
@ Fermi National Accelerator Laboratory

TM-1539

VII
VME/IORFI-II Interface Routines

Dean Alleva
Development and Evaluation Group

RDK!OlTlpUtiItg
Fermi NationaJ Accelerator Laboratory
P.O. Box KKJ, Batavia, Illinois 60510

July 7, 1988

$ Operntad by Unlversilies Research Association Inc. under contract with the United States Department of Energy

VII
VME/IORFI-II Interface Routines

-Version-
S0ftware:l.O
Document:l.O

July 7, 1988

Dean Alleva
Development and Evaluation Group

RD/Computing
Fermi lab

1
2
3
4
5
6
6.1
6.2
6.2.1
6.2.3
6.3
6.3.1
6.3.2
6.4
6.4.1
6.4.2
6.4.3
6.4.4
6.4.5
6.4.6
7
7.1
8

TABLE OF CONTENTS

INTRODUCTION
PILS AND VALET-PLUS.....................
VII FILES
VII PARAMETERS
STATUS CODES
THE TRANSACTION ROUTINES

Initialization and Control Parameters . . .
Read and Write Data

Single Word Transfers
Block Transfers

Read and Write CSR
Single Word Transfers
Block Transfers

Single Cycle Operations
Arbitration Cycle
Bus Release
Bus Disconnect
Primary Address Cycle
Secondary Address Cycle
Data Cycle

STATUS REPORTING ROUTINES
Status messages

REFERENCES

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

Page 2

. . .
.

. . .
.
.
.
.

......

......

......

......

......

......

......

......

......

......

......

......

......

......

.3

.4

.5

.6

.7

.8

.8
12

,: 12
. . 14
. . . 15
. . 15
. . 17
. . . . 16
. . . . 16
. . 16
. . 18
. 19

. . . 20
. . . . 21
. . . . 22
. . . . 23
..,. 24

Page 3

1 INTRODUCTION

This document describes the VME/IORFI-II Interface routines
(VII). These routines where designed to meet two needs. First, the
routines enable programs written in PILS running on a MVME 101 under
Valet-Plus to control an IORFI-II interface from VME [l], [2].
Secondly, the routines provide a high level language version of the
FASTBUS standard routines for the IORFI-II which can easily be
translated into other high level languages (like C). The routines
fall into two general types, control and transaction. The control
rountines work directly with the interface registers. These routines
set up and monitor operations between VME and the IORFI-II. The
control routines are usually used indirectly by the programmer through
the transaction routines. The transaction routines, such as
VII WRITE DAT, use the control routines to carry out complete
functions- on FASTBUS. Most FASTBUS operations have been implemented
except for the compound routines and some low level routines.

To facilitate access to the IORFI-II registers from VME, a
Super-VIOR DMA board was used as a set of I/O registers tied to the
IORFI-II’s front panel connectors [3]. The DMA controller on the
Super-VIOR was not used and a much simpler board (only containing a
set of four registers accessable from VhiE) could replace the
Super-VIOR.

The routines are written in PILS, a high-level language similar
to BASIC and Pascal which is powerful and fast enough for most
applications [l]. However, PILS has proven to be too slow for
efficent control of the IORFI-II. This is discussed further in the
next section along with a discussion of possible future
implementations of the routines.

This document is divided into eight sections, the first being the
introduction. The remaining sections detail the PILS and Valet-Plus
system, the VII files, the VII parameters, error code design, FASTBUS
transaction routines, error reporting routines and finally a reference
section.

It is assumed that the reader is familiar with VME, FASTBUS, and
has some knowledge of the IORFI-II [2] . A copy of the VII software is
available on BitNet at Fermilab as

“FNAL::USRSROOT:[ALLEVA.PUBLIC]VII.DEF”
“FNAL::USRSROOT:[ALLEVA.PUBLIC]VII.CNT”
“FNAL::USRSROOT:[ALLEVA.PUBLIC]VII.LBR’

These files are detailed in section three (3).

Page 4

2 PILS AND VALET-PLUS

The VII routines were written in PILS and executed on a 8 MHz
Motorola 68000 processor [4]. The Valet/PILS system has proven to be
adequate in performance for several other projects but falls short
when controlling the IORFI-II. The IORFI-II interface requires a high
level of program control and monitoring and its performance is
directly dependent on program performance. Transfer time per 32-bit
word on FASTBUS during block transfers was greater than 100
microseconds. This is about 4 times faster than already existing
software on other machines.

To improve speed, some of the VII code was rewritten in machine
code and executed on a 16 MHz Motorola 68020 processor
Preformance increased to 8 microseconds per 32-bit transfer. S FL
this software has not exceeded the system bandwidth, further speed
increases could be ga i ned with faster processors. Future
implementations of the VII routines will be coded in C giving much
higher performance than PILS and allowing the code to be easily
transfered to faster processors. Transfer rates of l~megabyte per
second seem to be possible without any changes to the IORFI-II.

Page 5

3 VII FILES

The VII code is divided into three files. The first, VII.DEF,
contains definitions for constants used by the VII routines. These
constants include the IORFI-II register bitmaps and function
defintions as well as the VII status codes. All of the constants are
accessable to user programs.

The second file, VII.CNT, contains the control routines which set
up and maintain operations on FASTBUS. These routines supply the
necessary “intelligence” for the control of the IORFI-II during
FASTBUS arbitration cycles, address cycles, single word transfers,
block transfers and when releasing the bus. The control routines are
accessed by higher level library routines and are not designed to be
accessed directly by user programs.

The final file, VII.LIB, contains the FASTBUS standard routine
I ibrary. These routines are supplied in two forms, full name and
short name. Most of the standard routines are defined except for the
compound routines Andy FASTBUS signal line access routines. Most of
the unimplemented routines, however, can be built from the existing
routines.

All of the above files must be loaded into the PILS system in the
order shown below.

> load getput.lib ! File that defines get’s and put’s
! for WE memory access.

> load vii.def
> load vii.cnt
> load vii.lib
> compile

Page 6

4 VII PARAMETERS

A user program may set VII parameters during execution to enable
or disable features or set control values. Below is a list of the VII
parameters, the routines which set them and what each parameter does.
Rote that.each parameter has its own associated routine and that some
of them can also.be set by VII-INITIALIZE.

Parameter Rout i ne Default
------- -------
VII SET CK TIMER
or VII-TNITIALIZE (d i sib I ed)

GK timer

AK timer

DK timer

retry count

arbitration
vector

enable AI

enable EC

enable parity

enab I e
warnings

release bus

disconnect

release on
error

VII SET AK TIMER
or VII-TNITIALIZE (d i sib I ed)

VII SET DK TIMER
or VII-TNJTIALIZE (d i sib I ed)

VII SET RETRY COUNT 0
or VII_TNITIA~IZE

VII SET ARB VECTOR
or VII_TNITTALIZE

VII-ENABLE-AI

VII-ENABLE-EC

VII-ENABLE-PARITY

VII-ENABLE-WARN

VII-SET-REL-BUS

VII-SET-DISC

VII-SET-REL-ERROR enabled

0

disabled

enabled

disabled

enabled

enabled

disabled

Description

Set the CK timeout

Set the AK timeout

Set the DK timeout

value

value

value

Set the retry count for failed
operations.

Set arbitration vector for
FASTBUS arbitration cycles.

Causes the IDRFI-II to follow the
assured access protocol.

Causes the IORFI-II to assert
EC during address cycles.

Enable parity generation and
compare.

Enable warning status messages
to be treated as errors.

Release bus, lower GK,
after complete transaction.

Release AS/AK lock after
complete transaction. Leave
GK high.

Release bus, lower GK,
on error (after retries).

All of the above mentioned routines are described in the section
detailing with the VII routines.

Page 7

5 STATUS CODES

All VII transaction routines are functions which return status
codes. These codes indicate to the user program the completion status
of the given transaction routine. To facilitate greater flexibility,
the status codes have been implemented to allow for different
severities. Four severity levels are supported: fatal, error,
warning and informational. Status codes of fatal severity terminate
the transaction routine even if further retries are possible. Status
codes of error severity terminate the transaction routine only after
the retry count is exhausted. Warning status codes can be treated in
two ways. If warnings are enabled (see VII ENABLE-WARN above),
warning codes are treated as errors. If warnfngs are disabled,
warnings are treated as informational messages. Information messages
are reported but have no effect on program execution. The format of a
status code is shown below. The high nibble (bits 28-31) contain the
severity level, the remaining part of the word contains the status
code.

Status word: [severity 1 status code
bits: 31 - 28127 03

Severity codes: HEX 8xxxxxxx - Fatal
HEX 4xxxxxxx - Error
HEX 2xxxxxxx - Warning
HEX lxxxxxxx - Informational

Where xxxxxxx is the status code unique to each message.

Status codes may be processed either by the user program or by
passing the code to VII-STATUS. This routine first displays a
corresponding status message to the display device. The routine then
terminates execution of the program if the code is other than an
informational status code or a warning status code with warnings
turned off. If error codes are to be processed by the user program,
$ElERMESSAGE may be called with the status code instead of

This routine will display the status message but, unlike
VII-STATUS, will not terminate execution of the program. For a list
of The status codes and messages see section 7.1 .

Page 8

6 THE ROUTINES

There are two types of routines detailed here. The first section
details various VII initialization routines. The remaining sections
detail routines that do complete operations on FASTBUS from VME.
These routines are the basic building block from which more complex
routines can be built. The FASTRUS transaction routines are all
functions which return status codes.

6.1 Initialization And Control Parameters

These routines initialize the operational parameters (see section
4) and reset the IORFI-II interface. These routines are subroutines
and do not return any status codes.

1) VII-INITIALIZE (svior-add, gk_to, ak_to, dk-to, retry, arb)

Description: Resets the interface and initializes internal VII data values.
Should be the first VII call in a user program.

Parameters:
svior-add (INT32, input): VME address of Super-VIOR interface.
&-to (INT32, input): GK timeout value. For values greater

than one (l), the GK timer is enabled.
For each increment of gk to, VII
will look for GK an addiTional 50

ak to
dk-to
reGy

arb (INT32, i

2) VII-RESET

microseconds. If no response takes
place in the alotted time, a GK
timeout error is posted. If gk_to
is set to a value less than one (l),
GK timeouts are disabled.

nput): Same as gk_to but for AK responses.
nput): Same as gk-to but for DK responses.
nput): This is the retry count. When set

to a value greater than zero (0) the
VII routines will retry a failed
operation retry times.

nput): This is the arbitration vector
level to be used by the IORFI-II
during arbitration on FASTBUS.

Description: Resets the IORFI-II interface and returns the VII operational
parameters to their default state.

Page g

3) VII-SET GK TIMER (gk-timer-v= lue) - -

Description: Sets the internal GK timeout value. If gk-timer-value less
than one (l), GK timeouts are disabled. See VII-INITIALIZE
above for a description of the GK timer values.

Parameters:
gk-timer-value (INT32, input):.GK timer value, see VII-INITIALIZE.

4) VII-SET AK TIMER (ak-timer-va I ue) - -

Description: Sets the internal AK timeout value. If ak_timer-value less
than one (l), AK timeouts are disabled. See VII-INITIALIZE
above for a description of the AK timer values.

Parameters:
ak-timer-value (INT32, input): AK timer value, see VII-INITIALIZE.

5) VII-SET DK TIMER (dk_t imer-value) - -

Description: Sets the internal DK timeout value. If dk-timer-value less
than one (l), DK timeouts are disabled. See VII-INITIALIZE
above for a description of the DK timer values.

Parameters:
dk_timer-value (INT32, input): DK timer value, see VII-INITIALIZE.

6) VII-SET-RETRY-COUNT (retry-value)

Description: Sets the retry count for failed operations.

Parameters:
retry-count (INT32, input): Retry count value.

7) VII-SET-ARB-VECTOR (arb-vector-va I ue)

Description: Set the arbitration vector level to be used by the IORFI-II
during arbitration cycles on FASTBUS.

Parameters:
arb-vector-value (INT32, input): ~arbitration vector level value.

Page 10

The following routines set or clear various VII parameters (see
sect i on 4) . The routines are each passed a parameter called val. The
routines corresponding parameter is set if val is greater than zero
(0), cleared if val is less than or equal to zero (0).

8) VII-ENABLE-AI (va I)

Description: Enable or disable assured access protocol during arbitration
cycles on FASTBUS.

Parameters:
val (INT32, input): sets/clears the AI enable flag.

9) VII-ENABLE-EG (va I)

Description: Enable or disable the EG line assertion by the IORFI-II
during address cycles on FASTBUS.

Parameters:
val (INT32, input): sets/clears the EG enable flag.

10) VII-ENABLE-PARITY (va I)

Description: Enable or disable parity generation (during FASTBUS writes) and
parity compare (during FASTBUS reads).

Parameters:
val (INT32, input): sets/clears the parity enable flag.

11) VII-ENABLE-WARN (va I)

Description: Enable or disables warning messages to be treated as error
messages. If disabled, warning messages are displayed but
do not cause a program to abort. See section 7.2 for details
on status codes.

Parameters:
val (INT32, input): sets/clears the warning enable flag.

12) VII-SET-REL-BUS (va I)

Description: Sets or clears the release bus flag. GK will be lowered on
exiting a transaction routine, not a primitive routine
(such as VII-CYCLE-PA).

Parameters:
val (INT32, input): sets/clears the release bus flag.

Page 11

13) VII-SET-DISC (va I)

Description: Sets or clears the disconnect flag. AS/AK lock is released
on exiting a transaction routine, not a primitive routine
(such as VII-CYCLE-PA).

Parameters:
val (INT32, input): sets/clears the disconnect flag.

14) VII-SET-REL-ERROR (va I)

Description: Sets/clears the release bus on error flag. GK is lowered on
exiting a transaction routine, not a primitive routine
(such as VII-CYCLE-PA), if the routine exits with an error.

Parameters:
val (INT32, input): sets/clears the release bus on error flag.

Page 12

6.2 Read And Write Data

3.2.1 Single Word Transfers -

1)

2)

3)

4)

VII READ DAT (rword, pradd,
VIIRD (riord, pradd, scadd)

Description: Does a single word transfer from FASTBUS data space.

Parameters:
rword (INT32, output) : returned, 32-bi t va I ue read from FASTBUS.
pradd (INT32, input): Primary address.
scadd (INT32, input): Secondary address.

VII-WRITE-DAT (wword, pradd, scadd)
VIIWD (wword, pradd, scadd)

Description: Does a single word transfer into FASTBUS data space.

Parameters:
wword (INT32, output): the 32-bit word to be written.
pradd (INT32, input) : Primary address.
scadd (INT32, input): Secondary address.

VII READ DAT MULT (rword, pradd, scadd)
VIIi?DM Fwora, pradd, scadd)

Description: Does a broadcast single from FASTBUS data space.

Parameters:
rword (INT32, output) : returned 32-bit value read from FASTBUS.
pradd (INT32, input): Primary address.
scadd (INT32, input): Secondary address.

VII-WRITE-DAT-MULT (wword, pradd, scadd)
VIIWDM (wword, pradd, scadd)

scadd)

Description: Does a broadcast single word transfer into FASTBUS data space.

Parameters:
wword (INT32, output): the 32-bit word to be written.
pradd (INT32, input) : Primary address.
scadd (INT32, input): Secondary address.

Page 13

5) VII READ DAT-SA (rword, pradd)
VIIKDSA Trword, pradd)

Description: Does a single word transfer from the NTA register
in FASTBUS data space.

Parameters:
rword (INT32, output): returned 32-bit value read from FASTBUS.
pradd (INT32, input) : Primary address.

6) VII WRITE DAT SA (wword, pradd)
VIIWDSA fiwora, pradd)

Description: Does a single word transfer to the NTA register in
FASTBUS data space.

Parameters :
wword (INT32, output): the 32-bit word to be written.
pradd (INT32, input) : Primary address.

Page 14

6.2.2 Block Transfers -

1) VII READ DAT BLOCK (bfadd, wet, pradd, scadd)
VIIi?DB (6fad7, wet, pradd, scadd)

Description: Does a block transfer to VBE memory from FASTBUS data space.

Parameters:
pradd (INT32, input): Primary address.
scadd (INT32, input): Secondary address.
bfadd (INT32, input): VME memory address where block is

transfered.
wet (INT32, input): Number of 32-bit words to transfer.

2) VII WRITE DAT-BLOCK (bfadd, wet, pradd, scadd)
VIIWDB (bTadd, wet, pradd, scadd)

Description: Does a block transfer from VME memory into FASTBUS data space.

Parameters:
pradd (INT32, input): Primary address.
scadd (INT32, input): Secondary address.
bfadd (INT32, input): VME address of transfer block.
wet (INT32, input): Number of 32-bit words to transfer.

3) VII READ DAT BLOCK MULT (bfadd, wet, pradd, scadd)
VIIRDBM -(bfaJd, WC%, pradd, scadd)

Description: Does a broadcast block transfer to the VME memory from
FASTBUS data space.

Parameters :
pradd (INT32, input): Primary address.
scadd (INT32, input): Secondary address.
bfadd (INT32, input): VME address of buffer for transfer block.
cnt (INT32, input): Number of 32-bit words to transfer.

4) VII WRITE DAT BLOCK MULT (bfadd, wet, pradd, scadd)
VIIWDBM &fada, wets pradd, scadd)

Description: Does a broadcast block transfer from VME memory into
FASTBUS data space.

Parameters:
pradd (INT32, input) : Primary address.
scadd (INT32, input): Secondary address.
bfadd (INT32, input): VME address of transfer block.
cnt (INT32, input): Number of 32-bit words to transfer.

Page 15

6.3 Read And Write CSR

6.3.1 Single Word Transfers -

1) VII READ CSR (rword, pradd, scadd)
VIIFC (riord, pradd, scadd)

Description: Does a single word transfer from FASTBUS control space.

Parameters :
rword (INT32, output) : returned 32-bit va I ue read from FASTBUS.
pradd (INT32, input) : Primary address.
scadd (INT32, input): Secondary address.

2) VII WRITE CSR (wword, pradd, scadd)
VIIWC (wwxrd, pradd, scadd)

Description: Does a single word transfer into FASTBUS control space.

Parameters:
wword (INT32, output): the 32-bit word to be written.
pradd (INT32, i nput) : Primary address.
scadd (INT32, input): Secondary address.

3) VII READ CSR MULT (rword, pradd, scadd)
VIIi%X Fwora, pradd, scadd)

Description: Does a broadcast single from FASTBUS control space.

Parameters:
rword (INT32, output): returned 32-bit value read from FASTBUS.
pradd (INT32, input) : Primary address.
scadd (INT32, input) : Secondary address.

4) VII WRITE CSR MULT (wword, pradd, scadd)
VIIWCM (w;ordS pradd, scadd)

Description: Does a broadcast single word transfer into FASTBUS control
space.

Parameters :
wword (INT32, output): the 32-bit word to be written.
pradd (INT32, input) : Primary address.
scadd (INT32, input): Secondary address.

Page 16

5) VII READ CSR SA (rword, pradd)
VIIFCSA TrwoFd, pradd)

Description: Does a single word transfer from the NTA register
in FASTBUS control space.

Parameters:
rword (INT32, output): returned 32-bit value read from FASTBUS.
pradd (INT32, input): Primary address.

6) VII WRITE CSR SA (wword, pradd)
VIIWCSA (;;wora, pradd)

Description: Does a single word transfer to the NTA register in
FASTBUS control space.

Parameters:
wword (INT32, output): the 32-bit word to be written.
pradd (INT32, input): Primary address.

Page 17

6.3.2 Block Transfers -

1) VII READ CSR BLOCK (bfadd, wet, pradd, scadd)
VIIRCB efada, wet, pradd, scadd)

Description: Does a block transfer to VME memory from FASTBUS control space.

Parameters:
pradd (INT32, input) : Primary address.
scadd (INT32, input): Secondary address.
bfadd (INT32, input): VBE memory address where block is

transfered.
wet (INT32, input): Number of 32-bit words to transfer.

2) VII WRITE CSR BLOCK (bfadd, wet, pradd, scadd)
VIIWCB (bfaddy wet, pradd, scadd)

Description: Does a block transfer from VME memory into FASTBUS control
space.

Parameters:
pradd (INT32, input): Primary address.
scadd (INT32, input): Secondary address.
bfadd (INT32, input): VME address of transfer block.
wet (INT32, input): Number of 32-bit words to transfer.

3) VII READ CSR BLOCK MULT (bfadd, wet, pradd, scadd)
VIIT?CBM7bfaad, wcx, pradd, scadd)

Description: Does a broadcast block transfer to the VME memory from
FASTBUS control space.

Parameters:
pradd (INT32, input): Primary address.
scadd (INT32, input): Secondary address.
bfadd (INT’32, input): VME address of buffer for transfer block.
cnt (INT32, input): Number of 32-bit words to transfer.

4) VII WRITE CSR BLOCK MULT (bfadd, wet, pradd, scadd)
VIIVCBM fifada, wet: pradd, scadd)

Description: Does a broadcast block transfer from VME memory into
FASTBUS control space.

Parameters:
pradd (INT32, input) : Primary address.
scadd (INT32, input): Secondary address.
bfadd (INT32, input): VME address of transfer block.
cnt (INT32, input): Number of 32-bit words to transfer.

Page 18

8.4 Single Cycle Operations

6.4.1 Aribration Cycle -

1) WCCLE-ARBITRATE

Description: Does an arbitration cycle, holding onto the bus when control
is gained.

6.4.2 Bus Release -

1) WC;CLE-RELEASE-BUS

Description: Releases the bus by lowering GK and AS.

6.4.3 Bus Disconnect -

1) ;;;XC;:LE-DISCONNECT

Description: Releases any AS/AK lock but leaves CK high.

Page 19

6.4.4 Primary Address Cycle -

11

2)

3)

41

VII CYCLE PA DAT (pradd)
VIIPD (pr:ddT

Description: Does a primary address cycle to data space.

Parameters:
pradd (INT32, input): The primary address.

VII CYCLE PA CSR (pradd)
VIIFC, (pFada>

Description: Does a primary address cycle to CSR space.

Parameters :
pradd (INT32, input): The primary address.

VII CYCLE-PA DAT-MULT (pradd)
VIIFDM (prada)

Description: Does a broadcast primary address cycle to data space.

Parameters:
pradd (INT32, input): The primary address.

VII CYCLE-PA CSR-MULT (pradd)
VIIPCM (prada)

Description: Does a broadcast primary address cycle to CSR space.

Parameters :
pradd (INT32, input): The primary address.

Page 20

6.4.5 Secondary Address Cycle -

1) VII CYCLE READ SA (rword)
VIIRSA (riord)-

Description: Does a secondary address cycle read. Bus mastership and primary
address cycle must be completed before using this routine.

Parameters:
rword (INT32, output): Returned word from read.

2) VII CYCLE WRITE-SA (wword)
VIIWSA (w;ord)

Description: Does a secondary address cycle write. Bus mastership and primary
address cycle must be completed before using this routine.

Parameters:
wword (INT32, input): Word to be written to NTA.

Page 21

6.4.6 Data Cycle -

11

2)

31

4)

VII CYCLE READ-WORD (rword)
VIIKW (rword)

Description: Does a single word read cycle. Bus mastership
and primary address cycles must be completed before
using this routine.

Parameters:
rword (INT32, output): word transfered.

VII CYCLE-WRITE-WORD (wword)
VI@%’ (wword)

Description: Does a single word write cycle. Bus mastership
and primary address cycles must be completed before
using this routine.

Parameters:
wword (INT32, input): word to transfer.

VII CYCLE-READ-BLOCK (bfadd, cnt)
VIIKB (bfadd, cnt)

Description: Does a block read cycle. Bus mastership
and primary address cycles must be completed before
using this routine.

Parameters:
bfadd (INT32, input): VME buffer address of block buffer.
cnt (INT32, input): size of block in 32-bit words.

VII CYCLE WRITE BLOCK (bfadd, cnt)
VIIKW (bfzdd, ciit)

Description: Does a block write cycle. Bus mastership
and primary address cycles must be completed before
using this routine.

Parameters:
bfadd (INT32, input): VME buffer address of block to transfer.
cnt (INT32, input) : size of block in 32-bit words.

Page 22

7 STATUS REPORTING ROUTINES

1) VII-STATUS (status-code)

Description: This routine is called with the status code returned from
one of the transaction or primitive routines. It displays a
message to the display device indicating the type of status
code. The routine also terminates program execution if
the status code severity level was other than informational
Warning status codes are treated as informational messages
if warnings are disabled.

Parameters:
status-code (INT32, input): status code to be processed.

2) VII-ERROR-MESSAGE (status-code)

Description: Displays. the a message to the display device corressponding to
status code.

Parameters:
status-coce (INT32, input): status code to be displayed.

Page 23

7.1 Status Messages

Status Constant

C-VIIS-SUCCESS

C VIIS GK TIMEOUT
C-VIIS-ArTIMEOUT
CIVIIS-Dlt-TIMEOUT - -

C VIIS NO AK RELEASE
CIVIIS-NO-DK-RELEASE - - -

C VIIS NET BUSY
C-VIIS-NEl-FAIL
C-VIIS-NEl-ABORT
C-VIIS-SS ;iA
C-VIIS-SS-5A
C-VIIS-SS-6A
CIVIISIIN~AL-AI

C VIIS BUSY
C-VIIS-EDB
C-VIIS-UDEF
C-VIIS-SS 4D
C-VIIS-SS-50
C-VIIS-D@R REJECT
C~VIIS~DERRIACCEPT

C-VIIS-PARITY-ERROR

Sever i ty
- - - - - - - -

error
error
error

fata I
fatal

error
fata I
error
fata I
fata I
fata I
error

error
error
fatal
fatal
fatal
error
error

warning

Code (hex)

1

Description

Operation success

40000011 GK timeout
4DOODD12 AK timeout
4DmDD13 DK timeout

8OODDD14 No AK(D) with AS(D)
80000015 No DK(D) with AS(D)

4OOODD21 Network busy (address SS=l)
8ODODD22 Network failure (address SS=2)
4DDDoO23 Network abort (address SS=3)
8ODQGQ24 Reserved address SS response 4
8CGDoO25 Reserved address SS response 5
80000026 Reserved address SS response 6
4ooODD27 AI i nva I id (S&7)

4DDDDD31 Device Busy (data SS=l)
40000032 End of block (data SS=2)
8OOWD33 User defined data SS response 3
80000034 Reserved data SS response 4
80000035 Reserved data SS response 5
4OGGD036 Data error reject (data SS=6)
40000037 Data error accept (data SS=7)

2DDDFFFF Parity error

Page 24

8 REFERENCES

PI

PI

r31

141

[51

Berners-Lee, T. et al. The VALET-PLUS, a VMEbus Microcomputer for Physics
AppllcatlOnS. Fifth conference on Real Time Computer Applications in
Nuclear, Particle and Plasma Physics- San Francisco, May 1987.

C. Rotolo and S. Chappa, I/O Register To FASTBUS Interface II,
Note FBNOl, January 1983.

Fermi lab

SUPER-VIOR, VMEbus Dual 16-bit Input/Output Register with Full DMA,
hardware description, Opifex AB publication (Version 1.1).

MVME 101 MC68000 Monoboard Computer, user’s manual, Motorola Microsystems,
MVMElOl/D2, 1983.

FIC 8230 Fast Intelligent Control, user’s manual, Creative Electronic
Systems, 1987.

