tion for the e�ects of the �nal state charm quark mass in charm production

by neutrinos has been applied. This was done in order to extract a theoret-

ically corrected F �
2 which could be directly compared with F �

2 . As shown

in Figure 6.4, when muons scatter from strange quarks, there is a low mass

strange quark in the �nal state. However, when neutrinos scatter from a

strange quark, a high mass charm quark is produced in the �nal state. The

slow rescaling correction was designed to correct for this di�erence between

neutrino and muon scattering, and correct for the kinematic suppression of

the cross section due to the �nal state mass of the heavy quark. However,

recent NLO calculation [39] for heavy charm productions indicate that the

leading order corrections may be in error. As shown in Figure 6.5, the NLO
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Figure 6.5: Comparison of LO and NLO calculations on the ratio of F2(mc 6=
0)=F2(mc = 0). The LO predictions show a suppression e�ect in both the low
and high x region. Although the NLO predictions also show a suppression at high
values x, they indicate an enhancement in the low x and low Q2 region.

calculation shows an opposite behavior (from that in the LO calculation) for

the e�ect of the charm quark mass at small value of x. In addition, several

NLO calculations showed a strong scheme dependence in the calculated value

of this correction. In the following sections, we investigate the e�ects of the

corrections for the �nal state charm quark mass in heavy quark production

as a possible source of the discrepancy between the CCFR and NMC results.

We also propose a physics model independent way to extract the structure

functions from the data, without a need for any slow rescaling correction.

6.4 Charge symmetry violation

The experimental discrepancy between neutrino (CCFR) [16] and muon (NMC) [15]

nucleon structure function data at low x has lead to the interesting charge sym-

metry violation (CSV ) hypothesis proposed by Boros et al.. Charge symmetry

(sometimes also referred to as isospin symmetry) is a symmetry which interchanges

protons and neutrons, thus simultaneously interchanging up and down quarks.

Therefore, charge symmetry implies the equivalence between the up (down) quark
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Figure 6.6: The ratio of NMC F �
2 converted for neutrino scattering and CCFR F �

2

as a function of x (averaged over all Q2 region)

distribution in the proton and the down (up) quarks in the neutron. Currently, all

�ts to Parton Distribution Functions (PDFs) are performed under the assumption

of charge symmetry between neutrons and protons.

In their model, charge symmetry is broken such that the d sea quark distribu-

tion in the nucleon is larger than the u sea quark distribution for x < 0:1, which also

results in a violation of 
avor symmetry. Their paper notes that structure func-

tions extracted in neutrino deep inelastic scattering experiments are dominated by

the higher statistics data taken with neutrino (versus antineutrino) beams. They

note that neutrino-induced charged current interactions couple to d quarks and

not to u quarks, while the muon coupling to the 2/3 charged u quark is much

larger than the coupling to the 1/3 charged d quark. Therefore, if the d sea quark

distribution is signi�cantly larger than the u sea quark distribution in the nucleon,

there would be a signi�cant di�erence between the nucleon structure functions as

measured in neutrino and muon scattering experiments. However, both neutrino
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and muon scattering data have been taken on approximately isoscalar targets, such

as iron or deuterium. Isoscalar targets have an equal number of neutrons and pro-

tons. Therefore, a large charge symmetry violation of the sea quarks in the nucleon

might explain the observed discrepancy (10 � 15%) between neutrino and muon

structure function data, especially, since it leads to a larger number of d sea quarks

than u sea quarks in an isoscalar target.

The following are the charge symmetry violations in the nucleon sea as proposed

in the Boros et al. model.

Æu(x) = up(x)� d
n
(x);

Æd(x) = d
p
(x)� un(x); (6.10)

where up(x) and d
p
(x) are the distribution of the u and d sea anti-quarks in the

proton, respectively. Similarly un(x) and d
n
(x) are the distribution of the u and

d sea anti-quarks in the neutron, respectively. The distributions for the quarks

and antiquarks in the sea are assumed to be the same. The relations for CSV in

the sea quark distributions are analogous to equations 6.10 for the sea anti-quarks.

Charge symmetry in the valence quarks is assumed to be conserved, since there is

good agreement between the neutrino and muon scattering data for x > 0:1.

Within this model, large CSV terms are extracted from the di�erence in the

structure functions as measured in neutrino and muon scattering experiments.

Theoretically, such a large charge symmetry violation (of order of 25% to 50%) is

very unexpected. Therefore, this hypothesis has generated a signi�cant amount of

interest both within and outside the high energy physics community [40]. If the

proposed model is valid, all parametrizations of PDFs would have to be modi�ed.

In addition, physics analyses which rely on the knowledge of PDFs (e.g. the

extraction of the electro-weak mixing angle from the ratio of neutral current and
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charged current cross sections) would be signi�cantly a�ected.

However, we show that the CSV model proposed by Boros et al. is ruled out

by the W charge asymmetry measurements performed by the CDF experiment at

the Fermilab Tevatron collider [41]. TheseW data provide a very strong constraint

on the ratio of d and u quark momentum distributions in the proton over the x

range of 0:006 to 0:34.

Figure 6.7 shows the quantity x�(x) = x[Æd(x)� Æu(x)]=2 which is required in

order to explain the di�erence between neutrino and muon data, as given in Figure

3 of Boros et al. [42]. The average Q2 of these data is about 4 GeV2. The dashed

line is the strange sea quark distribution [xs(x)] in the nucleon as measured by the

CCFR experiment using dimuon events produced in neutrino nucleon interactions.

Boros et al. state that the magnitude of the implied charge symmetry violation is

somewhere between the full magnitude of the strange sea and half the magnitude

of the strange sea. Since the strange sea itself has been measured to be about half

of the average of the d and u sea, this implies a charge symmetry violation of order

25% (at x = 0:05) and 50% (at x = 0:01).

However, as can be seen in Figure 6.7, the shape of the strange sea (dashed

line) does not provide a good parametrization of the charge symmetry violation,

therefore, we have parametrized x�(x) at Q2 = 4 GeV2 as follows.

x�(x) = 0:15; x < 0:01;

= :15[log(x)� log(:1)]=[log(:01)� log(:1)]; 0:01 < x < 0:1;

= 0: x > 0:1 (6.11)

This parametrization is shown as the solid line in Figure 6.7. The dot-dashed

line shows the value of our parametrization when evolved to Q2 = M2
W . Boros et

al. suggest that it is theoretically expected that �(x) = Æd(x) = �Æu(x), which



119

Figure 6.7: Charge symmetry violating distribution, x�(x) = x(Æd(x)� Æu(x))=2
required to explain the di�erence between neutrino and muon data, as given in
Figure 3 of Boros et al. The dashed line is the strange sea quark distribution in
the nucleon [xs(x)] as measured by the CCFR collaboration using dimuon events
produced in neutrino nucleon interactions. The solid line is our parametrization at
Q2 = 4 (GeV=c)2 as described in the text. The dot-dashed line is our parametriza-
tion when evolved to Q2 =M2

W .

means that the sum of u and d sea distributions for protons and neutrons is the

same. Within the assumption that �(x) = Æd(x) = �Æu(x), we use two models

to parametrize the range of allowed changes in PDFs to introduce the proposed

charge symmetry violations.

In Model 1, it is assumed that the standard PDF parametrizations are dom-

inated by neutrino data and therefore represent the average of the d and u sea

quark distributions. Therefore, half of the CSV is introduced into the u sea quark

distribution and half of the e�ect is introduced into the d sea quark distribution

such that the average of the d and u sea quark distributions is unchanged.

up(CSV ) = up ��(x)=2;
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d
p
(CSV ) = d

p
+�(x)=2;

un(CSV ) = un ��(x)=2;

d
n
(CSV ) = d

n
+�(x)=2: (6.12)

In Model 2, it is assumed that standard PDFs are dominated by muon scattering

data, and therefore are good representation of the 2/3 charge u quark distribution.

In this model, the entire e�ect is introduced into the d sea quark distribution as

follows;

up(CSV ) = up;

d
p
(CSV ) = d

p
+�(x);

un(CSV ) = un;

d
n
(CSV ) = d

n
+�(x): (6.13)

Model 2 would change the total quark sea.

In order to have a precise test for the CSV e�ect, all PDFs have to be re�tted

based on the above two models. However, the ratio of d and u distribution will be

almost the same whether we re�t the PDFs or not. The d=u ratio which has been

extracted from F n
2 =F

p
2 measurements (assuming charge symmetry) is in fact the

quantity un=up which does not have any sensitivity to the proposed CSV e�ect.

In order to test for CSV e�ects, measurements of dp=up or dn=un are required.

Therefore, the CDF measurements of the W charge asymmetry in pp collisions

provide a unique test of CSV e�ects, because of the direct sensitivity of these data

to the d=u ratio in the proton (note that the d and u quark distributions at small

x are dominated by the quark-antiquark sea). We now proceed to show that these

implementations of CSV in the nucleon sea are ruled out by the CDF W charge
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asymmetry measurements at the Tevatron.

The CDF W asymmetry data

At Tevatron energies, W+ (W�) bosons are produced in pp collisions primarily by

the annihilation of u (d) quarks in the proton and d (u) quarks from the antiproton.

Because u quarks carry on average more momentum than d quarks [43], the W+

bosons tend to follow the direction of the incoming proton and the W� bosons'

that of the antiproton. The charge asymmetry which is observed in the production

of W bosons as a function of rapidity (yW ) is therefore related to the di�erence

in the u and d quark distributions, and is roughly proportional [44, 45] to the

ratio of the di�erence and the sum of the quantities d(x1)=u(x1) and d(x2)=u(x2),

where x1 and x2 are the fractions of the proton momentum carried by the u and

d quarks, respectively. (Note that the quark distributions in the proton are equal

to the antiquark distributions in the antiproton). At large rapidity, x1 is larger

than 0.1, which is a region where CSV e�ects do not exist (i.e. the valence quark

region). On the other hand x2 is in general less than 0.1, and a 25% to 50% CSV

e�ect would imply a very large e�ect on the W asymmetry. Since the W charge

asymmetry is sensitive to the d=u ratio, it does not matter if the CSV e�ects at

small x are present in either d or u sea quark. All of these models would result in

a similar change in the measured W charge asymmetry.

Experimentally, the W rapidity is not determined because of the unknown

longitudinal momentum of the neutrino from the W decay. What is actually

measured by the CDF collaboration is the lepton charge asymmetry which is a

convolution of theW production charge asymmetry and the well known asymmetry

from the V -A decay of the W . The two asymmetries are in opposite directions

and tend to cancel at large values of rapidity. However, since the V -A asymmetry
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Figure 6.8: The CDF W Asymmetry data. The solid line is the prediction from
the standard CTEQ4M PDF(CSV=0). The dashed-dotted line is the CTEQ4M
PDFs modi�ed for larger d quark distribution at large x as proposed by Yang and
Bodek(CSV=0). The dashed and dotted lines are predictions from the CTEQ4M
PDFs modi�ed to include the Boros et al. charge symmetry violation in the quark
sea as described in the text. All theoretical predictions are calculated in NLO
QCD using the DYRAD program.

is well understood, the lepton asymmetry is still sensitive to the d=u ratio. The

lepton charge asymmetry is de�ned as:

A(yl) =
d�+=dyl � d��=dyl
d�+=dyl + d��=dyl

; (6.14)

where d�+ (d��) is the cross section for W+ (W�) decay leptons as a function of

lepton rapidity, with positive rapidity being de�ned in the proton beam direction.

The CDF data [41] shown in Figure 6.8 span a broad range of lepton rapidity

(0:0 < jylj < 2:2), and provide information about the d=u ratio in the proton over

the wide x range (0:006 < x < 0:34). Therefore, the CDF W asymmetry data

provide a strong tool to test CSV models over a broad range of x, and not just in

part of the range proposed in the Boros et al. model.
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Comparison of CSV models with the CDF W Asymmetry

data

Also shown in Figure 6.8 (solid line) are the predictions for the W lepton charge

asymmetry from QCD calculated to Next-to-Leading-Order (NLO) using the pro-

gram DYRAD [46], with the CTEQ4M PDF parametrization for the d and u

quark distributions in the proton ( we have used CTEQ4 because it is the PDF

set that has been used by Boros et al. in their paper ). As pointed out by Yang

and Bodek [30], the small di�erence between the data and the prediction of the

CTEQ4M PDF at high rapidity is because the d quark distribution is somewhat

underestimated at high x in the standard PDF parametrizations. The predictions

of the CTEQ4M PDF with the proposed modi�cations by Yang and Bodek are

shown as the dashed-dotted line in the �gure.

The two dotted lines in Figure 6.8 show the predicted W lepton charge asym-

metry for the CTEQ4M PDFs with the proposed Boros et al. charge symmetry

violation in the sea for Model 1 and Model 2, respectively. The CDF W data

clearly rule out these models.

Most striking in this analysis is the broad range of lepton rapidity over which

this disagreement occurs with the CSV models. This is suggestive that models of

this class would be ruled out over a broad range of x, and not just in part of the

range proposed in the Boros et al. model. This measured average asymmetry for

the data is 0:087� 0:003. This value is to be compared with the predicted average

asymmetries (weighted by the same errors as the data) of 0.094, 0.125, and 0.141

for the CTEQ4M PDFs, for CSV Model 1, and CSV Model 2, respectively. If

we only accept PDFs which are within two standard deviations of the CTEQ4M

PDF, then the W lepton charge asymmetry data rule out these two models with
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CSV e�ects at the level of more than 10 standard deviations. �

6.5 Heavy quark production

Recently, there have been signi�cant developments in the NLO QCD calculation

for heavy quark production in deep inelastic neutrino and charged lepton scattering

experiments. In the neutrino scattering case, the NLO prediction for heavy quark

e�ects is very di�erent from the prediction in leading order. Also, as of a year ago,

there were indications that various theoretical NLO schemes for the calculation of

heavy charm production yielded di�erent results. This strong scheme dependence

was not understood. In this section, we review the various schemes for heavy quark

production in deep inelastic scattering experiments.

The three-
avor Fixed Flavor Scheme (FFS) [47] assumes that there is no

intrinsic charm sea in the nucleon, and all scattering from c quarks occurs via

the gluon-fusion diagram (see NLO in the �gure below). The concept behind the

Variable Flavor Scheme (VFS) proposed by ACOT [48, 49] is that at low scale,

�, one uses the three-
avor FFS scheme, and above some scale, one changes to

a four-
avor calculation, and an intrinsic charm sea (which is evolved from zero)

is introduced. The concept in the TR-VFS [27] scheme is that it starts with the

three-
avor FFS scheme at a low scale, becomes the four-
avor VFS scheme at

high scale, and interpolates smoothly between the two regions. Therefore, at low

scale the TR-VFS scheme should be the same as FFS, and at high scale the TR-

�Boros et al. suggest that it is theoretically expected that �(x) = Æd(x) = �Æu(x), which
means that the sum of u and d sea distributions for protons and neutrons is the same. However,
if this relationship is relaxed, all the charge and 
avor symmetry violation can be put into the
the PDFs for the neutron only. Preserving Fn

2
one can propose the following relations:

up(CSV ) = up; un(CSV ) = un � 2�(x)=5; d
p

(CSV ) = d
p

; d
n

(CSV ) = d
n

+ 8�(x)=5. In this
model, the total neutron sea is much larger than the proton sea, and there is a very large 
avor
symmetry violation only in the neutron. This cannot be ruled by the CDF W asymmetry data.
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VFS scheme should be the same as VFS. The followings are concise summaries of

the three schemes, and the region of validity and the recommended choice of scale

(�) for each scheme.

LO NLO SUB

+ -

Fixed Flavor Scheme

Fixed Flavor Scheme [FFS]: In this scheme there is no heavy quark sea inside the

proton. The scattering from heavy quarks occurs only though the NLO gluon

fusion diagram above (FFS is valid for Q � mc) [in the FFS scheme the proposed

scale is � = 2mc].

Variable Flavor Scheme

Variable Flavor Scheme [ACOT-VFS]: In this scheme there is a heavy charm quark

sea inside the proton (shown as the LO diagram in the �gure). In this calculation,

one sums the LO diagram with the NLO gluon fusion diagram. However, since

the co-linear NLO gluon diagram is included in the QCD evolution of the intrinsic

heavy charm quark sea, one must have a subtraction term to correct for the double

counting in the co-linear case. i.e. LO + NLO - SUB ( ACOT-VFS is valid

for Q � mc region) [in the ACOT-VFS scheme the initial proposed scale was

� = 2Pmax
t , but in a later publication ACOT proposed a much lower scale].
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Modi�ed Variable Flavor Scheme

Thorne-Robert Variable Flavor Scheme [TR-VFS]: This scheme is a linear combi-

nation of the above two schemes, with an interpolation between the two regions.

i.e. FFS(Q � mc) + VFS(Q > mc) [in the TF-VFS scheme the proposed scale is

� = Q].

Scheme Dependence on Charm Production

� The theoretical scheme dependence of the calculations for F2 and xF3 in

charm production was large up to April, 2000. (i.e. the results from the

various calculations were signi�cantly di�erent.)

� This implied in a large error in the extraction of the inclusive structure

function F2, because of the sensitivity to the �xF3 correction term (that

was calculated from theory). Note that higher input value for �xF3 leads to

a smaller value of the extracted F2 structure function.

6.6 Physics model independent (PMI) approach

In previous extractions of the structure functions in CCFR, a leading order slow

rescaling correction to account for the e�ect of the �nal state mass of the charm

quark was applied. In addition, the �xF3 correction was calculated using the

CCFR LO QCD model. However, as mentioned in the previous section, as re-

cently as last year, there were di�erences in the various charm production NLO

calculations [39, 27, 49, 50]. This implied that there were large theoretical un-

certainties in the modeling of charm production for both the �xF3 and the slow

rescaling corrections. Therefore, the previous extracted structure functions were
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Figure 6.9: Scheme dependence of F2(sc) and xF3(sc) in heavy charm production
NLO models.

Physics Model Dependent (PMD). We will refer to structure functions extracted

with model corrections as PMD structure functions. PMD structure functions are

not physical observables. Rather, they are the structure functions that would have

been seen (if the model corrections are valid) in a world in which the charm quark

�nal state mass is zero.

Note that in the case of muon scattering, the �xF3 term, which in leading order

' 4x(s � c), is not present. Additionally, there is no suppression for scattering

from s quarks in muon scattering. Therefore, the structure function as measured

in muon scattering are physical observables and are independent of any model

assumptions. When comparing to theory, the only sensitivity of the muon data to
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Figure 6.10: The LO BG prediction for F2(mc = 1:3)=F2(mc = 0) in neutrino
scattering. The LO calculation shows a charm mass suppression e�ect in all regions
of x.
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Figure 6.11: The NLO TR-VFS prediction for F2(mc = 1:4)=F2(mc = 0) in neu-
trino scattering. In this NLO calculation there is an enhancement at x = 0:015.
At high values of x there is a charm mass suppression e�ect as seen in the LO
prediction.



130

Figure 6.12: The NLO TR-VFS prediction for F2(mc = 1:4)=F2(mc = 0) in muon
scattering.
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the charm quark mass comes from scattering from the small charm quark sea. In

contrast, in neutrino scattering there is a threshold suppression originating from the

production of heavy c quarks in the �nal state. (for charged current �� interactions

involving s quarks, and also Cabbibo suppressed scattering from d quarks). In

summary, the muon scattering data do not requires these two corrections, while

the extraction of the structure function F2 from neutrino scattering su�ers from

these additional unique complications.

Therefore, in this analysis, we avoid these complications by extracting Physics

Model Independent (PMI) structure functions. These structure functions are ex-

perimental observables, and therefore do not depend on any physics model. Our

basic strategy is to extract both F2 and �xF3 simultaneously without any slow

rescaling corrections directly from the di�erential cross sections as explained below.

The sum of �� and �� di�erential cross sections for charged current interactions

on an isoscalar target is given by:

F (�) �
"
d2��

dxdy
+

d2��

dxdy

#
(1� �)�

y2G2
FME�

= 2xF1[1 + �R] +
y(1� y=2)

1 + (1� y)2
�xF3; (6.15)

where � = 2(1�y)�Mxy=E�
1+(1�y)2+Mxy=E�

is the polarization of the virtual W boson.

Without the slow rescaling correction, the relationships F �
2 = F �

2 and R� =

R� are no longer valid in principle. This makes it diÆcult to extract structure

functions. However, practically speaking, the di�erences in the structure functions

F2 and R between neutrino and antineutrino scattering are at the level of 1 � 2%

(and only in the low x region). Therefore, using equation 6.15, we can safely

extract three structure functions, F2 = (F �
2 +F �

2 )=2, �xF3, and R for any given x

and Q2 bin, by assuming R� = R�. However, unless the full range of y is covered
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Figure 6.13: (a) Contributions of 2xF1, R, and �xF3 to F (�). As is shown in the
�gure there is a strong correlation between R and �xF3. (b) Comparison of �xF3

and R as a function of x

by the data, it is very diÆcult to �t the three structure functions F2, �xF3, and

R simultaneously using the F (�) (or y dependent) distribution. This is because

of the strong correlation between the �xF3 and R terms. Figure 6.13 show each

of the contributions of 2xF1, �xF3, and R to F (�), which clearly illustrates the

positive correlation between �xF3 and R. In this plot the value of F2 corresponds

to F (�) at � = 1 (or y = 0). Covering this range in y (especially the high y

region) is diÆcult because of the low acceptance for wide angle low energy muons.

Therefore, we restrict the analysis to two-parameter �ts.

The size of the �xF3 contribution to F (�) is larger than the contribution of

R for x < 0:1, as shown in Figure 6.13(b). Figure 6.13(b) shows a comparison

of the prediction for �xF3 using the CCFR LO QCD model, and the prediction

for R using the parametrization Rworld [24] (a QCD inspired empirical �t to all

available data on R from electron- and �-scattering experiments). Therefore, our

strategy is to �t both �xF3 and 2xF1 (or equivalently F2) by constraining R using

R
�=e
world in the x < 0:1 region (where the �xF3 contribution is large compared to

the contribution from R). The R
�=e
world �t is also in good agreement with NMC R�

data [51] at low x, and with the most recent NNLO QCD calculations (including
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target mass e�ects) [30, 31] of R by Bodek and Yang. In the x < 0:1 region,

R in neutrino scattering is expected to be somewhat larger than R for muon

scattering because the production of massive charm quarks in the �nal state has a

large longitudinal contribution. A correction for this di�erence is applied to R
�=e
world

using a leading order slow rescaling model to obtain an e�ective R for neutrino

scattering, R�
eff , as described in Chapter 4. The di�erence between R

�=e
world and

R�
eff is used as a systematic error. Because of the positive correlation between R

and �xF3, the extracted values of F2 are rather insensitive to the input value of R.

If a large input R is used, a larger value of xF3 is extracted from the y distribution,

thus yielding the same value of F2. In contrast, the extracted values of �xF3 are

sensitive to the assumed value of R, which is re
ected in a larger systematic error

in �xF3.

In the x > 0:1 region, the contribution from �xF3 is small and the extracted

values of F2 are less sensitive to �xF3. Therefore, we extract values of F2 with

an input value of R and with �xF3 constrained to the NLO TR-VFS (MRST99)

predictions. As in the case of the two-parameter �ts for x < 0:1, no corrections

for slow rescaling are applied.

It should be noted that before the structure functions are extracted from the

raw di�erential cross sections, the raw di�erential cross sections are corrected for

electroweak radiative e�ects, the W boson propagator, and for the 5.67% non-

isoscalar excess of neutrons over protons in an iron target. The electroweak radia-

tive corrections are calculated using the Bardin formalism as described in chapter

4. The correction for the W boson propagator is negligible. The non-isoscalar

target correction is only important in the high x region where d=u is substantially

di�erent from 1, as shown in Figure 6.14. This correction does not depends on

y. After these corrections, the neutrino and anti-neutrino di�erential cross section

data (which are binned in di�erential cross sections bins, i.e. in x, E�, and y bins)
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Figure 6.14: Non-isoscalar target correction at E� = 150 GeV: The curve is the ra-
tio of di�erential cross sections for an isoscalar and a non-isoscalar iron target. The
left plot is for neutrino scattering, and the right plot is for antineutrino scattering.

are rebinned to re
ect structure function bins (in x, Q2, and y bins) as shown in

Table 6.1. The structure function bins use the same y bins, but the bins in E� are

converted to Q2 bins.

Figure 6.15 shows a global 
ow chart of the structure function analysis leading

to raw di�erential cross sections followed by extraction of structure functions.

Figure 6.16 schematically describes the two paths in the analysis which lead to

PMD and PMI structure functions, respectively.
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Figure 6.15: Flow chart of the structure functions analysis leading to raw di�er-
ential cross sections followed by extraction of structure functions
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Figure 6.16: The two paths in the analysis which lead to PMD and PMI structure
functions, respectively.
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Table 6.1: Upper limits of bins used in the structure function analysis. The bin
number, 0 de�nes a lower limit of the �rst bin.

Bin number x log10Q
2 (GeV2)

0 .00 -.52
1 .03 -.16
2 .06 .00
3 .10 .20
4 .15 .40
5 .20 .60
6 .25 .80
7 .30 1.00
8 .40 1.20
9 .50 1.40
10 .60 1.60
11 .70 1.80
12 2.00
13 2.20
14 2.40
15 2.60
16 2.80
17 3.00

6.7 Systematic check on the shape of the 
ux

The extraction of �xF3 from the data requires a good understanding of the y

distribution for each x and Q2 bin. Therefore, the energy dependence of the

neutrino 
ux (� y dependence) is very important and needs to be well understood.

The �xF3 analysis is insensitive to the absolute normalization.

The uncertainty in the energy dependence of the 
ux is estimated by using the

constraint that F2 and xF3 should be 
at over y (or E�) for each x and Q2 bin.

A global �t to extract 
ux adjustment factors is performed, by requiring that F2

and xF3 are 
at over all available neutrino energy bins for each x and Q2 bin.
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Any dependence on E� is absorbed in the 
ux adjustment factor. In this �t, the

average values of F2(x;Q
2; E�) and xF3(x;Q

2; E�) over all E� are kept constant in

order to maintain the overall absolute normalization level of the 
ux.

However, the extraction of F2 from the sum of neutrino and antineutrino dif-

ferential cross sections depends on �xF3 and R. In contrast, the extraction of xF3

from the di�erence of the neutrino and antineutrino di�erential cross sections does

not depend on �xF3 and R. Therefore, only a subset of F2(x;Q
2; y) data with

y < 0:5 is used in this global �t for the 
ux adjustment factors. This is done in

order to remove any bias due to the �xF3 and R contributions which are mainly

important in the high y region. The LO prediction for �xF3 and Rworld are used

for the F2 extraction in the low y region. In the case of xF3, all of available E�

bins are used in this �t.

Figure 6.17 shows some of the xF3 data as a function of y for given x and Q2

bins, before the global �ts to extract the 
ux adjustment factors. Any y (or E�)

dependence is absorbed in the 
ux adjustment factor. Figure 6.18 shows the results

for the 
ux adjustment factors for neutrino (top) and antineutrino (bottom) data

from the global F2 and xF3 analysis. The 
ux adjustment factors are consistent

with 1.0 within an uncertainty of a few percent. These 
ux adjustment factors are

applied to the relative 
ux which has been determined from the �xed-� method.

The di�erence in the extracted values of F2 and �xF3 is treated as a systematic

error originating from the uncertainty in the energy dependence of the 
ux.

6.8 �xF3 results from PMI approach

In 1999, we have found that the published KLS implementation of the ACOT-

VFS scheme gave di�erent result from that of the ACOT implementation. We

discovered that the reason was that KLS calculation neglected to include the e�ect
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Figure 6.17: Extracted xF3 data as a function of y for a few x and Q2 bins, prior
to any 
ux adjustment factors

of the intrinsic charm sea component in the VFS scheme. After we discovered the

error in the KLS implementation, the results of the KLS implementation were not

included in our estimate of the theoretical errors. In another study we have found

that the theoretical calculation of TR-VFS(MRST99) scheme and ACOT-VFS

scheme also gave di�erent results for �xF3. Our investigation indicated that the

ACOT-VFS original suggested scale (2Ptmax) was unreasonably high for the low x

region. In a later publication, ACOT recommended a lower choice of scale, which

gave more reasonable results. In parallel, we discovered that there was a mistake
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Figure 6.18: Final 
ux adjustment factors as a function of E� from a global F2

and xF3 
atness analysis. These are consistent with 1.0 at the few percent level.

in the TR-VFS (MRST99) code (they used a variable Xsi instead of x in one of the

coded equations for xF3. Once this error was corrected, the TR-VFS(MRST99)

and the ACOT-VFS with a reasonable choice of scale gave similar results. The

end result that although in 1999 the three di�erent calculations gave very di�erent

results, by May of 2000, (after all mistakes were �xed) all the schemes gave similar

results if a reasonable choice of scale is used in each of the calculations.

Because of the limited statistics, we use large bins in Q2 in the extraction
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Figure 6.19: �xF3 data as a function of x compared with various theoretical
schemes for massive charm production: TR-VFS(MRST99) (both November 1999
and May 2000 version), ACOT-VFS(CTEQ4HQ), FFS(GRV94), and the CCFR-
LO (a leading order model with a slow rescaling correction). After the error in the
TR-VFS code was �xed and a reasonable scale used in the ACOT formalism, all
the calculations give similar results.

of �xF3 with bin centering corrections from the NLO Thorne & Roberts Variable

Flavor Scheme (TR-VFS) calculation with the MRST(99) PDFs. Figure 6.19 shows

the extracted values of �xF3 as a function of x, including both statistical and
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systematic errors, compared to various theoretical methods for modeling heavy

charm productions within a QCD framework. Shown are the predictions from the

TR-VFS scheme (as corrected after DIS-2000 and implemented with MRST PDFs),

with their suggested scale � = Q. Also shown are the predictions of the other two

NLO calculations, ACOT-VFS (implemented with CTEQ4HQ [52] using the recent

ACOT [48] suggested scale � = mc for Q < mc, and �
2 = mc

2+ cQ2(1�mc
2=Q2)n

for Q < mc, with c = 0:5 and n = 2. The FFS calculation has been implemented

with the GRV94 [29] PDFs and with the GRV94 recommended scale � = 2mc. Also

shown is the prediction �xF3 ' 4Ks(x;Q2) from a leading order model (LO-BG)

Buras-Gaemers type �t to the CCFR dimuon [53] data (here K is a slow rescaling

correction). Figure 6.20 (right) also shows the sensitivity to the choice of scale.

The data do not favor the ACOT-VFS(CTEQ4HQ) predictions if implemented

with an earlier suggested scale of � = 2Ptmax. With reasonable choices of scale,

all the theoretical models yield similar results. However, at low Q2 our �xF3 data

are higher than all the theoretical models. The di�erence between data and theory

may be due to an underestimate of the strange sea at low Q2, or from missing

NNLO terms. Note also that because of the anti-correlation between the input

value of R and the extracted value of �xF3, a smaller assumed value for R would

also yield better agreement between the data and theory for �xF3. The extraction

of R from the CCFR cross section data (with input �xF3 values from the models

discussed above) is presented in Chapter 7.

6.9 F2 results from PMI approach

The extracted values of the structure function F2(PMI) are shown in Figure 6.21.

The LO prediction using the BG model is also shown.

In order to compare the PMI F2 results with charged lepton scattering data, we
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Figure 6.20: Various uncertainties in the theoretical prediction of �xF3 due to
di�erent choices of scheme, scale, and PDFs. Note that the TR-VFS calculation of
Nov, 1999 had an error which was �xed in the May 2000 version. In addition, the
original ACOT recommended scale of 2Ptmax is too high and should not be used.

compare the following two quantities. 1. F �
2 (data)/theory(�) versus F

�
2 (data)/theory(�),

and 2. F �
2 (data)/F

�
2 (data) versus theory(�)/theory(�). Figure 6.22 shows our F2

(PMI) measurements divided by the predictions from the TR-VFS(MRST) the-

ory. Also shown are F �
2 and F e

2 from the NMC [15]and SLAC [54] experiments

divided by the theory predictions. Figure 6.23 also shows the ratio of our F �
2

(PMI) measurements divided by (18=5)F �
2 (NMC [15] or BCDMS [55]) or (18=5)F e

2
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Figure 6.21: The F �
2 (PMI) results as a function of Q2 for various x bins. The LO

model (solid) is also shown for comparison.
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(SLAC [54]) measurements. The overall normalization errors of 2% (CCFR), and

3% (NMC) are not shown. Within 5%, the ratios are in agreement with the pre-

dictions of the TR-VFS (MRST99), ACOT-VFS (CTEQ4HQ), and FFS (GRV94)

calculations. In the calculation of the QCD TR-VFS(MRST) predictions, we have

also included corrections for nuclear e�ects [26], target mass, and higher twist cor-

rections [30] (which are important at low values of Q2). As seen in Figure 6.22 and

�gure 6.23, both the CCFR and NMC structure functions are in good agreement

with the TR-VFS(MRST) predictions, and therefore in good agreement with each

other. A comparison using the ACOT-VFS(CTEQ4HQ) predictions yields similar

results.

As mentioned earlier, the extracted values of F2 from the two-parameter �ts

are insensitive to R. For example, if we reverse the process and perform simulta-

neous two-parameter �ts to F2 and R (while keeping �xF3 �xed to the TR-VFS

(MRST99) values), the extracted R values at x = 0:01 are smaller, but the ex-

tracted F2 values change by only 2 � 3%.

6.10 Comments on the relations of F �
2 , F�, and

�xF3

We have learned that it is a very diÆcult to convert the structure function, F2

measured in neutrino scattering to an equivalent F2 measured in muon scattering.

This is because any processes which are related to the production of heavy charm

quarks in the �nal state are very di�erent in the two cases.

The conventional method of using the \5/18" rule cannot be used unless we

understand the di�erence in heavy charm productions between neutrino and muon

scattering. The leading order equation relating the two cases is given in Equa-
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Figure 6.22: The ratio (data/theory) of the F �
2 (PMI) data divided by the predic-

tions of the TR-VFS(MRST) theory (with nuclear, target mass and higher twist
corrections). Both statistical and systematic errors are included. Also shown are
the ratios of the F �

2 (NMC) and F e
2 (SLAC) to the TR-VFS(MRST) predictions.
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Figure 6.23: The ratio of F �
2 (PMI) data divided by F �

2 (NMC or BCDMS) or
F e
2 (SLAC). Both statistical and systematic errors are included. Also shown are

the predictions of the TR-VFS (MRST99), ACOT-VFS (CTEQ4HQ) and FFS
(GRV94) heavy 
avor calculations.
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Figure 6.24: The ratio of the previous F �
2 (PMD) data divided by (18=5)F �

2 (NMC
or BCDMS) or (18=5)F e

2 (SLAC). Shown are the predictions of the MRSR2 light-

avor PDFs (the curves with CTEQ4M are very similar). The di�erence between
the data and theory (using the PMD approach) is clearly seen at low values of x.
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tion 6.9. However, the strange quark distribution in this formalism is not a physi-

cally measured quantity. It is a quantity which depends on the scheme and QCD

order of the calculation. Since the F �
2 (PMI) and F� are very di�erent quantities, it

is more meaningful to perform consistency checks, such as comparing data/theory

with various QCD models for both muon and neutrino data.

We note that there may be one way to perform a consistency check without

resorting to any theory. This can be done by using F �
2 (PMI), F�, and �xF3 data.

In the high Q2 region, where heavy charm mass e�ects are negligible, the three

structure functions should be related as follows:

10

3
F �
2 � 12F �

2 = �xF3: (6.16)

All of these quantities are well de�ned. Figure 6.25 shows a comparison of the NLO

light 
avors predictions for the two quantities, 10
3
F �
2 �12F �

2 and �xF3 at x = 0:015

as a function of Q2. However, the light 
avor calculation does not account for the

charm quark mass. Figure 6.26 shows the same comparison done with the NLO

calculation with the e�ects of the heavy �nal state charm quarks included using

the TR-VFS scheme (with MRST99 PDFs) at the same kinematic region. The

predictions of the calculation which includes the e�ect of the heavy charm quark

mass are sensitive to the input value of the charm quark mass (at low values of

Q2). Therefore, this is a physics model independent test only at very high Q2.

6.11 Evolution from the PMD to PMI

In the previous analysis [16] of the CCFR data, the ratio of the extracted values of

F �
2 (PMD) data divided by (18=5)F �

2 (NMC) at the lowest x = 0:015 and Q2 bin

were 20% higher than the predictions of the light-
avor PDFs such as MRSR2 [56]
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Figure 6.25: Comparison of the NLO light 
avor predictions for 10
3
F �
2 � 12F �

2 and
�xF3 at x = 0:015 calculated using the MRSR2 PDFs

or CTEQ4M (see Figure 6.27). About 10% of the di�erence originates from having

used a leading order model for �xF3 versus using our new measurement. Another

6% originates from having used the leading order slow rescaling corrections, instead

of using NLO massive charm production models. The remaining 3% originates from

improved modeling of the low Q2 PDFs (which changes the radiative corrections

and the overall absolute normalization to the total neutrino cross sections), as

discussed in chapter 4. For higher Q2 at x = 0:015, and for the next two higher x

bins (x = 0:045 and 0:08), the smaller di�erence between the PMI and PMD results

is due to equal contributions from these two e�ects (�xF3 and the di�erence in

the slow rescaling corrections). For the higher x bins (x > 0:1), the contribution

of �xF3 is small, and the slow rescaling corrections in the leading order model are

the same as those with the NLO theories. Therefore, the NMC and CCFR data
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Figure 6.26: Comparison of NLO TR0-VFS predictions 10
3
F �
2 � 12F �

2 (solid) and
�xF3 (dashed) predictions with MRST99 PDFs at x = 0:015, the di�erence be-
tween solid and dashed line is very sensitive to the input charm quark mass

are in agreement at large x whether PMI or PMD structure functions are used in

the comparison.

6.12 Conclusions

In conclusion, the F2 (PMI) values measured in both neutrino-iron and muon-

deuterium scattering are in good agreement with the predictions of Next to Leading

Order PDFs (using massive charm production schemes), thus resolving the long-

standing discrepancy between the two sets of data. The the F2 (PMI) values are

insensitive to the assumed value for R.

The �rst measurements of �xF3 are higher than current theoretical predictions.

The di�erence between data and theory for �xF3 may be due to an underestimate
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Figure 6.27: The ratio (data/theory) of the previous F �
2 (PMD) data (and also

F �
2 (NMC) and F e

2 (SLAC)) divided by the predictions of the MRSR2 light-
avor
PDFs (with nuclear, target mass and higher twist corrections).

of the strange sea at low Q2, or from missing NNLO terms. Alternatively, since

�xF3 is sensitive to R, using a smaller value of R can lead to better agreement
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between data and theory for �xF3. The extraction of R from the CCFR cross

section data (with input �xF3 values from the models discussed above) is presented

in Chapter 7.
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Chapter 7

R Analysis

7.1 Introduction

The ratio of the longitudinal and transverse structure functions R = FL=2xF1 in

deep inelastic lepton-nucleon scattering provides information about the transverse

momentum and spin of the nucleon constituents. Within the theory of quantum

chromodynamics (QCD), the nucleon constituents are spin 1/2 quarks and spin 1

gluons. In leading order QCD, FL for the scattering from spin 1/2 constituents

(e.g. quarks) is zero because of helicity and angular momentum conservation, while

FL for the scattering from spin 0 or spin 1 constituents is large. The small value of

R originally measured in electron scattering experiments [57] provided the initial

evidence for the spin 1/2 nature of the nucleon constituents. However, in the next

to leading order formalism (NLO), to �rst order in �s, FL is non-zero because of

�nite transverse momentum associated with gluon emission [82]. The NLO QCD

predictions for R are proportional to �s (and therefore logarithmically falling with

Q2), and depend on integrals of the quark and gluon distributions. A non zero

value of R can also originate from processes involving the production of heavy
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quarks, target mass [12] corrections and higher twist e�ects [30, 31] (eq. non-

perturbative QCD e�ects). Therefore, a precise measurements of R provides a test

of perturbative QCD at large x, and a clean probe of the gluon density at small x

where the quark contribution is small, as well as understanding of non-perturbative

phenomena.

Recently, there has been a renewed interest in R at small values of x and

Q2, because of the large anomalous nuclear e�ect that has been reported by the

HERMES experiment [58] in the low x and Q2 < 1 GeV2 region. They measured

the ratio of the inclusive DIS cross sections on 14N (3He) and 2H, as shown in

Figure 7.1. A signi�cant di�erence between the HERMES data and previous data is

observed for x < 0.06, which corresponds to theQ2 < 1 GeV2 region (at HERMES).

The HERMES collaboration has interpreted this anomalous nuclear dependence

of the ratio of cross sections for 14N (3He) and 2H as evidence for an anomalous

increase in R in heavy nuclear targets in the small x and very small Q2 < 1 GeV2

region.

So far, no experimental evidence for an A-dependence of R has been found[60,

61, 63]. However, all previous experiments have measured the nuclear dependence

of R in the Q2 > 1 GeV2 kinematic region. Indeed, the ratio of the HERMES cross

sections versus � for each x-bins strongly indicates that there is a large nuclear e�ect

in R only below Q2 = 1 GeV2 but a small nuclear e�ect in F2, which means an

enhancement in FL, but a suppression in 2xF1 ( F2 � FL + 2xF1 ).

A large value of R in nuclear targets could be interpreted as evidence for non

spin 1/2 constituents, such as � mesons in nuclei [59]. In this Chapter, we describes

an extraction of R in neutrino scattering on iron (Fe) which extends to low x and

very low Q2. We note that if there is a nuclear enhancement in R for nitrogen, the

e�ect expected to be larger for an iron target.

Previous measurements of R�=e in muon and electron experiment are well de-
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scribed by the R
�=e
world [24] QCD inspired empirical �t. The R

�=e
world �t is also in good

agreement with recent NMC muon data [15] for R� at low x, and with the most

recent theoretical predictions [30, 31] R
�=e
NNLO+TM (a NNLO QCD calculation in-

cluding target mass e�ects). For x > 0:1 it is expected that R� should be the same

as R�=e (and be equal to R
�=e
world and also to R

�=e
NNLO+TM). However, for x < 0:1

and low Q2, R� is expected to be larger than R�=e because of the production of

massive charm quarks in the �nal state. We calculate a correction to R
�=e
world for

this di�erence using a leading order slow rescaling model (Mc = 1:3 GeV) and

obtain an e�ective Rworld for �� scattering (R�
eff ). Our measurements of R� are

compared to R�=e data and also to predictions from R�
eff , R

�=e
world, and R

�=e
NNLO+TM

.

7.2 Measurement of R

As discussed in Chapter 6, the sum of �� and �� di�erential cross sections for

charged current interactions on isoscalar target is given by Equation 6.15:

F (�) �
"
d2��

dxdy
+

d2��

dxdy

#
(1� �)�

y2G2
FME�

= 2xF1[1 + �R] +
y(1� y=2)

1 + (1� y)2
�xF3: (7.1)

Here � ' 2(1� y)=(1 + (1� y)2) is the polarization of virtual W boson.

As is done for the F2 and �xF3 analysis, the raw di�erential cross sections are

corrected for electroweak radiative e�ects [32], the W boson propagator, and for

the non-isoscalar excess of neutrons over protons in iron (only important at high x)

in order to extract R. Values of R (or equivalently FL) and 2xF1 are extracted from

the sums of the corrected ��-Fe and ��-Fe di�erential cross sections at di�erent
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energy bins according to Equation 7.1, which is called as Rosenbluth separation

method. An extraction of R using Equation 7.1 requires a knowledge of �xF3 term,

which in leading order' 4Kx(s�c) (where K is a slow rescaling factor). We obtain

�xF3 from theoretical predictions for massive charm production using the TR-

VFS NLO calculation with the extended MRST and the suggested scale � = Q.

This prediction is used as input to Equation 7.1 in the extraction of R�. This

model yields �xF3 values similar to the NLO ACOT Variable Flavor Scheme[48],

(implemented with CTEQ4HQ [52] and the recent ACOT [48] suggested scale

� =Mc for Q < Mc, and �2 =Mc
2 + cQ2(1�MC

2=Q2)n for Q < Mc with c = 0:5

and n = 2). A discussion of the various theoretical schemes for massive charm

production is given in a previous Chapter 6.

Because of a positive correlation between R and �xF3, the uncertainty of �xF3

play as a major systematic error at low x region. However, the �xF3 term is small

for x > 0:1, and the extracted values of R� are not sensitive to �xF3. For the

systematic error on the assumed level of �xF3, we vary the strange sea and charm

sea simultaneously by �50 % (�xF3 is directly sensitive to the strange sea minus

charm sea). Figure 7.3 shows the variation of �xF3 from a �50 % changes in the

level of the strange and charm seas. Note that te extracted value of R is larger for

a larger input �xF3 (i.e. a larger strange sea).

A standard Rosenbluth separation is performed at �xed x and Q2 from di�erent

incident neutrino energies (i.e. di�erent y). Figure 7.2 shows typical Rosenbluth

separation plots for a few representative values of x andQ2. The extracted values of

R� are sensitive to the energy dependence of the neutrino 
ux (� y dependence),

but are insensitive to the absolute normalization. The uncertainty on the 
ux

shape is estimated by using the constraint that F2 and xF3 should be 
at over y

(or E�) for each x and Q2 bin, as discussed in Section 6.8.

The extracted values of R� are shown in Figure 7.4 for �xed x versus Q2. The
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inner error bars include both statistical and experimental systematic errors added

in quadrature, and the outer error bars include the additional �xF3 model errors

(added linearly). At the very lowest Q2 values, the model error is reduced because

all models for �xF3 approach zero around Q2 = 0:4. This is because the strange

quark distribution is expected to approach zero for Q values close to twice the

mass of the strange quark. In addition, the very low Q2 region is below charm

production threshold. Note that the very low Q2 and low x region is of particular

interest because this is the region where HERMES reports an anomalous increase

in Re for nuclear targets.

The CCFR R� values are in agreement with measurements of R�=e [24, 51, 62,

63, 64], and also in agreement with both the R
�=e
world and R

�
eff �ts, as well as with the

R
�=e
NNLO+TM QCD calculation (with NLO PDFs). Note however that very recently,

a calculation of R including both NNLO terms and estimates of NNLO PDFs has

been published [65]. They report large uncertainties in FL from the NNLO gluons

at low x for Q2 < 5 GeV2. Speci�cally, for Q2 = 2 GeV2 and 0:001 < x < 0:01 the

NNLO calculation with NNLO PDFs results in a dip in FL with FL approaching

zero. (It is interesting that there is also a dip in our measured values of R for

x=0.019 and Q2 = 3 GeV2). However, for Q2 < 2 GeV2 and 0:001 < x < 0:01

the NNLO calculation with NNLO PDFs also yields an unphysical negative value

for FL, which implies large uncertainties in the calculation. At the very lowest Q2,

R� does not appear to approach zero as Q2 ! 0 as expected for R�=e. Note that

unlike the vector component in �� scattering, FL for the axial component is not

required approach zero as Q2 ! 0.

Also shown are the HERMES electron scattering results with nitrogen at low

values x. The HERMES data [58] for Re
N14 are extracted from their ratios for

RN14=R1998 by multiplying by the values from the R1998 �t [62]. The CCFR data

do not clearly show a large anomalous increase at very low Q2 and low x. It is
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expected that any nuclear e�ect in R would be enhanced in the CCFR iron target

with respect to the nitrogen target in HERMES. However, depending on their

origin, nuclear e�ects in electron versus �� charged current scattering could be

di�erent.

The CCFR measurements of R, FL and 2xF1 as a function of Q2 for x < 0:05

are shown in Figure 7.5. The curves are the predictions from a QCD inspired

leading order �t to the CCFR di�erential cross section data with R= R�
eff . The

extracted values at the very lowest x and Q2 do not clearly show any anomalous

deviations from the �t.

7.3 Conclusions

In conclusion, over the x and Q2 range where perturbative QCD is expected to

valid, R� is in good agreement R�=e data, and with the NNLO QCD calculation

including target mass e�ects. At very low Q2 R� does not appear to approach

zero as expected for R�=e. However, a very large nuclear enhancement in R (as

reported by the HERMES experiment for electron scattering on nitrogen) is not

clearly observed in ��-Fe scattering.
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Figure 7.1: HERMES data: Ratio of cross sections for inclusive deep-inelastic
electron scattering on a heavy nuclear target (A = nitrogen, carbon, or helium)
and deutrium (D) versus x.
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Figure 7.2: Typical Rosenbluth separation plots for representative values of x and
Q2.
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Figure 7.3: The variation of the �xF3 values predicted by the NLO TR-VFS
calculation (with MRST PDFs) for a simultaneous �50 % change in the level of
the strange and charm sea quark distributions in the nucleon.
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Figure 7.4: CCFR measurements of R� as a function of Q2 for �xed x, com-
pared with electron and muon data. Also shown are R

�=e
world and R�

eff (mc = 1:3)

parametrizations, and the R
�=e
NNLO+TM QCD calculation. The error inner error bars

include statistical and experimental systematic errors added in quadrature, and the
outer error bar includes the �xF3 model error (added linearly). Also shown are
the HERMES results for Re

N14 at small x and low Q2.
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Figure 7.5: CCFR measurements of R (a), FL (b) and 2xF1 (c) data as a function
of Q2 for x < 0:05. The curves are the predictions from a QCD inspired leading
order �t to the CCFR di�erential cross section data with R= R�

eff .
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Chapter 8

Parton distributions at high x

8.1 Introduction

Recent work on parton distributions functions (PDFs) in the nucleon has focused

on probing the sea and gluon distribution in small x region, since the HERA

lepton-proton collider opened a new kinematic region at small x. Previously, the

valence quarks distribution has been thought to be relatively well understood.

However, the precise knowledge of the u and d valence quark distribution at high

x has become very important for high energy hadron colliders experiments, which

search for new physics signals at high Q2. High Q2 events mainly originate from

high x valence quarks scattering. Therefore, the interpretation of both the initial

ZEUS/H1 high Q2 anomaly [66] and the jet excess at high-Pt reported by CDF [67],

depends on precise knowledge of the parton distribution functions at high x. In

addition, the ratio of the quark distributions d=u at x = 1 is of great theoretical

interest.

In the QCD evolution equations, the valence quark distribution at high x and

low Q2 evolve to lower values of x and higher Q2. Therefore, a precise determina-
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tion of the valence quark distribution at high x and high Q2 requires an excellent

understanding of the distribution in the very high x and low Q2 region. Recently,

a proposed CTEQ \Toy Model" [68] showed that an additional 0.5% u quark be-

yond x > 0:75 at Q2=2.5 could help explain both the HERA high Q2 and CDF

high-Pt jet data, because of the e�ect of the QCD evolution. Thus, it is very im-

portant to understand valence quark distribution at very high x region. However,

most of data which could pin down the valence quark distribution are in the low

Q2 region. An extraction of the valence quark distributions from low Q2 data is

diÆcult, because it involves corrections for non-perturbative e�ects. Because of

these diÆculties, an extraction of the quark distributions, in the high x and low

Q2 region, has not been done in the standard PDF analyses of the CTEQ, MRST

and GRV collaborations.

Therefore, we have undertaken to investigate the valence quark distributions in

the very high x region, by taking into account non-perturbative e�ects, and using

all available deep inelastic lepton nucleon scattering data.

8.2 Extraction of parton distributions

Parton Distributions Functions (PDFs) are mainly extracted from deep-inelastic

structure functions data measured by lepton-nucleon scattering experiments. High

statistics lepton-nucleon scattering experiments with electrons (SLAC, HERA),

muons (BCDMS, E665, and NMC), and neutrinos (CCFR, CDHSW) have accu-

mulated an impressive amount of structure functions data with di�erent targets

over wide range of x and Q2, as shown in Figure 8.1. Studies were made of the

structure functions of protons, neutrons and heavy nuclear target in e-N, �-N,

and �-N scatterings experiments. In leading order, the structure functions are



166

Figure 8.1: The proton structure function F2 versus Q
2 for various x values. Shown

are data from HERA and from a few �xed target experiments.
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expressed in terms of parton distribution functions as follows:

F lp
2 =

4

9
x(u+ u) +

1

9
x(d+ d) +

1

9
x(s+ s) (8.1)

F ln
2 =

1

9
x(u+ u) +

4

9
x(d+ d) +

1

9
x(s+ s) (8.2)

F �N
2 = x(u+ u) + x(d+ d) + x(s+ s) (8.3)

xF �N
3 = x(u� u) + x(d� d): (8.4)

In the above expressions, the charm sea contribution is ignored, and charge sym-

metry (isospin symmetry) is assumed. Note that from isospin symmetry, the un

quark distribution in the neutron is equal to the dn quark distribution in the pro-

ton. (The convention is that the u and d quark distribution are by de�nition the

quark distributions in the proton).

Basically, F p
2 and F

n
2 provide the information on (u+u) and (d+d), whereas F �

2

and xF �
3 constrain (u+d) and (uv+dv). Knowledge of the strange sea distribution

s(x) comes from studies of charged current charm production neutrino events with

a semi-leptonic charm particle decay to muons (dimuon events). The dominant

process in the production of dimuon events is the scattering from strange quarks

in the nucleon, as discussed in the previous chapter. Finally, the information on

d=u mostly originates from F n
2 =F

p
2 data measured in muon and electron scattering

experiments. At high x, the quantity F n
2 =F

p
2 is directly related to the ratio of

valence quark distributions, dv=uv, by the following equation:

F n
2 (x)

F p
2 (x)

=
1 + 4dv(x)=uv(x)

4 + dv(x)=uv(x)
: (8.5)

The u valence quark distribution at high x is relatively well constrained by

the proton structure function F p
2 in muon and electron scattering, because the

coupling to u quarks is factor of 4 larger than the coupling to d quarks in the
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Figure 8.2: MRS(R2) parton distributions at Q2 = 25 GeV2

proton. Therefore, the d valence quark distribution mainly contributes to the

neutron structure function F n
2 . However, an additional complication arises from

the fact that the neutron structure function F n
2 is actually extracted from deuteron

data, and deuterium data are sensitive to nuclear corrections. Consequently, the

determination of the d valence quark distribution depends on the modeling of

nuclear e�ects in the deuteron. In some extractions of F n
2 from deuteron data,

only Fermi motion corrections have been considered, and other binding e�ects were

assumed to be negligible. In other extractions, all nuclear binding e�ects in the

deuteron have been ignored. Figure 8.2 shows one of the parton distributions set

(MRS(R2)) at Q2 = 25 GeV2 extracted by the MRS group without any corrections

for nuclear binding e�ects in the deuteron. The d=u distribution at Q2 = 25 GeV2

is shown in the Figure 8.3.

In 1996, two experimental data challenged our understanding of the d=u ratio
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Figure 8.3: MRS(R2) d=u distribution at Q2 = 25 GeV2

at high x. The NMC muon experiment published their improved measurement of

F d
2 =F

p
2 without any correction for nuclear e�ects in the deuteron. Ignoring nuclear

e�ects, the F n
2 =F

p
2 ratio is simply extracted by using following relation:

F n
2

F p
2

= 2

 
F d
2

F p
2

!
� 1: (8.6)

Figure 8.4 shows a comparison of NMC F n
2 =F

p
2 data to the NLO prediction using

the MRS(R2) PDFs. The prediction does not include any nuclear corrections, since

the MRS(R2) PDFs have been extracted from proton and deuteron data without

correcting for any nuclear e�ects. The NMC data are not much e�ected by Fermi

motion e�ects, because Fermi motion e�ects are important mostly above x = 0:75
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(and become very large as x approaches 1). Therefore, Figure 8.4 already indicates

that the d=u ratio in the MRS(R2) PDFs is underestimated above x = 0:3. A

similar problem appears in the CTEQ4M PDFs.

The second challenge came from the precise measurement of the CDFW lepton

asymmetry data. The CDF measurements have been extended to the large rapidity

region by using a new charge determination technique (calorimeter-shower-centroid

combined with silcon-vertex-detector tracking). As shown in Figure 8.5, the QCD-

NLO predictions using various standard PDF sets (MRSR [56] and CTEQ3M [69])

overshoot the CDF W lepton charge asymmetry data in the high rapidity region.

As discussed in chapter 6, theW asymmetry data in proton-antiproton collisions is

directly sensitive to the d=u ratio. Furthermore, it is not a�ected by the corrections

for nuclear e�ects in the deuteron. The W decay lepton charge asymmetry, is

related to the original W charge asymmetry A(y) (via the well known asymmetry

from the weak decay of W boson). The W asymmetry, A(y) in the high rapidity

region can be expressed by:

A(y) =
d=u(x1)� d=u(x2)

d=u(x1) + d=u(x2)
: (8.7)

W events in the high rapidity region correspond to the interactions of high x

partons with low x partons. Thus, the CDF W asymmetry data strongly indicate

that that d=u in the intermediate x region (around 0.2 to 0.3) should be increased

or that d=u in the very small x region (around 0.01) should be decreased. Since

the d=u ratio at small x is well understood, the more realistic explanation is an

underestimated d=u at higher values of x. However, we cannot just increase d=u at

higher x to �t the W asymmetry data. We must make sure that d=u also describes

the experimental F p
2 and F n

2 data. One solution would be to determine if there is a

way to increase the experimentally extracted F n
2 values from the deuterium data.
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Figure 8.4: Comparison of NMC F n
2 =F

p
2 and the NLO prediction using the

MRS(R2) PDFs. No nuclear e�ects were used in the extraction of the neutron
structure function from the deuteron data.

Figure 8.5: Comparison of the CDF W asymmetry data with NLO predictions as
function of the lepton rapidity
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An increased d=u at high x, would then also describe both F p
2 and the higher F n

2

data.

We now proceed to investigate if applying corrections for nuclear binding e�ects

in the deuteron would result in a change in the extracted F n
2 values. Evidence for

a large nuclear binding e�ect in the deuteron has been reported by SLAC electron

scattering experiments E139/140.

8.3 Nuclear e�ects in the deuteron

The SLAC E139/140 experiments extracted values for the nuclear binding e�ects

in the deuteron using an empirical nuclear density model proposed by Frankfurt

and Strikman [70]. In this model, the nuclear e�ects in a nucleus scale with nuclear

density of the heavy nuclei. The nuclear e�ects in the deuteron are then related

to the e�ective nuclear density in the deuteron.

F d
2 =F

n+p
2 � 1

FA
2 =F

n+p
2 � 1

= �d=�A: (8.8)

Here, F n+p
2 represent a free deuteron structure functions, and � is the average

nuclear density. The subscripts d and A refer to a deuteron and a heavy nucleus,

respectively. Since � << �d for heavy nucleus, the equation 8.8 leads to:

F d
2 =F

n+p
2 � FA

2 =F
d
2 � 1

�A=�d � 1
+ 1: (8.9)

All of available electron scattering data on heavy targets (FA
2 =F

d
2 ) from Au to He

show that this empirical formula is valid, as shown in Figure 20 of reference [35].

The SLAC E139/E140 experiments have extracted the e�ective nuclear binding

correction ratio F d
2 =F

n+p
2 from the data by assuming an e�ective nuclear density
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for the deuteron of 0.024 nucleon=fm3. Figure 8.6 shows the extracted empirical

correction for nuclear binding e�ects in the deuteron. It is quite interesting to see

that the behavior is opposite to what is expected from the previous models which

included only Fermi motion e�ects. This surprisingly large correction (up to 4%)

extracted in this empirical way may be controversial, but it is somewhat smaller

than the recent theoretical prediction [71] (dot-dashed line in Figure 8.6(a)). The

theoretical calculation incorporates both binding and o�-shell e�ects within a co-

variant framework in terms of relativistic deuteron wave functions. Near x = 0:6

both the empirical approach and the theoretical calculation are in good agreement

for the value of the corrections for nuclear binding e�ects in the deuteron. The

theoretical calculations were only done for valence quarks which explains the dif-

ference between the theory and the empirical calculations at smaller values of x

(where sea quarks also contribute to the scattering). We parametrize the SLAC

values for the extracted F d
2 =F

n+p
2 deuteron binding e�ects corrections by using a

simple function:

f(x) = (0:9853� 0:0013)� (1 + 0:4222x� 2:7445x2 + 7:5694x3

�10:3349x4 + 5:4222x5): 0:05 < x < 0:75 (8.10)

Outside the 0:05 < x < 0:75 region, this parameterization may be not valid.

8.4 Extraction the d=u ratio at high x

We extract the experimental ratio of \free deuteron" and proton structure function,

F p+n
2 =F p

2 by applying the nuclear binding correction F d
2 =F

n+p
2 to the measured

F d
2 =F

p
2 data. Then, the F n

2 =F
p
2 data are obtained from the corrected F p+n

2 =F p
2

using the relation, F n
2 =F

p
2 = 2F n+p

2 =F p
2 � 1. Figure 8.6(b) shows the extracted
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Figure 8.6: (a) The total correction for nuclear e�ects (binding and Fermi motion)
in the deuteron, F d

2 =F
n+p
2 , as a function of x, extracted from �ts to the nuclear

dependence of SLAC F2 electron scattering data on heavy targets (compared to
a recent theoretical model [6]). Note that the theoretical model only includes
valence quarks and is only expected to be valid at large x. (b) Comparison of
NMC F n+p

2 =F p
2 (corrected for nuclear e�ects) and the predictions in NLO using

standard PDFs, MRS(R2), CTEQ4M. The predictions from the standard PDFs
are below the data.
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(with these nuclear binding corrections) NMC F n
2 =F

p
2 values as a function of x.

As shown in 8.6(b), the standard PDFs (MRS(R2) and CTEQ4M) substantially

underestimate the NMC data above x = 0:2. The deviation becomes larger for

increasing values of x.

The ratio F n
2 =F

p
2 is directly related to d=u, as shown in Equation 8.5. We now

proceed to perform a next-to-leading order (NLO) analysis of the NMC F n
2 =F

p
2

data in order to extract d=u as a function of x.

Since the u distribution is relatively well constrained by the F p
2 data, we de-

termine a correction term to d=u in the standard PDFs (as a function of x), by

only varying the d distribution in order to �t the data. The correction term is

parametrized as a simple quadratic form, Æ(d=u) = (0:1 � 0:01)(x + 1)x for the

MRS(R2) PDF, where the corrected d=u ratio is (d=u)0 = (d=u)+ Æ(d=u) as shown

in Figure 8.7(a). Based on this correction, we obtain a MRS(R2)-modi�ed PDF.

The correction to other PDFs such as CTEQ3M/4M is very similar. Figure 8.7(b)

shows that good agreement between the F n
2 =F

p
2 data (extracted with corrections for

deuteron binding e�ects) and the PDF predictions is achieved if the d=u correction

is applied to the d quark distribution in the MRS(R2) PDFs.

Note that even though all the momentum sum rules are not rigorously conserved

in the current d=u correction, these can be easily recovered with a very minute

change at low x in global PDFs analyses, because the overall level of the d quark

distribution at large x is very small.

We also extract the d=u corrections, Æ(d=u) to the MRS(R2) PDF from SLAC

and BCDMS F d
2 =F

p
2 data (after applying nuclear binding e�ect corrections to the

deuteron data). We �nd out that the extracted Æ(d=u) corrections to the MRS(R2)

PDF using NMC, SLAC and BCDMS data are consistent with each other, as

shown in Fig 8.10(a). However, these additional SLAC, BCDMS F d
2 =F

p
2 data are

not included in the overall d=u correction �t. This is because the SLAC data are in
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Figure 8.7: (a) The d=u correction Æ(d=u) as a function of x that can be used
to correct standard PDFs for the underestimate of the d quark distribution. A
simple parameterization, Æ(d=u) = 0:1x(1 + x) is found to �t this correction, (b)
Comparison of the F n

2 =F
p
2 data and theory before (dot-dash) and after (solid) the

d=u correction. Excellent agreement is achieved by applying the d=u correction to
d quark distribution in the MRS(R2) PDFs (note that the u quark distribution
remains unchanged).



177

the low Q2 region, which may introduce a bias from non-perturbative e�ects. The

BCDMS data are at high Q2, but has larger errors because of a possible problem

at high x from uncertainties in the calibration of their magnetic �eld (as discussed

in a later section).

The W asymmetry data which is independent of any nuclear e�ects in the

deuteron, also show excellent agreement at large rapidity with the DYRAD NLO

QCD calculation using modi�ed PDFs with our correction for d=u, as shown in

Figure 8.9. In the prediction with the modi�ed MRS(R2), the e�ect of the evolution

of Æ(d=u) at high x from Q2 = 16 to Q2 = M2
W GeV2 is not included. This e�ect

is about 10% of the Æ(d=u) correction, which is very small.

8.5 Impact of the d=u correction

The modi�ed d=u distribution at Q2 = 15 GeV2 is shown in Figure 8.10(a). The

extracted d=u values from the CDHSW dv=uv data [72] favor the modi�ed PDFs

at high x as shown in Figure 8.10(a). The CDHSW experiment has measured the

quantity dv=uv from the ratio of neutrino-proton and antineutrino-proton scatter-

ing by using hydrogen target. In neutrino and antineutrino scattering from protons

at high x, neutrinos mainly interact with d quarks and anti-neutrinos interact with

u quarks. This process is not sensitive to any nuclear binding e�ects, since only hy-

drogen target is used. However, the experimental errors are larger because only low

statistics can be obtained with hydrogen targets. The CDHSW dv=uv data have

been converted to d=u by adding the sea contribution using CTEQ4M PDFs. The

corrections at high x are very small, because the contribution from the sea quarks

is negligible. The modi�ed d=u distributions show several interesting behaviors as

discussed below.

Figure 8.10(a) shows that the modi�ed d=u ratio approaches 0:2 � 0:02 as
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Figure 8.8: (a) Comparison of Æ(d=u) corrections to the MRS(R2) PDF. The Æ(d=u)
corrections extracted using the data from di�erent experiments are consistent with
each other. (b)Comparison of F n

2 =F
p
2 obtained from di�erent experiments, SLAC,

BCDMS, and NMC. The standard NLO MRS(R2) prediction is also shown as the
solid line.
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Figure 8.9: Comparison of the CDF W asymmetry data with NLO standard
CTEQ3M, MRS(R2), and modi�ed MRS(R2) as a function of the lepton rapidity.
The standard CTEQ3M with a soft gluon resummation calculation is also shown
for comparison.

x ! 1, whereas the d=u ratio as implemented in standard PDFs goes to zero. In

the extraction of standard PDFs, nuclear binding e�ects in deuteron have not been

taken into account. In addition, the functional form that was used was such that

d=u was constrained to go to zero at x = 1. The above d=u ratios imply that the

NLO prediction for F n
2 =F

p
2 with the modi�ed MRS(R2) PDFs is 3=7 at x = 1,

versus the prediction of 1=4 when the standard MRS(R2) PDFs are used.

The behavior of d=u in the limit x = 1 is of great interest theoretical since

it is important in the understanding of QCD phenomena related to spin-
avor

symmetry breaking in the nucleon. In addition, experimentally it is important for

the calculations of high Q2 processes in e� p, p� p, and p� p collider experiments

(as mentioned in previous sections).

In a world of exact SU(6) spin-
avor symmetry, the wave function of a proton,
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Figure 8.10: (a) The d=u distribution atQ2 = 15 GeV2 as a function of x calculated
with the standard and modi�ed MRS(R2) PDFs as compared to the CDHSW data.
(b) The F n

2 =F
p
2 distribution at Q2 = 15 GeV2 as a function of x calculated with

standard and modi�ed MRS(R2) PDFs.

polarized in the +z direction, can be expressed by:

P "> =
1p
2
u " (ud)s=0 + 1p

18
u " (ud)s=1 � 1

3
u # (ud)s=1

�1

3
d " (uu)s=1 �

p
2

3
d # (uu)s=1: (8.11)
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where the subscript s represents the total spin of the diquark-quark system. The

u and d quarks are identical in this exact symmetry, which implies that the masses

of the nucleon and � baryon are identical. In deep inelastic scattering, exact

SU(6) symmetry means uv(x) = 2dv(x), i.e. that the values of d=u and F n
2 =F

p
2 are

constant over the entire range in x.

d

u
=

1

2
;

F n
2

F p
2

=
2

3
: (8.12)

Of course, it is well known that SU(6) spin-
avor symmetry is broken in nature.

The nucleon and � masses are split by about 300 MeV, and the measured F n
2 =F

p
2

has a signi�cant x dependence. According to arguments by Close and Regge, the

breaking of SU(6) symmetry comes from the fact that the diquark system with

s = 1 is suppressed relative to the s = 0 diquark state as x ! 1. According to

Equation 8.11, the proton is governed by a single u quark with s = 0 diquark at

x = 1, which leads to:

d

u
! 0;

F n
2

F p
2

! 1

4
: (8.13)

The values of F n
2 =F

p
2 data, when only corrected for Fermi motion e�ects, agree

with this prediction. This prediction has been built into most of the global parton

distribution �ts.

However, as argued by Farrar and Jackson [73] on the basis of perturbative

QCD, an exchange of a longitudinally polarized gluon is allowed in the diquark

system with the s = 1 state. In this approach, the relevant component of the

proton wave function at high x is related to the diquark spin projection direction

sz rather than s. Thus, the second and forth terms in the Equation 8.11 are no
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Figure 8.11: The ratio of standard and modi�ed MRS(R2) d quark distribution at
Q2 = 10000 GeV2 as a function of x.

longer suppressed. This leads to a modi�cation of the result as follows:

d

u
! (1=3)2

(1=
p
2)2 + (1=

p
18)2

=
1

5
;

F n
2

F p
2

! 3

7
: (8.14)

This prediction is in very good agreement with the F n
2 =F

p
2 data if the data are

corrected for both nuclear binding and Fermi motion e�ects in the deuteron.

The issue of whether d=u approaches to 0 or 0.2 at large x will be addressed

by future HERA measurements of the ratio of positron-proton and electron-proton

charged current events, and possibly also by new electron scattering experiments

on 3H and 3He1 at Je�erson Lab.

In addition to the question of the behavior of d=u near x = 1, the d=u correction

has a signi�cant impact on the interpretation of HERA e � p data and Tevatron

p � p high Q2 anomalous jet events. We �nd that when the modi�ed PDFs at

Q2=16 GeV2 are evolved to Q2=104 GeV2 using the DGLAP NLO equations, the
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Figure 8.12: (a) The HERA charged current cross section data and (b) the CDF
and D0 inclusive jet cross section data. Both sets of data are compared with
predictions calculated using standard d-quark and modi�ed d-quark PDFs.
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evolved d distribution at x = 0:5 is increased by about 40 % as compared with the

standard d distribution, as shown in Figure 8.11.

In the HERA positron-proton collider, the charged current scattering process

is directly sensitive to the d quark distribution, as shown in following equation:

�CC � x
h
u(x) + (1� y)2(d(x) + s(x))

i
: (8.15)

Figure 8.12 shows that the HERA charged current cross section for Q2 > 400

GeV2 [74] favors the modi�ed PDFs in the high x region. In the case of positron-

proton neutral current scattering, the e�ect of the enhanced d quark content is

found to be negligible. This is because the additional Z0 contribution at high Q2

from interactions with the d quark is not large (it is cancelled by the negative

contribution of the xF3 term in positron-proton scattering).

The CDF experiment has observed an anomalous access at high Q2 (high PT )

in the measurement of the inclusive jet cross sections. Dominant contributions to

high Q2 events are processes involving high x valence quarks. Figure 8.12(b) shows

that the modi�ed PDFs also lead to an increase of 10% in the prediction for the

production of very high PT jets [75] in hadron colliders.

8.6 Why are parton distribution at high x im-

portant?

In order to search for evidence of new physics at high Q2 in lepton-hadron and

hadron-hadron collider experiments, it is important to understand the level of the

standard model expectations for the cross section in this region. Therefore, it is

crucial to reduce the uncertainties on knowledge of the valence quark at very high x

and low Q2. Any additional component of valence quarks in the large x and low Q2
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Figure 8.13: The propagation in the DGLAP evolution from high x and low Q2 to
the intermediate x and high Q2 region

region (where the DGLAP evolution equations begin) could produce a signi�cant

increase in the predicted level of PDFs in the high Q2 and intermediate x regions.

This occurs through the propagation in the DGLAP evolution equations, as shown

in Figure 8.13. Based on this fact, CTEQ proposed a \Toy Model" in which an

additional 0.5% uv (or intrinsic charm) component is added at very high x. They

introduced this model as a possible solution to explain the excess of high Pt jet

events in CDF. As shown in Figure 8.14, an additional 0.5% uv component at

Q = 1:6 GeV introduces a large enhancement at Q = 100 GeV.

Therefore, it is very important to have an experimental constraint on level of
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Figure 8.14: Comparison of the ratio of the CTEQ \Toy Model" and standard u
quark valence quark distributions at Q = 1:6 and 100 GeV. The \Toy Model" has
an additional 0.5% u valence quark component in the very high x region.

the valence quark distribution in the very high x and low Q2 region.

8.7 Higher twists e�ects at high x

All the standard PDFs, including our modi�ed d-quark version have been �t to

data with x less than 0:75. In order to investigate the validity of the modi�ed

MRS(R2) PDFs at very high x, we need to look at data beyond the x = 0:75

region. Experiments at SLAC have measured the F p
2 data very precisely up to
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x = 1. Although the SLAC data at very high x are at reasonable values of Q2

(7 < Q2 < 31 GeV2), they are in a region where non-perturbative e�ects, such as

target mass and higher twist contributions, can be very large. Unless these non-

perturbative e�ects are well understood, it is impossible to extract information

on the valence quark distributions from these very high x data. Because of the

possible large uncertainties from non-perturbative e�ects at high x, these high x

SLAC data have not been used in any of the standard PDFs extraction analyses

by CTEQ, GRV, and the MRST PDF groups.

Our strategy for understanding of valence quarks distribution at high x is as

follows. We �rst study non-perturbative e�ects (target mass, and higher twist

contributions) by using the proton and deuteron structure function data over all

Q2 for x values below x = 0:75. Note that the low Q2 data which we study were

not used in the standard PDFs extractions. However, these data must be used in

order to gain an understanding of target mass and higher twist e�ects. Once these

non-perturbative e�ects at intermediate x are understood, this knowledge can be

applied to exploring the valence quark distribution in the very high x region. In

the literature, there are two sources of non-perturbative e�ects. These are the

target mass e�ects and the higher twist e�ects. The higher twist e�ects are called

dynamic higher twist e�ects and the target mass e�ects are called kinematic highest

twist e�ect.

Kinematic higher twist e�ects (Target Mass)

The fraction of the nucleon momentum carried by the struck quark is de�ned to

be x, the Bjorken scaling variable, as we mentioned earlier. However, this physical

meaning of x cannot hold when the scattering occur at very large x and low

Q2 � M2
N , because the mass of the struck quark at very large x (close to 1) is
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Figure 8.15: E�ect of Georgi-Politzer (GP) target mass correction (TM) on F2 at
Q2 = 15 GeV2. The NLO perturbative QCD prediction for F2 with and without
target mass corrections are shown.

e�ectively the same as the nucleon mass. Therefore, the nucleon mass cannot be

ignored at lowQ2. The target mass modi�cation involves the use of the Nachtmann

scaling variable � = 2x=(1 +
q
1 + 4M2x2=Q2). Since this target mass correction

has terms with powers of order 1=Q2, it is also called a kinematic higher twist

e�ect. We adopt the Georgi-Politzer (GP) calculation [12] for the target mass

corrections (TM). Figure 8.15 show the GP target mass e�ect for F2 at Q
2 = 15

GeV2. It is clear that even at this large value of Q2 there is a very large target mass

e�ect at very high x. Although the target mass corrections involve both the use of

a new scaling variable as well as additional complicated integrals for F2 and 2xF1,

the target mass e�ects above x > 0:9 mostly originate from a simple rescaling in

�. This means that F pQCD+TM
2 (x) ' F pQCD

2 (�) at very high x.
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Dynamic higher twist e�ects (Higher Twist)

Lepton-nucleon scattering at low Q2 also involves double partons scattering (i.e.

scattering from two partons at the same time). This is because at low Q2 the

resolving power of the virtual photon is not large enough to probe a single parton

inside the nucleon. These higher twist processes are suppressed by powers of 1=Q2.

Since a full calculation of higher twist e�ects is not available, we use the very low

Q2 data to extract empirical information on the size of the higher twist terms.

We use two approaches in our study of the dynamic higher twist e�ects: (a) an

empirical method, and (b) the renormalon model.

� The empirical model approach: Here the higher twist contribution is ex-

tracted from the data by adding a term h(x)=Q2 to the perturbative QCD

(pQCD) prediction of the structure function (including target mass e�ects).

The x dependence of the higher twist coeÆcients h(x) are extracted from

a global �t to all deep-inelastic scattering (DIS) F2 (SLAC, BCDMS, and

NMC) data [54, 55, 15] in the kinematic region (0:1 < x < 0:75, 1:25 < Q2 <

260 GeV2). The following form is used:

F2 = F pQCD+TM
2 (1 + h(x)=Q2)f(x); (8.16)

where f(x) is a 
oating factor to account for possible x dependent corrections

to our modi�ed PDFs. The 
oating factors for the proton and deuteron data

are an indication on how well the standard PDFs describe the distribution of

u quarks and d quarks in the data, respectively. A functional form, a( xb

1�x
�c)

for h(x) is used in the higher twist �t. This form is later used to extrapolate

and estimate the size of the higher twist terms above x = 0:75. The nor-

malization of the SLAC [54] and BCDMS [55] data relative to the NMC [15]
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experiment are allowed to 
oat within the experimental normalization errors.

In the case of the BCDMS data, an additional systematic error shift [11] �

(in units of standard deviation units) is allowed to account for the correlated

point-to-point systematic error. This correlated systematic error in BCDMS

originates from the uncertainty in the overall calibration of the magnetic �eld

of the iron toroid spectrometers in the BCDMS experiment. In the analysis,

the experimental F2 data are allowed to 
oat within the systematic errors

using following form:

F2 = [F2(data) + �ÆF2(sys)] (1 +N); (8.17)

where N is the relative normalization. An additional term is added to the

overall chi-square to include the deviations of � and N from zero.

� The Renormalon model [76] approach: The renormalon model predicts the

complete x dependence of the higher twist contributions to F2, 2xF1, and

xF3, with only two unknown parameters a2 and a4. For example, in the case

of F2;

F2(x;Q
2) = F pQCD+TM

2

"
1 +

D2(x;Q
2)

Q2
+
D4(x;Q

2)

Q4

#
; (8.18)

where

D2(x;Q
2) =

a2
q(x;Q2)

Z 1

x

dz

z
c2(z)q(x=z;Q

2): (8.19)

Here, q = uv + dv, and c2 is the coeÆcient function. We extract the a2 and

a4 parameters, which determine the overall level of the 1=Q
2 and 1=Q4 terms

by �tting to the global data set for F2 and R[= F2(1+4Mx2=Q2)=2xF1� 1].
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Figure 8.16: Typical x, Q2 dependence of the higher twist e�ects on F2 predicted
by the renormalon model with arbitrary input values, a2 = �0:3 and a4 = 0:02.
The dotted line is the prediction of pQCD with TM corrections.

The values of a2 and a4 for the proton and deuteron are the same in this

model. Figure 8.16 show typical x, Q2 dependence of the higher twist e�ects

on F2 predicted by the renormalon model for the 1=Q2 term with arbitrary

value of a2 = �0:3, and 1=Q4 term with a4 = 0:02, respectively.

Within the renormalon model, the x dependence of 2xF1 di�ers from that of

F2 but is the same as that of xF3 within a power correction of 1=Q
2. Thus our

�ts to F2 and 2xF1 can also be used to estimate the size of the higher twist
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Table 8.1: Results of the empirical higher twists �ts (with pQCD+TM) to global
DIS F2 data. The �rst two columns show the �tted normalizations of the SLAC
and BCDMS data relative to NMC (for the proton and deuteron data). Also shown
is the �t value (in standard deviations) of the BCDMS common systematic error
originating from the uncertainty in the BCDMS magnetic �eld.

SLAC(%) BCDMS(%) a b c

Proton -1.2 � 0.4 -4.1 � 0.3 0.50�0.09 3.2�0.35 0.11�0.03
Deuteron -0.6 � 0.3 -2.0 � 0.3 0.35�0.04 1.5�0.22 0.26�0.06

Main sys (�) 1.35�0.102

e�ects in xF3 [e.g. in the Gross-Llewellyn Smith (GLS) sum rule] within this

model.

8.8 Results of the empirical higher twist �t

The empirical higher twist �ts with the modi�ed NLO MRS(R2) pQCD prediction

with TM have been performed simultaneously on the proton and deuteron F2 data

with 11 free parameters (two relative normalizations and three parameters for h(x)

per target and the BCDMS �). The results of the �t are given in Table 8.1. We �nd

that the empirical higher twist �t describes the data well (�2=d:o:f: = 843=805),

as shown in Figure 8.17. Figure 8.18 shows that the higher twist contributions in

the proton and deuteron are similar, and the 
oating factor, f(x) is close to one.

The 3 � 4% variation around x = 0:5 in the 
oating factor f(x) originates from

the BCDMS data. As shown in the �gure, if the BCDMS data are removed from

the �t, f(x) is very close to 1.0. Note that the extracted higher twist contributions

are the same whether BCDMS data are included or not, as shown in Figure 8.18.

The magnitude of the extracted higher twist contribution is almost half size

of the previous empirical higher twist results with the combined SLAC/BCDMS
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Figure 8.17: Results of the higher twist analysis using the empirical model approach
with the modi�ed NLO MRS(R2) PDF. The CCFR neutrino data is also shown for
comparison (but have not been used in the �t). Shown is a comparison of the global
F2 data to the NLO prediction with and without the higher twist contributions.
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Figure 8.18: (a) Empirical higher twist �t results for h(x) for the proton and
deuteron, with and without inclusion of the BCDMS data, (b) Empirical higher
twist �t results for the 
oating factor, f(x) for the proton data with and without
inclusion of the BCDMS data

data [11]. The previous analysis was based on �s(M
2
Z) = 0:113 whereas in this

analysis �s(M
2
Z) = 0:120 in the MRS(R2) PDF, which is close to the current world

average. This indicates that there is a strong negative correlation between �s and

the extracted higher twist contributions in the low Q2 region. Indeed, the size of

the extracted higher twist e�ect is increased by factor of two, when we perform the

same analysis using a modi�ed MRS(R1) PDFs with �s(M
2
Z) = 0:113, as shown
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Figure 8.19: The dependence on �s of the extracted higher twist contributions in
the empirical higher twist analysis.

in Figure 8.19.

8.9 Results of the renormalon higher twist �t

The higher twist extraction in this approach employs the same procedure as the

empirical method. Instead of extracting the empirical higher twist function h(x),

we extract the two parameters in the renormalon model, a2 and a4, from global

�ts to F2 and R data. The extracted values of a2 and a4 are �0:104� 0:005 and

�0:003�0:001 respectively. The contribution of a4 is found to be negligible. When

the �ts are done independently for proton and deuteron data, we also �nd that

the extracted values of a2 for protons and deuterons are consistent each other, as

predicted by the model (a2 = �0:093 � 0:005 for proton and �0:101 � 0:005 for
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deuteron).

Figure 8.20 and Figure 8.21 show that the QCD NLO �t with both the TM

e�ects and with the renormalon model higher twists contributions yields a reason-

able description (�2=d:o:f: = 1470=928) of the x and Q2 dependence for F2 and R

with just the two free higher twist parameters. The CCFR neutrino data [16] are

shown for comparison (but have not been included in the �t). As was found in

the empirical higher twist analysis, the extracted a2 value is half of the previous

estimated value [76] for a2 based on the SLAC/BCDMS [�s(M
2
Z) = 0:113] analysis.

Figure 8.22(a) shows the extracted 
oating factor fNLO(x) as a function of x

for the proton and deuteron, respectively. The fact the extracted values are close

to 1.0 indicates that the modi�ed NLO MRS(R2) PDFs provide a good description

of the data and the corresponding d and u quark distributions.

If we use the standard MRS(R2) PDFs in the �t and apply no nuclear cor-

rections to the deuteron data, the 
oating factors f(x) for the deuteron deviate

from 1.0 and are also bigger than f(x) for the proton, as shown in Figure 8.22(b).

This support our previous study which indicates that the standard d distribution

is underestimated at high x in standard PDFs.

In conclusion, we �nd that the pQCD predictions with additional GP target

mass corrections and empirical (or renormalon model) higher twist contributions

describe both the F2 and R data very well.

We �nd additional interesting results when we extend the analysis to include the

next-to-next leading (NNLO) contributions in QCD. Therefore, we now digress to

discuss our study of the e�ects the missing NNLO contribution on the extracted

higher twist terms, before returning to the discussion of extension of the NLO

analysis to very high x.
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Figure 8.20: Comparison of the global F2 data with the NLO+TM prediction
with and without HT contributions (the HT renormalon model, fNLO(x), and the
modi�ed MRS(R2) PDFs are used). The CCFR neutrino data are also shown for
comparison (but have not been included in the �t).
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Figure 8.21: Comparison of the global R data with the NLO+TM prediction
with and without HT contributions (the HT renormalon model, fNLO(x), and the
modi�ed MRS(R2) PDFs are used).
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Figure 8.22: (a)] The 
oating factor fNLO(x) as a function of x extracted from
the NLO analysis with the d-quark modi�ed MRS(R2) PDFs, (b) The 
oating
factor fNLO(x) extracted with the standard MRS(R2) PDFs. The larger extracted

oating factors for the deuteron than for the proton indicate that the d quark
distribution at high x is underestimated in the standard MRS(R2) PDFs.

8.10 E�ects of the NNLO contributions

The NNLO calculation for F2 and R requires both two-loop coeÆcient functions

(which have been calculated) and NNLO PDFs. Unfortunately, NNLO PDFs are

not yet available, because only the �rst few moments of the three-loop splitting

functions have been calculated to date. Since the NNLO PDFs are not available,
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the approach taken in this analysis is that we input NLO PDFs into the NNLO

expression for F2 and R. The NNLO theoretical predictions are compared to

the data, and as was done in our previous NLO �t, we extract the higher twist

coeÆcients a2 and a4 (from the comparison of Q2 dependence) and the 
oating

factor fNNLO(x) (from the comparison of x dependence).

The higher twist coeÆcients a2 and a4 can be interpreted as representing both

the higher twist terms and the di�erence in the Q2 dependence between the input

NLO PDFs and the unknown NNLO PDFs. The ratio fNNLO(x)=fNLO(x) can be

interpreted as the ratio of NNLO to NLO PDFs as a function of x.

Figure 8.23 and Figure 8.24 show that the �t including the NNLO contributions

yields a good (�2=d:o:f: = 1406=928 ) description of the x and Q2 dependence for

F2 and R. The extracted values of a2 and a4 are �0:009�0:006 and �0:013�0:001,
respectively. The contribution of a2 is found to be negligible in this NNLO analysis,

and the a4 term is small but �nite. These results indicate that most of the higher

twist contributions extracted in the NLO �t at low Q2 appear to originate from

the missing NNLO terms. We also achieve the same conclusion even if we adopt

the empirical higher twist model and only �t to the F2 data. In fact, Fig. 8.25

shows that the Q2 dependence of the NNLO contributions to F2 is similar to that

of the higher twist terms extracted in the NLO analysis. The small contribution

of the higher twist terms to F2 and R in the NNLO analysis also indicates that

the higher twist contributions to the GLS sum rule are very small. The above

values of a2 and a4 yield a fractional contribution to the pQCD GLS sum rule of

�0:009=Q2 � 0:023=Q4. Similar conclusions for the GLS sum rule (from an global

analysis of data on xF3 only) have been reported elsewhere [77]. A very small

contribution of higher twist terms to the GLS sum rule means that a higher value

of �s(M
2
Z) = 0:118 is be extracted from the measured CCFR GLS sum rule data

(since the larger higher twist corrections indicated from other models result in a
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Figure 8.23: Comparison of the global F2 data with the NNLO+TM prediction
with and without HT contributions (the HT renormalon model, fNNLO(x), and the
modi�ed MRS(R2) PDFs are used). The CCFR neutrino data are also shown for
comparison (but have not been included in the �t). As can be seen, by including
the NNLO terms, the remaining higher twist contribution is very small.
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Figure 8.24: Comparison of the global R data and the NNLO+TM prediction
with and without HT contributions (the HT renormalon model, fNNLO(x), and
the modi�ed MRS(R2) PDFs are used). As can be seen, by including the NNLO
terms, the remaining higher twist contribution is very small.
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low value). This higher value of �s(M
2
Z) = 0:118 agrees with the independent

measurement from the logarithmic slopes of the CCFR F2 and xF3 data, which

yields �s = 0:119� 0:004.

Since the Q2 dependence of the data is well described by the �t, the results

also imply that the Q2 dependence of the NNLO and NLO PDFs are mostly the

same. This conclusion is in agreement with most recent estimates of the three-

loop splitting functions for the NNLO PDFs by van Neerven and Vogt [78]. The

ratio of NNLO to NLO PDFs can be obtained as a function of x from the ratio

fNNLO(x)=fNLO(x). Figure 8.26 shows the 
oating factor fNNLO(x) as a function

of x for the proton and deuteron data, respectively. At low x, fNNLO(x) is few

percent higher than fNNO(x), thus indicating that NNLO cross sections for the top

quark, W and Z production will be somewhat increased if our NNLO corrections

to the NLO PDFs are used for the NNLO PDFs. For example, in the case of Z

production at the Tevatron, the total theoretical cross section would be about 2%

higher (which will bring the theory into closer agreement with the data [79]). At

large x, the NNLO PDFs may be about 10 � 15% lower than the NLO PDFs

mainly due to the two-loop coeÆcient functions. The NNLO contributions to R

appear to account for most of the higher twist e�ects extracted in the NLO �t.

Since the NNLO terms are important at small x (especially for R, in which the

overall level of F2 in NNLO cancels out), we also conclude that with the increasing

precision of the data from HERA, these terms should no longer be neglected. Note

that our conclusions are not sensitive to the choice of model that is used to describe

the behavior of the higher twist terms. Figure 8.27 show that the same conclusions

are obtained if we use an empirical higher twist approach to �t the global F2 data.
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Figure 8.25: The Q2 dependence of the NNLO contributions to F2 for two repre-
sentative values of x. The Q2 dependence of the NNLO contributions appears to
be similar to that of the higher twist contributions extracted in the NLO analysis.

Figure 8.26: The 
oating factor fNNLO(x) as a function of x from the NNLO
analysis. The fNLO(x) from the NLO analysis is also shown for comparison. The
ratio fNNLO(x)=fNLO(x) corresponds to the ratio of NNLO to NLO PDFs.
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Figure 8.27: The higher twist function h(x) extracted from empirical higher twist
analysis, with and without including NNLO terms in F2. The results con�rm that
even within an empirical higher twist analysis, a large fraction of the extracted
higher twist contributions can be attributed to the missing NNLO terms.

8.11 Parton distribution at very high x

Since both the empirical and renormalon higher twist analyses yield reasonable

descriptions of the higher twist e�ects, we proceed to compare the predictions of

the modi�ed PDFs (including target mass and renormalon higher twist corrections)

to the SLAC proton F2 data in the very high x (0:7 < x < 1) region. There is a

wealth of SLAC data [80] in the region up to x = 0:98 and intermediate values of

Q2 (7 < Q2 < 31 GeV2). Previous PDF �ts by MRS, CTEQ, and GRV groups

have not used these data. We use estimates of the higher twist e�ects at very high

x from the two models which were �t to the data below x < 0:75, as described

in previous sections. Note that the very high x data for 0:75 < x < 0:90 is in

the DIS region. However, the data for x > 0:9 is the resonance region. It is

also worthwhile to investigate the resonance region because it is expected that
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the average behavior of the resonances and elastic peak should follows the DIS

scaling limit curve from duality arguments [81] . Figure 8.28 shows the ratio of

the SLAC data to the predictions of the modi�ed MRS(R2) at relatively large

Q2 (21 < Q2 < 30 GeV2) where the elastic contribution is negligible. With the

inclusion of target mass and the renormalon higher twist e�ects, the very high

x data from SLAC are remarkably well described by the modi�ed MRS(R2) up

to x = 0:98. The good description of the data by the modi�ed MRS(R2) is also

achieved using the empirical estimate [h(x)=Q2] of higher twist e�ects as shown

in Fig. 8.28(c). Figure 8.28 also shows that the CTEQ \Toy Model" (with an

additional 0.5% component of u quarks beyond x > 0:75) overestimates the SLAC

data by a factor of three at x = 0:9 (DIS region). >From these comparisons,

we �nd that the SLAC F2 data do not support the CTEQ \Toy Model" which

proposed an additional u quark contribution at high x as an explanation of the

initial HERA high Q2 anomaly and the excess of CDF jet events at high-Pt. Lower

Q2 SLAC data are shown in Figure 8.29. The DIS prediction with target mass and

higher twist e�ect is higher than the data. This is because these data are in the

resonance production region near threshold, as shown in Figure 8.30. As indicated

in Fig. 8.28(c), the uncertainties in the PDFs at high x are small. The di�erence

between the theoretical predictions using the CTEQ4M and MRS(R2) (with our

d=u modi�cations) can be taken an estimate of the errors in the valence PDFs.

8.12 Conclusion

In conclusion, we �nd that nuclear binding e�ects in the deuteron play a signi�cant

role in our understanding of d=u at high x. With the inclusion of target mass and

higher twist corrections, the modi�ed PDFs with our d=u correction describe all

DIS data up to x = 0:98 and down to Q2 = 1 GeV2. This modi�ed PDFs are
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Figure 8.28: Comparison of SLAC F p
2 data with the predictions of the modi�ed

MRS(R2), CTEQ4M and the CTEQ toy model at high x and higher Q2 (20 <
Q2 < 31 GeV2). (a) Ratio to pQCD only, (b) ratio to pQCD with TM e�ects only,
and (c) ratio to pQCD with TM and Renormalon higher twist contributions (the
ratio of empirical to renormalon higher twist is also shown).
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Figure 8.29: Comparison of SLAC F p
2 data and the predictions of the modi�ed

MRS(R2) with TM and renormalon HT e�ect at three di�erent Q2 regions. (a)
7 < Q2 < 11 GeV2, (b) 11 < Q2 < 20 GeV2, (c) 20 < Q2 < 31 GeV2. The SLAC
data in the �rst top two plots, [a,b] are near the threshold of resonance production,
as shown in Figure 8.30
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Figure 8.30: Comparison of SLAC F p
2 resonance data and the predictions of the

modi�ed MRS(R2) with TM and renormalon HT e�ect at various Q2 regions. The
solid curve represent the �t to the SLAC resonance data
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in good agreement with the pQCD prediction of d=u near x = 1, and with the

extracted d=u data from the CDHSW �p and �p data, the HERA CC cross section

data, the collider high-Pt jet data, and with the CDF W asymmetry data. A next-

to-next leading order (NNLO) analysis of R indicates that the higher twist e�ects

extracted in the NLO analysis at low Q2 may originate from the missing NNLO

terms.
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Chapter 9

Conclusion

We have made several signi�cant improvements to our knowledge of structure func-

tions and parton distributions. These new results have been obtained from two

analysis e�orts. The �rst is an analysis of di�erential cross sections, F2, �xF3,

and R in charged-current neutrino-iron deep inelastic scattering, and the second is

a global structure functions analysis of charged-lepton (muon and electron) scat-

tering experiments.

� The CCFR di�erential cross sections data ( which are in good agreement with

the QCD predictions) indicate that the problems in the CDHSW structure

function results are also present in the CDHS di�erential cross section data.

The CDHS di�erential cross section data has been cited as evidence for a large

asymmetry between the strange and anti-strange sea in the high x region. In

contrast, the CCFR di�erential cross sections results are in good agreement

with QCD and do not show any anomalies at small or large x. Similarly,

the disagreement between the CDHS data and QCD in the y distributions at

small x is not observed in the CCFR di�erential cross sections. We conclude

that it is important to publish the raw di�erential cross sections. These are
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purely measured experimental quantities, which can be analyzed within the

framework of any present, or future theoretical model.

� We �nd that our new Physics Model Independent (PMI) approach is crucial

in the extraction of structure functions. The PMI approach has resulted in

resolving the long-standing discrepancy in the low x region between muon and

neutrino experiments. Because of the di�erence in the processes for heavy

charm production between neutrino and muon scattering, we conclude that

the conventional method of using the \5/18" rule cannot be used unless these

di�erences are well understood.

� The consistency at the level of 5% between the nucleon structure functions

measured in neutrino and muon experiments indicates that the structure

functions from neutrino scattering experiments can be safely used in the

global parton distribution analyses, and in disentangling the sea and valence

quarks distributions. Furthermore, this consistency indicates that the nuclear

e�ects in F2 as probed by neutrino and charged lepton beams are not di�erent

by more than 5%. This result is in agreement with the recent Boros (et al.)

calculation of nuclear binding e�ects.

� The CCFR �xF3 data at low x and low Q2 are higher than recent theoretical

predictions. The �xF3 data are sensitive to the inclusive charm production

process in charged-current neutrino interactions. It provides another channel

for investigating the strange sea and heavy quark production processes at low

x.

� The CCFR R data are in good agreement with charged lepton data and

NNLO QCD predictions with including target mass e�ects. An anomalous

large nuclear e�ect at low low x and Q2 < 1 GeV2 reported by HERMES
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collaboration does not clearly appear in the CCFR data in either the longi-

tudinal (FL) or transverse (2xF1) structure function data.

� We �nd a signi�cant change in the extracted ratio of quark distributions

d=u at high x after the application of nuclear binding corrections to charged-

lepton scattering data with deuterium. Our new results are an excellent

agreement with the QCD prediction of d=u = 0:2 near x = 1. Our results

are also in good agreement with CDF W asymmetry data. This correction

plays an important role in experiments (at HERA and the Tevatron) which

search for new physics beyond the Standard Model at very high Q2.

� We �nd that QCD with target mass corrections, and with either the renor-

malon model or empirical higher twist model provides a good description

of the x and Q2 dependence of F2 and R (for all electron and muon data)

over a wide kinematic region. Therefore, we can safely use the intermediate

Q2 and high x structure function data from SLAC. These data provide a

measurement of the parton distributions in the high x region. Our work has

removed one of the major uncertainties in predicting the parton distribution

in the very high Q2 and intermediate x region for collider experiments (using

the QCD evolution equations).

� We �nd that the extracted phenomenological higher twists terms mostly orig-

inate from the missing NNLO terms. This removes the uncertainties from

the higher twist e�ects in the GLS sum rule (which has been calculated in

NNLO). Therefore, the CCFR �s measurement extracted from the GLS sum

rule is now in very good agreement with another independent CCFR mea-

surement of �s from the logarithmic slope of F2 and xF3. Both measurements

are in agreement with current world average value, �s(Mz) = 0:118.
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� We �nd that SLAC F p
2 data (DIS + resonance) are in excellent agreement

with standard PDFs up to x = 0:98 if we include additional non-perturbative

e�ects (target mass + higher twist), which are estimated from the data below

x = 0:75. This study indicates that the uncertainties on the level of the

quark distributions at very high x are not as large as previously thought.

Even above x = 0:9, the uncertainties are only at the level of 10 � 20%.

Are we ready to use the nucleon as a tool in searching for new physics beyond

the Standard Model in lepton-nucleon and hadron-hadron high-energy colliders?
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Appendix B

CCFR Di�erential Cross Sections

This appendix contains plots of the CCFR di�erential cross section data (d2�=Exy)

over a wide kinematic region, 30 < E� < 360 GeV, 0:015 < x < 0:70, and

0:05 < y < 0:95. The total number of data points is about 2,770. Every page

shows the di�erential cross sections for a given E� bin as a function of y for various

x bins. Neutrino distributions are on the left, and antineutrinos are on the right.

The CCFR data (solid circle) are compared with a leading order CCFR QCD �t

(solid line, which has been called CCFR-BG or LO-BG in various parts of this

thesis). The prediction from the NLO TR-VFS QCD calculation using the MRST

PDFs are plotted as the dashed line. Additional empirical higher twist e�ects [30]

are included in the NLO TR-VFS calcultion. The CCFR data are also compared

with the CDHSW (solid diamond) di�erential cross section data for the same E�

bins.
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Figure B.1: Di�erential cross sections at E� = 35 GeV.
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Figure B.2: Di�erential cross sections at E� = 45 GeV.
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Figure B.3: Di�erential cross sections at E� = 55 GeV.
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Figure B.4: Di�erential cross sections at E� = 65 GeV.
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Figure B.5: Di�erential cross sections at E� = 75 GeV.
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Figure B.6: Di�erential cross sections at E� = 85 GeV.
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Figure B.7: Di�erential cross sections at E� = 95 GeV.
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Figure B.8: Di�erential cross sections at E� = 110 GeV.



232

Figure B.9: Di�erential cross sections at E� = 130 GeV.
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Figure B.10: Di�erential cross sections at E� = 150 GeV.
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Figure B.11: Di�erential cross sections at E� = 170 GeV.
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Figure B.12: Di�erential cross sections at E� = 190 GeV.
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Figure B.13: Di�erential cross sections at E� = 215 GeV.
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Figure B.14: Di�erential cross sections at E� = 245 GeV.
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Figure B.15: Di�erential cross sections at E� = 275 GeV.
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Figure B.16: Di�erential cross sections at E� = 305 GeV.



240

Figure B.17: Di�erential cross sections at E� = 340 GeV.
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Appendix C

Comparison of Data and Theory

on R = �L=�T

C.1 Introduction

The ratio of the longitudinal and transverse structure functions R = FL=2xF1 in

deep inelastic lepton-nucleon scattering provides information about the transverse

momentum and spin of the nucleon constituents. Within the theory of quantum

chromodynamics (QCD), the nucleon constituents are spin 1/2 quarks, and in

leading order FL = 0, since the quarks have no transverse momentum. In the

next to leading order formalism (NLO), to �rst order in �s, FL is non-zero because

of transverse momentum associated with gluon emission [82]. The NLO QCD

predictions for R are proportional to �s (and therefore logarithmically falling with

Q2), and depend on integrals of the quark and gluon distributions. Therefore, a

measurement of R can in principle yield information about the gluon distribution.

Recently, the longitudinal structure functions have been calculated [83, 84] to order

�2
s (NNLO). These higher order corrections are signi�cant (as much as 30%), and



242

therefore must be included before any information about the gluon distribution

can be extracted from a measurement of R.

Unfortunately, measurements of R are experimentally very diÆcult. The most

precise measurements of R over a range of x and Q2 have been done in electron

scattering experiments at the Stanford Linear Accelerator Center[SLAC] [63, 24].

These measurements are at relatively low values of Q2, where 1=Q2 and 1=Q4 con-

tributions to R can be important. Such contribution can originate from target

mass e�ects [12, 85], higher twist contributions including primordial transverse

momentum [85], and multi-quark correlations such as diquarks [86]. These 1=Q2

and 1=Q4 must be moderated by additional non-perturbative corrections at very

low Q2, since R must approach zero at the Q2 = 0 photoproduction limit for

electroproduction processes. These non-perturbative corrections would be di�er-

ent [87, 88] for neutrino scattering because in the neutrino case the axial vector

part of F2 does not go to zero at Q
2 = 0 .

Therefore, comparison of data on R to theoretical predictions over a large

range of x and Q2 can provide information on the relative magnitude of the 1=Q2

contributions to R versus the QCD logarithmic contributions.

In addition, since most experiments are not able to perform a good measure-

ment of R, a good parameterization of R which is valid over a large range of x and

Q2 is needed in order to extract the F2 structure function in electron, muon, and

neutrino deep inelastic scattering experiments.

C.2 Existing Data on R

The di�erential cross section for scattering of an unpolarized charged lepton with

an incident energy E0, �nal energy E 0 and scattering angle � can be written in

terms of the structure functions F1 and F2 as:
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d2�

d
dE 0
(E0; E

0; �) =
4�2E 02

Q4
cos2(�=2)

h
F2(x;Q

2)=� + 2 tan2(�=2)F1(x;Q
2)=M

i
(C.1)

where � is the �ne structure constant, M is the nucleon mass, � = E0 � E 0 is

energy of the virtual photon which mediates the interaction, Q2 = 4E0E
0 sin2(�=2)

is the invariant four-momentum transfer squared, and x = Q2=2M� is a measure

of the longitudinal momentum carried by the struck partons.

Alternatively, one could view this scattering process as virtual photon absorp-

tion. Unlike the real photon, the virtual photon can have two modes of polarization.

In terms of the cross section for the absorption of transverse (�T ) and longitudinal

(�L) virtual photons, the di�erential cross section can be written as,

d2�

d
dE 0
= �

h
�T (x;Q

2) + ��L(x;Q
2)
i

(C.2)

where,

� = �KE0

4�2Q2E0

�
2

1��

�
(C.3)

� =
h
1 + 2(1 + Q2

4M2x2
)tan2 �

2

i�1
(C.4)

K = 2M��Q2

2M
: (C.5)

The quantities � and � represent the 
ux and the degree of longitudinal polar-

ization of the virtual photons respectively. The quantity R, is de�ned as the ratio

�L=�T , and is related to the structure functions by,

R(x;Q2) =
�L
�T

=
F2

2xF1

(1 +
4M2x2

Q2
)� 1 =

FL
2xF1

(C.6)
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where FL is called the longitudinal structure function. The structure functions are

expressed in terms of �L and �T as follows:

F1 = MK
4�2�

�T ; (C.7)

F2 = �K(�L+�T )

4�2�(1+ Q2

4M2x2
)

(C.8)

and,

FL(x;Q
2) = F2

 
1 +

4M2x2

Q2

!
� 2xF1: (C.9)

In our investigations of R, we have primarily used the electron scattering data

from SLAC experiments E140/140X [63], and data from the combined analysis of

all SLAC electron scattering experiments [24]. In addition, at high Q2 we have

used muon scattering data from the EMC [13, 89] and BCDMS [55] experiments,

and neutrino scattering data from CDHSW [25] experiment.

C.3 Elastic Scattering Limit (x = 1)

As is described in the previous section, the di�erential cross section for inelastic

scattering is written in terms of the inelastic structure functions F inel
1 (x;Q2) and

F inel
2 (x;Q2) as:

d2�

d
dE 0
=

 
d�

d


!
Mott

h
F inel
2 (x;Q2)=� + 2 tan2(�=2)F inel

1 (x;Q2)=Mp

i
(C.10)

where

 
d�

d


!
Mott

=
�2 cos2(�=2)

4E2
0 sin

4(�=2)
(C.11)
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In the elastic limit, i.e. x = 1, these structure functions are related to the

Sach's elastic form factors (GM ; GE) by:

2xF inel
1 (x;Q2) = x2G2

M(Q
2)Æ(x� 1) (C.12)

F inel
2 (x;Q2) =

G2

E
(Q2)+�G2

M
(Q2)

1+�
Æ(x� 1) (C.13)

The elastic form factors have been normalized to Gp
M(0) = �p = �p + 1 � 2:79

(the magnetic moment of the proton) and Gp
E(0)=1 (the charge of the proton).

Integrating the cross section of equation C.10 over E 0 gives:

d�

d

=
�
d�
d


�
Mott

1
1+2E0=Mp sin2(�=2)

�
G2

E+�G
2

M

1+�
+ 2�G2

M tan2(�=2)
�

(C.14)

=
�
d�
d


�
Mott

1
1+2E0=Mp sin2(�=2)

�
1

1+�

� �
G2
E + �

�
G2
M

�
(C.15)

where � = Q2=4M2
p , and � = (1 + 2(1 + �) tan2(�=2))

�1
is the longitudinal

polarization of the virtual photon.

The above relationships between the elastic form factors and the inelastic struc-

ture functions (equations C.12 and C.13) yield (using equation C.9) a very simple

expression for R at x = 1.

R(x = 1; Q2) =
4M2

Q2

 
G2
E

G2
M

!
(C.16)

A reasonable description of the proton and neutron elastic form factors is given by

the dipole approximation and elastic form factor scaling. The dipole approximation

is a lowest-order attempt to incorporate the non-zero size of the proton into the

form factors. If we also assume that the proton has a simple exponential spatial
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charge distribution:

�(r) = �0e
�r=r0 (C.17)

where r0 is the scale of the proton radius. The form factors are related, in the

non-relativistic limit, to the Fourier transform of the charge and magnetic moment

distribution. If it is also assumed that the magnetic moment distribution has the

same spatial dependence as the charge distribution (i.e., form factor scaling), we

get the dipole approximation to the form factors:

GD(Q
2) � 1

(1+Q2r2
0
)2

= Gp
E(Q

2)

= Gp
M(Q

2)=�p

= Gn
M(Q

2)=�n (C.18)

and Gn
E = 0. Here �p = 2:7928, and �n = 1:913. Previous measurements of e-p

and e-n elastic scattering have indicated a best �t value of r20 = (0:24 fm)2 = 1=0:71

(GeV)�2, indicating an rms radius of
q
hr2i � 0:81 fm. Measurements of Gp

E and

Gp
M agree with the dipole approximation to better than 10% for all Q2 < 5 GeV2.

Therefore, within the framework of the elastic form factor scaling approxima-

tion, R at x = 1 takes the very simple form of Rneutron(x = 1; Q2) = 0 for a neutron

target and

Rproton(x = 1; Q2) =
4M2

�2p

 
1

Q2

!
=

0:481

Q2
(C.19)

for a proton target. For a deuteron target the value of R at x = 1 should be
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Rdeuteron(x = 1; Q2) =
4M2

(�2p + �2n)

 
1

Q2

!
=

0:328

Q2
(C.20)

In the inelastic resonance excitation region the values of x are close to 1. How-

ever, here for example, the expected values of R for the spin 3/2 � resonance is

R = 0 because the excitation of this resonance is a spin 
ip magnetic transition.

Therefore, the theoretical calculations for the R in the inelastic region are not

expected to represent R in the elastic limit. In particular, in the inelastic region,

R for the neutron is expected to be equal to R for the proton, as con�rmed by

experimental data [90]. However, it is instructive to see how the theoretical pre-

dictions for R in the inelastic region at very large x compare with the experimental

measurements of R at x = 1. Therefore, in �gures comparing the experimental

values of R to theory, the values of R for elastic scattering for both proton and

deuteron targets are shown, but not included in any of the �ts. These values for

R(x = 1; Q2) have been obtained from a recent model �t to all elastic proton and

neutron scattering data done by SLAC experiment [90] NE11.

C.4 Photoproduction Q2 = 0 limit

As mentioned in the introduction, there must be additional non-perturbative cor-

rections at very low Q2, since R must approach zero at the Q2 = 0 photoproduction

limit for electroproduction processes. Therefore, this constraint must be imposed

on any �ts to higher twist e�ects in R, if the �ts are to be useful at very low Q2.

As mentioned earlier these non-perturbative corrections at very low Q2 (Q2 <<

1 GeV2) would be di�erent [87, 88] for neutrino scattering because in the neutrino

case the axial vector part of F2 does not go to zero at Q
2 = 0. However, at larger

Q2 it is expected that R should be the same in electron, muon and neutrino deep
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inelastic scattering. In the work described here, most of the low Q2 data have been

obtained from the SLAC electron scattering experiments.

C.5 Theory: R within Perturbative QCD

In the old naive parton model, and also within QCD in leading order (i.e. �s = 0)

FQCD
L (0; x; Q2) = 0, and therefore R is expected to be zero at high Q2.

In perturbative QCD in next to leading order (NLO implies �rst order in �s),

hard gluon bremsstrahlung from quarks, and photon-gluon interaction e�ects yield

contributions to leptoproduction [82]. The QCD structure functions are given in

terms of quark, antiquark and gluon distributions by:

FQCD
2 (0; x; Q2) =

X
i

e2ix
h
qi(x;Q

2) + qi(x;Q
2)
i

(C.21)

FQCD
L (1; x; Q2) =

�s(Q
2)

2�
x2
"Z 1

x

du

u3

 
8

3
FQCD
2 (u;Q2) + 4

X
i

e2iuG(u;Q
2)(1� x=u)

!#

(C.22)

and

RQCD(1; x; Q2) =
FQCD
L (1; x; Q2)

FQCD
2 (0; x; Q2)k2 � FQCD

L (1; x; Q2)
(C.23)

where,

k2 = 1 +
4M2x2

Q2
(C.24)

and

�s(Q
2) =

12�

(33� nf) ln(Q2=�2(nf))
(C.25)
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nf = 3 for Q2 < m2
c

nf = 4 for m2
c � Q2 < m2

b

nf = 5 for Q2 � m2
b : (C.26)

The quark masses used are mc = 1:5 GeV, and mb = 4:75 GeV. The �rst and

second terms in the integrand for FQCD
L correspond to the hard gluon bremsstrahlung

and photon-gluon interaction e�ects respectively. The leading Q2 dependence of

the structure functions is in �s, and is therefore logarithmically decreases with

Q2. In the QCD calculation of FL all kinematic terms of the order M2=Q2 were

ignored. The calculation of QCD contributions to structure functions requires the

knowledge of primordial quark (qi(x;Q
2)) and gluon (G(x;Q2)) distribution func-

tions. The quark and gluon x-distributions are extracted from muon-nucleon and

neutrino-nucleon scattering data at a particular Q2 = Q2
0. Perturbative QCD en-

ables calculation of quark and gluon momentum distributions at other Q2 values

using Altarelli-Parisi equations. The Q2-evolution of these distributions has been

parameterized by various groups. These �ts were strictly valid only for Q2 > Q2
0,

where the values of Q2
0 varied between 4-5 GeV2 . However, both the GRV dis-

tributions and a revised version of the MRSA distributions are valid at Q2 values

as low as 0.3 and 0.5 GeV2, respectively. Because the Q2 dependence of the other

distributions was smooth, so we have extrapolated these other distributions below

the nominal Q2 by normalizing to the GRV distributions at Q2
0. The values of �

and the order of �s for each �t was the same as was used in the extraction of quark

distributions. This value �(nf) was changed when the quark mass thresholds are

crossed such that �s(Q
2) is continuous. The MRSA distributions are found to

provide the best �t to the very high Q2 and low x data from HERA.

The next to next to leading order (NNLO, i.e. to order �2
s) contribution to FL
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and R have recently been calculated [83]. Using the notation of van Neervan [83],

we de�ne R(2) in terms of FL(2) to be:

RQCD(2; x; Q2) =
FQCD
L (2; x; Q2)

FQCD
2 (1; x; Q2)k2 � FQCD

L (2; x; Q2)
(C.27)

C.6 Theory: Georgi - Politzer Target Mass cor-

rections

The kinematic e�ects due to target mass dominate at small Q2 and large x. These

e�ects were �rst calculated in the framework of operator product expansion and

moment analysis by Georgi and Politzer (GP). The structure functions including

these GP target mass e�ects are given by:

FQTM�GP
2 (n; x;Q2) = x2

k3
FQCD
2

(n;xi;Q2)

�3
+ 6M2

Q2

x3

k4
I1 +

12M4

Q4

x4

k5
I2 (C.28)

�FQTM�GP
L (n; x;Q2) = 4M2

Q2

x3

k2
I1 +

8M4

Q4

x4

k3
I2 (C.29)

RQTM�GP (2; x; Q2) =
FQCD
L (2; x; Q2) + �FQTM�GP

L (2; x; Q2)

FQTM�GP
2 (1; x; Q2)k2 � FQCD

L (2; x; Q2)��FQTM�GP
L (2; x; Q2)

(C.30)

where

k =
�
1 + 4x2M2

Q2

�1=2
(C.31)

� = 2x
1+k

(C.32)

I1 =
R 1
� du

FQCD
2

(n;u;Q2)

u2
(C.33)
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I2 =
R 1
� du

R 1
u dv

FQCD
2

(n;v;Q2)

v2
(C.34)

C.7 Theory: Guillen - Miramontes Target Mass

Corrections

The target mass corrections of Sanchez Guillen and Miramontes (SGM) [85] retains

terms up to relevant order in 1=Q2, O(M2=Q2) in their case, instead of performing

the summation of the series in M2=Q2. This is to avoid inconsistencies and un-

physical thresholds which appear in the � scaling formalism of Georgi and Politzer.

However, they indicate that their formalism is not valid at high x and low Q2 where

the next order M4=Q4 terms may be large.

�FQTM�SGM
L (0; x; Q2) = 4x3M2

Q2

R 1
x dy

FQCD
2

(0;y;Q2)

y2
(C.35)

FQTM�SGM
2 (1; x; Q2) = FQCD

2 (1; x; Q2) + x2M2

Q2

�
 
6x
Z 1

x
dy
FQCD
2 (0; y; Q2)

y2
� 4FQCD

2 (0; x; Q2)� x
d

dx
FQCD
2 (0; x; Q2)

!
(C.36)

The expression for R including both QCD and SGM target mass e�ects is the

same as was described above for the Georgi-Politzer target mass corrections as

follows:

RQTM�SGM(2; x; Q2) =
FQCD
L (2; x; Q2) + �FQTM�SGM

L (0; x; Q2)

FQTM�SGM
2 (1; x; Q2)k2 � FQCD

L (2; x; Q2)��FQTM�SGM
L (0; x; Q2)

(C.37)
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C.8 Additional Higher Twist Corrections

Sanchez Guillen and Miramontes [85] also consider additional 1=Q2 contributions

to FL and R from twist-4 terms. These terms originate from intrinsic parton

transverse momenta and from quark-quark and quark-gluon correlations. They

propose a higher twist contribution to FL of the form:

�FHT�SGM
L =

8K2
T

Q2
FQCD
2 (0; x; Q2) (C.38)

where KT is identi�ed as a measure of the intrinsic traverse momentum of

the partons in the nucleon. However, they have not included any higher twist

contributions to 2xF1 in their formalism.

RQTM�SGM�HT (2; x; Q2) =

FQCD
L

(2;x;Q2)+�FQTM�SGM
L

(0;x;Q2)+�FHT�SGM
L

FQTM�GP
2

(1;x;Q2)k2�FQCD
L

(2;x;Q2)��FQTM�SGM
L

(0;x;Q2)
(C.39)

We found that the this expression yields a smaller higher twist contribution to R

at large x because it implies

�RHT�SGM � 8K2
T

Q2

 
1

1 + 4M2x2=Q2

!
: (C.40)

The term in the denominator (although it is to orderM4=Q4) can be very large

at large x and low Q2. Therefore, we have also tried an empirical parameterization

of the form

�FHT�emp
L = 8K2

T

 
Q2 � B

Q4 + C

!
2xF1 (C.41)

which implies
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�RHT�emp = 8K2
T

 
Q2 � B

Q4 + C

!
(C.42)

As is discused below, we �nd that the Georgi-Politzer target mass corrections

in conjunction with our empirical higher twist contribution as de�ned by

RQTM�GP�HT (2; x; Q2) = RQTM�GP (2; x; Q2) + �RHT�emp (C.43)

describe the data very well.

Our empirical expression for the higher twist contributions is the same as the

expression of Sanchez Guillen et al., to order 1=Q2. However, it is well behaved at

very low Q2, and also yields a higher twist contribution to R which is independent

of x, and therefore does not decrease at large values of x for small values of Q2.

C.9 Results

We have compared the existing data on R to the various theoretical formalism. We

have extrapolated parton distribution to lower Q2 by matching them to the GRV

parton distributions which are valid down to Q2 = 0.3 GeV2. We �nd that the

QCD predictions provide a good description of R at low values of x. However, the

QCD e�ects are not enough to explain the data at large x and at low values of Q2.

We �nd that the target mass corrections of Georgi and Politzer [12] �t the data

better than the target mass e�ects of Sanchez Guillen et al [85] at large x. We also

�nd that the data require the addition of a small higher twist contribution. We

�nd that a simple parameterization of the higher twist contribution to R (of the

form A[(Q2 �B)=(Q4 +C)]) �ts the data much better than the form proposed by

Sanchez Guillen et al [85]. At present, there is no experimental measurements of

R for x values less than 0:1. Therefore, muon and neutrino experiments have used
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empirical �ts [63, 24] to extrapolate to low values of x. Experiments at HERA

have used the order �s QCD predictions [82] for R at extremely low values of

x. Our study indicates that a better estimate of R at low x can be obtained by

using the QCD predictions to order �2
s, with the inclusion of the Georgi-Politzer

target mass e�ects (which are very small at small x), and adding our empirical �t

to the higher twist contributions. Since most of the data at small x is described

by QCD, the only extrapolation that is involved is the extrapolation of the small

contribution from higher twist e�ects. However, the predictions for R at very low

x also strongly depend on the gluon distribution.

Figure C.1 and C.2 show the results of our work. The predictions of QCD to

order �2
s with various parton distributions and with the inclusion of the Georgi-

Politzer target mass corrections account for most of the data. The �t includes

a small higher twist contribution of the form A[(Q2 � B)=(Q4 + C)]. For small

values of the coeÆcients B and C, and Q2 values between 5 and 10 GeV2 the higher

twist expression reduces to A=Q2. Therefore, the coeÆcient A can be identi�ed

with 8K2
T ( where KT is a measure of the intrinsic transverse momentum of the

partons). Figure C.1(a) shows the data versus x for �xed Q2. The parameters

have been included to account for non-perturbative e�ects which must be there

to insure that R goes to zero at the Q2 = 0 photoproduction limit. The best �t

[RTM+HT(2)] to the data (for Q2 > 0:4 ), using MRSA parton distribution , yield

A=0.42, B=0.99, and C=0.31. The �t value for A =8K2
T implies an reasonable

intrinsic KT of about 0.22 GeV. Figure C.1(b) show the same data for �xed x

versus Q2. Figure C.2 shows the lowest x data and our predictions for R in the low

x CCFR and NMC region (x = 0:01) and for the low x HERA region (x = 0:001

and x = 0:0001 ). Also shown are the extrapolation of our previous empirical

�t (Rworld) for R used by the NMC muon collaboration. The new MRSA based

prediction for R is a better one to use when extracting F2; from low x data (e.g.
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Figure C.1: R at �xed Q2 versus x for x > 0:1: R(1) is the QCD prediction to
order �s. R(2) is the QCD prediction to order �2

s. RTM(2) includes the GP target
mass corrections, and RTM+HT(2) includes our �t to the higher twist e�ects.
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Figure C.2: R at �xed x versus Q2 for x > 0:1: R(1) is the QCD prediction to
order �s . R(2) is the QCD prediction to order �2

s. RTM(2) includes the GP target
mass corrections, and RTM+HT(2) includes our �t to the higher twist e�ects.
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Figure C.3: R at �xed x versus Q2: RTM+HT(2) is the QCD prediction to order
�2
s including the GP target mass corrections, and our �t to the higher twist e�ects.

It has been calculated using various parton distribution and compared the old
empirical �t Rworld.

NMC and CCFR at x = 0:01 ). We are currently investigating if the use of a

better parameterization of R can reduce the small di�erence between NMC and

CCFR results for F2 at small values of x.

Most parameterizations of the gluon distributions yield similar results for R

for values of x > 0:1. Therefore, it is possible that our �t to the Q2 dependence

of the higher twist e�ects in R ( which appear to be independent of x over the

x range where there is data) is a reasonable estimate and may be extrapolated

to much lower values of x (under the assumption that the contributions of higher

twist are not strongly dependent on x). At very low x, the predictions (to order
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�2
s) of the MRSD0

� and the MRSA distributions are very di�erent due to very

di�erent gluon distributions. The target mass e�ects at small x are very small and

only the higher twists and non-perturbative contributions at low Q2 are not well

known. Figure C.2 indicates that by having a reasonable estimate of the higher

twist e�ects from the data at higher values of x, one can use data on R to constrain

the gluon distributions at low x, even when the data are at low values of Q2. At

present, the MRSA distributions are a good �t to the HERA data on F2; while the

MRSD0
� predictions for F2 can be used as a conservative estimate (i.e. 2�) of the

systematic error at the low values of x of HERA. Therefore, our predicted values

for R in the HERA region have an uncertainly from gluon distributions of order

half the di�erence between those using MRSA and MRSD0
�.
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Appendix D

Particle Composition Study of the

Hadron Calibration Beam

D.1 Introduction

The NuTeV experiment collected hadron, electron and muon calibration beam

data continuously throughout the running period. These data are used to obtain

a precise calibration of the NuTeV calorimeter for the 1996-97 data run. The goal

of the test beam hadron energy calibration run is to reach an uncertainty in the

hadron energy scale of less than 0.3%. This low level of uncertainty reduces the

systematic errors in both the charged current and neutral current analysis. In

order to achieve this aim, the electron background in the hadron beam has to be

studied. This is because the response of the NuTeV calorimeter to electrons is

almost 10 % higher than the response to hadron showers. Therefore, the electron

events must be removed from the hadron samples. However, the cuts to remove

electrons must not introduce any bias in the determination of the hadron energy

scale. Furthermore, the anti-protons in the hadron beam may also show a higher



260

shower response (about 1 GeV) than pions and kaons. This is because anti-proton

interactions can also include the annihilation of an anti-proton with a proton near

the end of the shower development region. This additional energy could be an

important correction in the calibration at low hadron energies (e.g. 10 GeV).

Therefore, the shower response and fractional contamination of anti-protons in the

hadron beam needs to be investigated as a function of energy for the various test

beam tunes, especially at low energies.

D.2 Cerenkov counter

The Cerenkov counter provides good particle identi�cation for pions, kaons, anti-

protons, and electrons. The identi�cation depends on the pressure setting of

the counter, relative to threshold pressure for each particle type. The thresh-

old pressure, Pm to emit Cerenkov light is given by a following relation, Pm =

(1=K)(�2c +(m=p)2), where K is the gas constant, �c is the angle of Cerenkov light,

and m & p are mass and momentum of the particle, respectively. The NuTeV

Cerenkov counter located in front of NKC beam line [91] includes two photo-

multiplier, C1 and C2, to collect Cerenkov emission lights at two di�erent angle

regions. The photomultiplier, C1 accepts Cerenkov emission light from small an-

gles (< 5 mrad), while the C2 phototube accepts light at the higher angles (> 5

mrad). Therefore, C1 accepts light produced by heavier particles while C2 accepts

light produced by lighter particles. Figure D.1 shows the threshold pressure of the

Cerenkov counter gas (N2) as a function of energy for particles (�, K, p) to produce

light which is detected by the C1 and C2 phototubes, respectively.
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Figure D.1: The threshold pressure of the Cerenkov counter gas (N2) for �, K,
and p as a function of energy to produce light which is detected by the C1(a) and
C2(b) phototubes.

D.3 Data selection

We designed special hadron runs for which good particle identi�cation could be

done using the Cerenkov counter. One run type is a \pressure scan run". In such

runs, we vary the pressure of the N2 gas in the Cerenkov counter from 10 to 600

tor. These data are used to check the threshold pressure for each particle species,

and determine the fraction of each particle species in the beam. Another run type

is a \special pressure run". For this type of running one sets the pressure in the

counter to a �xed value just above the threshold for a speci�c particle species. In

addition, many regular hadron calibration runs were taken with N2 gas pressure

set to under 100 tor. These runs provide good particle separation at low energy.

Table D.1 gives a summary of the various calibration data used in this analysis.

The various possible con�gurations for particle separation, including the operating

pressure for the gas in the Cerenkov counter, are given in the table.

In order to select good hadronic shower events, and assure calibration beam

data of high quality, we apply the following cuts:
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� Trig 5 and IGATE = 6 (slow spill)

� Number of hits in the chamber for both x,y view: � 3

� Good test beam track (tb-good-track = true).

� Test beam momentum: jÆpj < 4�

� Event vertex: jÆVxj < 4�, jÆVyj < 4�

� Cruncher Place > 80 and NSTIME = 1

� CEXIT > 70 ( 5 GeV), 60 (7.5, 10, 15 GeV), 50 (20, 30 GeV), 40 (� 50

GeV)

Figure D.2 shows one typical example that demonstrates the excellent particle

identi�cation for anti-protons, kaons, and pions in a 50 GeV hadron beam (after

the above cuts are applied). Here, the Cerenkov counter is used with the pressure

of the N2 gas set to 160 tor. The small angle C1 photomultiplier collects Cerenkov

light from kaons, and the large angle C2 collects the light from pions. Anti-protons

do not produce any Cerenkov light because this pressure is below the anti-proton

threshold. Therefore, the peak in the pedestal region represents the anti-proton

events.

Once a reliable beam particle identi�cation procedure is in place (as shown in

the above example), it is straight forward to measure both the fraction of each

particle type in the hadron beam, and the calorimeter response to hadron showers

generated by di�erent particles. However, the small signal in the pedestal region

could also originate from an ineÆciency of C1 and C2. Therefore, we have done

a study of the ineÆciency of the C1 and C2 phototubes. In order to study the

ineÆciency of C2, we select a 150 GeV hadron run for which the pressure is set be

above threshold for all particle species. In such a run, pedestal events at C2 should
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Pion

Pbar

Kaon

Figure D.2: A scatter plot of C1 versus C2 ADC at 50 GeV with gas pressure set
to 160 tor. Excellent particle separation for �(C1), K(C2), p(pedestal region)
is achieved.

not appear except when the C2 phototube is not eÆcient. Figure D.3[Right] show

no pedestal events in the 150 GeV data with the Cerenkov N2 gas set to a pressure

of 100 tor. This indicates that the ineÆciency of C2 is less then 0:008%. However,

we cannot use this method to measure the ineÆciency of C1. The angular accep-

tance region for the C1 phototube is very restricted (less than 5 mrad). Though

there is emission of Cerenkov light, the light at higher angles is not detected by

C1 (but is detected by C2). The Cerenkov light for C1 can be measured only at

a speci�c pressure region where the emission is produced with less than 5 mrad

angle. We use clean 30 GeV muon sample from the \pressure scan run" to do a



264

Figure D.3: (Left) A scatter plot of the C1 ADC versus pressure for a sample muons
identi�ed in the calorimeter. There is one pedestal event in the region between
40 and 80 tor. (Right) A lego plot of C1 versus C2 ADC signals for 150 GeV run
which includes all hadrons. There are no pedestal events for C2

measurement of the C1 ineÆciency. The clean muon sample is obtained (without

using any Cerenkov information) from the CEXIT information in the calorimeter

(CEXIT is the last counter for which the particle exits the calorimeter, and muons

are identi�ed by traversing a large number of counters). Figure D.3[Left] shows

a scatter plot of the C1 ADC versus pressure. There is only one pedestal event

in the C1 trigger region (between 40 and 80 tor) in the muon data sample. This

event could also originate from a kaon which decays in the region after Cerenkov

counter. Therefore, the ineÆciency of C1 less than 0:25%

D.4 Particle composition of the hadron beam

Figures D.4 and D.5 show that excellent particle separation between the electrons,

pions, kaons, and anti-protons in the hadron beam can be achieved by using the

Cerenkov information. The particle identi�cation criteria which correspond to each
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of the signals on the plots are described in table D.1. A summary of particle com-

position in the hadron beam for various hadron energy tunes is given in table D.2.

To estimate the electron background at 30 GeV, we use the \pressure scan run"

data, as there were no \special pressure run" data to separate electrons from pions

at 30 GeV. For the 30 GeV data, Figure D.6 shows a scatter plot of the C1 ADC

versus pressure from all particles except muons (which are removed from the sam-

ple using the information in the calorimeter). No Cerenkov light is observed in the

signal region (between 20 to 70 tor) expected for electrons. This indicates that the

electron background is less than 0.25%. The electron contamination in all hadron

data for energies above 20 GeV is found to be negligible. (This was achieved by

placing a thin lead degrader in the hadron beam line spectrometer). However, at

low energy (P < 15 GeV), we notice that the electron background is signi�cant and

can vary depending on whether it is a pure or mixed tune [91]. We also �nd that

the contamination of anti-protons in the hadron sample is about 3% over a broad

range of beam energies. Below 10 GeV, we are not able to extract the fraction of

anti-proton from the Cerenkov counter information. The Kaon contamination in

the beam varies from 6% to 2%, depending on the beam energy.

D.5 The e�ect of anti-protons in the beam

In order to compare the energy deposition in the calorimeter from hadron showers

which are initiated by di�erent incident hadron (�, K, p), we de�ne the total

shower energy to be the sum of the energy in 20 counters starting at cruncher

PLACE and ending on PLACE-19. Figure D.7 shows the calorimeter hadron

energy distributions for 50 GeV tunes for pions(�), kaons(K), and anti-protons(p).

Figure D.8 also shows the same distributions for 30 GeV tunes. We �nd that the

mean of the calorimeter shower energy for incident kaons is the same as the mean
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Figure D.4: Excellent particle separation is observed for �, K, and p particles at
10, 15, 20, and 30 GeV.

of the calorimeter energy for incident pions

We also �nd that the calorimeter shower energy for incident p0s is slightly

higher than the shower energy for kaons and pions. This is expected from the

p � p annihilation process, which is likely to occur near the end of the shower

development region. Figure D.9 shows the absolute di�erence in the shower energy

for anti-proton tags( which sometimes include kaons) and pions. At low energy
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Figure D.5: Excellent particles separation is observed for �, K, and p particles at
50, 75, 100, and 120 GeV

(below 30 GeV), the calorimeter shower energy with incident p0s is about 1 GeV

higher than the calorimeter shower energy with incident pions. Note that it is

possible that there is as much as a 50% Kaon contamination in the anti-proton

sample. Since the absolute energy scale of hadron showers is normalized to response

for pions, we need to correct for the di�erent shower response of the small number

of anti-protons in the beam. The relative shower response (normalized to the pion
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Figure D.6: A scatter plot of C1 versus pressure for 30 GeV hadron running.
Cerenkov light from electrons in the beam is expected for pressures between 20 and
70. These data indicate that the electron contamination in the beam in negligible.

shower response) of the calorimeter as measured with kaons and anti-protons is

given in table D.3. Also shown is the correction that needs to be applied to the

mean energy of test beam hadrons, such as to yield the correct mean for a sample

of pure pions. At high energy (� 50 GeV), the annihilation e�ect (the extra 1 GeV)

from the anti-proton contamination in the beam is negligible (< 0.03%). However,

this e�ect becomes very important at lower energy. At 5 GeV, the correction can

be as large a 1% level (for a 5% antiproton fraction). The correction depends on

the fraction of anti-protons in the beam. Unfortunately, the Cerenkov information

cannot be used to separate anti-protons from pions below 10 GeV. Therefore, we
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      Pion

Figure D.7: A scatter plot of the C1 and C2 ADCs. Also shown are the calorimeter
hadronic energy distributions for p, K, and � particles in a 50 GeV beam.
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Pbar + Kaon

 Pbar + Kaon

Figure D.8: A scatter plot of the C1 and C2 ADCs. Also shown are the calorimeter
hadronic energy distributions for p+K and � particles in a 30 GeV beam.
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Figure D.9: The di�erence between the energy response of the calorimeter for anti-
protons (or anti-protons/kaons) and incident pions as a function the energy of the
hadron.

use a production model that was �t to data for p-p collision at 800 GeV (from a

Fermilab technical report). This model, with a beam Monte Carlo (which includes

decays of pions in 
ight) indicates that the contamination of anti-protons at 10

GeV is about 3%.

D.6 E�ect of the �3 electron rejection cut on the

hadron energy

The large electron background in the low energy hadron beam can be clearly

removed using the Cerenkov information without introducing any bias in the de-

termination of the hadron energy scale. However, many of the calibration beam

data were taken without Cerenkov information. Therefore, we investigate other

ways to remove the electron background from the data. We investigate using an
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�3 cut, where �3 is de�ned as the ratio of the shower energy deposition in the

�rst 3 counters (84, 83, and 82) to the total shower energy. Figure D.10 shows

the distributions of �3 for electron and hadron showers. Also shown in the �gure

is the distributions for �003 , which is a 3-counter sum based on the three counters

which follow the true hadron interaction place as de�ned by our standard algo-

rithm (NNPLACE). This corrects for the fact that some hadrons do not interact

in the �rst three counters. The �3 distribution for electrons clearly show that the

�3 cut (�3 < 0:9) removes all electrons ( 99.97%) in the hadron beam.

The question is whether this �3 cut also introduces any bias in the hadron

energy measurement. If hadron events with a large electromagnetic component in

the beginning of the shower (from true hadron place) are removed by this �3 cut,

the measured mean hadron shower energy could be reduced. In this study, we use

a sample of hadrons for which the electron contamination can be removed by using

the Cerenkov information. For this pure sample of hadrons, we �nd that the ratio

of the hadronic energy, Ehad (�3 > 0:9) and Ehad (�3 < 0:9) do not show any

di�erence in the mean hadronic energy, as shown in Figure D.11. However, a clear

di�erence is seen if the variable �003 is used.

We conclude that we observe no di�erence between the response of the calorime-

ter to events with �3 > 0:9 and events with �3 < 0:9 at the 0.5% level (which is

the size of the statistical errors). Therefore, applying this cut to the data yields a

correction which is less than 0.05%. (This is because the fraction of of events with

�3 > 0:9 is about 10%). Therefore, we can safely apply the �3 cut to hadron beam

data at low energies(� 20 GeV) to remove the electron contamination (for runs

for which the Cerenkov information could not be used). At high energies (� 30

GeV), the �3 cut should not be used because the electron background is completely

negligible.
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Figure D.10: The distribution of �3 for the electron and hadrons (top and middle
plots). The distribution of �3" (bottom plot).
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Table D.1: A survey of hadron calibration data used in this analysis

TB Momentum Cerenkov Description
(GeV) gas/pressure (tor)

5 N2 / 100 Only separation (e/hadron)
Ped(�, K, p), C2(e)

7.5 N2 / 100 Only separation (e/hadron)
Ped(�, K, p), C2(e)

10 N2 / 100 Only separation (e/hadron)
Ped(�, K, p), C2(e)

15 N2 / 100 Good separation (e/�/K,p)
Ped(p, K), C1(�),C2(e)

20 N2 / 100 Good separation (e/�/K,p)
Ped(p,K), C1(�),C2(e)

30 N2 / 100 Good separation (e,�/K,p)
Ped(p,K),C2(�,e)

N2 /10 - 600 Good for checking electron contamination,
and ineÆciency of C1

50 N2 / 160 Good separation (�/K/p)
Ped(p), C1(K), C2(�)

N2 / 100 Only separation (�/K,p)
Ped(p, K), C2(�)

N2 / 35 Only separation (�/K,p)
Ped(p, K), C1(�)

75 N2 / 92 Good separation (�/K/p)
Ped(p), C1(K), C2(�)

N2 / 100 Good separation (�/K/p)
Ped(p), C1(K), C2(�)

100 N2 / 100 Only separation (�,K/p)
Ped(p), C2(K, �)

120 N2 / 65 Good separation (�/K/p)
Ped(p), C1(K), C2(�)

N2 / 100 Only separation (�,K/p)
Ped(p), C1(K), C2(�)

150 N2 / 100 No separation for (p/K/�)
C2(p, K, �)
Good for checking ineÆciency of C2
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Table D.2: A summary of particle composition (e, �, K, p) of the hadron calibra-
tion beam.

TB Momentum Tune Electron Hadron fraction(%)
(GeV) fraction(%)

5 pure 92 8
mixed 93 7

7.5 pure 72 28
mixed 83 17

10 pure
mixed 68 32

15 pure 66 34 (p+K:4.1, �:95.6)
mixed 74 26 (p+K:3.6, �:95.6)

20 pure < 1% > 99 (p+K:4.5, �:95.5)
30 pure < 0.25% > 99.75 (p+K:5.1, �:94.9)
50 pure 100 (p:3.0, K:3.1, �:93.9)
75 pure 100 (p:3.2, K:5.1, �:91.7)
120 pure 100 (p:2.8, K:6.2, �:91)

Table D.3: A summary of the anti-proton shower e�ect on the hadronic energy

TB Momentum shower response p correction
(GeV) (normalized to pion) to Ehad (%)

5 Assuming 5% p < �1%
10 Assuming 4% p < �0:4%
15 p+K: 1:054� 0:017 -0.24
20 p+K: 1:033� 0:010 -0.15
30 p+K: 1:027� 0:006 -0.14
50 p: 1:011� 0:006 -0.033

K: 0:995� 0:006
75 p: 1:008� 0:004 -0.026

K: 0:997� 0:004
120 p: 1:005� 0:004 -0.014

K: 0:998� 0:003
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Figure D.11: The ratio of the mean hadronic for events with �3 > 0:9 and events
with �3 < 0:9. No di�erence is observed. In contrast, the events with �003 > 0:9
have a higher response than events with �003 < 0:9.


