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Abstract

We present a search for tt production in events having dielectron final
states in 120.2+ 6.5 pb-1 of pp collisions at \'s = 1.8 TeV using the D@
detector. This analysis has been optimized to search for a heavy top quark (ie.
Mgop > 140 GeV/c2). One candidate event is seen with a background estimated
to be 0.82 + 0.08 events, giving a cross section of 0.9 + 5.0 pb if m¢p = 170
GeV/c2. Therefore, no conclusive evidence for top production is seen in this
channel. Assuming the candidate is not top, we obtain an upper limit to the
dielectron branching ratio for tt events to be < 3.8 % at the 95% confidence
level if miop = 170 GeV/c2. In the process of this analysis we have studied the
reponse of the D@ U/LAr calorimeter to jets using direct photon candidate
events. A number of systematics have been studied which result in a
cumulative systematic error which varies from 5% at low and high energy (10
GeV and 500 GeV, respectively) to 2% at 80 GeV. The response to jets relative

to the electromagnetic scale is found to behave as 0.77+0.0240In(E,,) as

expected from test beam and Monte Carlo studies.
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The Road goes ever on and on
Down from the door where it began.
Now far ahead the Road has gone,
And | must follow, if I can,
Pursuing it with weary feet,
Until it joins some other way,
Where many paths and errands meet.
And whither then? | cannot say.

Fellowship of the Ring, J. R. R. Tolkien

When | heard the learn'd astronomer,

When the proofs, the figures, were ranged in columns before me,

When | was shown the charts and diagrams, to add, divide, and measure
them,

When | sitting heard the astronomer where he lectured
with much applause in the lecture-room.

How soon unaccountable | became tired and sick,

Till rising and gliding out | wander'd off by myself,

In the mystical moist night-air, and from time to time,

Look'd up in perfect silence at the stars.

Leaves of Grass, Walt Whitman
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