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SUMMARY

This study concerns the application of the finite-difference
time-domain, or FD-TD, technique to the analysis of transient
cavity fields. In order to reduce the amount of computer time
required, and to simplify the understanding of the results, only
two-dimensional cases were considered. The results, however, are
applicable to the study of three-dimensional cases. In two
dimensions Maxwell’s equations reduce +to two orthogonal sets
classified, according +to their field polarization, as the
transverse electric, or TE, and +transverse magnetic, or TM, cases.
Both are considered here. In order to verify the FD-TD results, an
alternative approach using the method of moments, or MOM, technique
was implemented to calculate the surface currents. The derivation
of the algorithms used for both the FD-TD and MOM codes are

presented.

The first scatterer modeled was an infinitely long solid square
copper cylinder. This geometry provided a simple test case to
become acquaintéd with the FD-TD code used. It also proved to be a
simple geometry to solve with the MOM technique. Using a
rectangular cross section allowed the square discretizations of

space to conform perfectly with the surface of the scatterer.
The two-dimensional cavity geometry chosen was a hollow slotted

cavity with an outside dimension coincident with that of the solid

square cylinder. The infinite slot provided the means of exciting

viii



SUMMARY (continued)

the interior with an external plane wave traveling along the y

axis.

For both the TE and TM polarizations, the surface current was
used to compare the FD-TD and MOM results. The MOM algorithm
solved for the surface currents directly. For the FD-TD method,

the surface currents were calculated from the magnetic fields at

the surface of the scatterer.

The FD-TD code was then modified +to investigate the surface

current amplitude in the time domain. For the TM polarization the
pole at zero frequency, due to an infinite length, was found to
have a significant effect. For the TE polarization a mode related
to the circumference of the scatterer is revealed. A fast fourier

transform applied to the time domain data helped to identify these

phenomena.

In order to excite more than one mode at a time, the incident
plane wave was given a gaussian time dependance. Results of the
application of a fourier transform to this time domain data are
presented. To improve the fourier transform results, the

application of several types of time domain windows are discussed.
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I. INTRODUCTION

1.1 Purpose for study

Many devices are used in a particle accelerator, such as the

one at Fermi Laboratory, to interact with the electromagnetic
fields of the particle beam. Resonant radio-frequency cavities are
used to accelerate the beam, large high field magnets are used to

steer the beam; and a variety of detectors are used to monitor such
things as beam position, intensity, and density. All share the
common trait of interacting with electromagnetic fields. As the
understanding of these devices improves, higher energy, more
efficient, and more reliable accelerators can be built. Since
Fermi Lab has been commissioned, +theorists have come to realize
that even the shape of the vacuum chamber the beam travels in plays
an important role in the stability of +the beam. Rescnant
structures such as vacuum bellows, detectors, or cavities can
induce modulations, or instabilities in the beam if the fields
generated by the beam passing through them are of sufficient
amplitude. These instabilities cause the beam to dilute, which
either limits maximum intensity, or requires larger aperture, or

equivalently more expensive machines (8).

This work is intended to be a study intoc the application of the
finite-difference time-domain, or FD-TD technique, to some of the
problems faced by designers of equipment used in modern

accelerators. In particular it discusses using the FD-TD algorithm



to study the field distribution of a simple two-dimensional cavity

in both space and time.

The frequency range of interest is limited to essentially DC to
several gigahertz. The interaction of passive devices with the
beam is through the frequency components contained within the beam
current. For circular accelerators, the Jlowest possible
frequencies of interest are the go-around rate and its harmonics,
the order of 10 to 100 KHz. Such things as intentional beam
steering and synchrotron frequencies may be disregarded as these
are easily controllable by other methods. Lower frequencies are
usually not a problem as the fields required to significantly
affect the beam 1increase as the frequency decreases. An upper
frequency limit is set by the beam’s velccity and the required
clear aperture. The electromagnetic fields of a relativistic point
charge are contained within an angle given roughly by 1/gamma,
where gamma is the ratioc of 1its total energy to its rest energy.
Thus for a particle velocity of .9 times the speed of light and an
aperture of 2 cm, the fields would be .84 cm wide at the inside
surface of any device. Equating this to a wavelength, the highest
frequency is about 3.6 GHz. Another upper frequency limit is the
cutoff frequency of the beam tube. Rather than building up, the

fields within a spurious resonator can propagate away.

The FD-TD algorithm is particularly well suited for this
purpose as it uses a time stepping algorithm to solve Maxwell’s

curl equations in the time domain. As implemented here, the time



dependence of the incident plane wave is easily modified to the
users specification. This allows studying the results directly in
the time domain or alternatively using a Fourier transform to

investigate the frequency response.

1.2 Background

In general, analytic solutions to Maxwell’s equations cannot be

found. With exception for a few special two-dimensional cases
such as the circular cylinder. For three dimensions, only the
spherical geometry has been solved. Asymptotic and series

approximations have been used to extend solutions to slightly more
complex shapes. The use of analytic solutiens limits the design of
devices to shapes approximating ones with known solutions. Because
of the approximations used, models must be constructed and tested
in order to verify their performance. This can be an expensive and

time consuming process.

Numerical solutions to Maxwell’s equations performed on a

computer, have proven a powerful and versatile tool. They can be
used with all types of materials including mixtures of
inhomogeneous, anisotropic¢ and nonlinear. They are applicable to

all frequency ranges from magnetostatic or electrostatic to
microstrip and microwave circuits. The bandwidth of a particular
model is limited by computer storage and running time. However,
three-dimensional FD-TD codes have been used with structures

spanning up to nine wavelengths (11).



The most versatile and widely used techniques involve using a
first order accurate numerical approximation to either Maxwell’s
integral or differential equations. Space 1is discretized into
rectangular cells with each scaler field guantity defined at an
appropriate location within each cell. The scatterer is specified

with the permittivity, permeability, electrical conductivity, and

magnetic resistivity at each field location. The techniques can be
implemented in either the frequency or time domain. For the
freguency domain, a single frequency is assumed and the time

derivatives of a scaler field quantity are replaced with jw times
that quantity. For time domain solutions, the time derivative is
replaced with a difference equation. Frequency domain solutions
for high Q cavity modes are wusually performed more efficiently by

formulating a matrix whose eigenvalues characterize those modes

(14) .

The finite-integral theory, or FIT, and the finite-difference
time-domain, or FD-TD, methods reduce to identical difference
equations and are thus synconymous, provided rectangular cells are
used to discretize the volume of space being modeled. The stepped
edge approximation to curved surfaces can have anomalous effects if
the wavelength used approaches the cell size. Recent work has
provided a solution to this problem by imposing Faraday’s law in
integral form to the intersection of the spatial cells and the
curved surface (15). This effectively allows a curved surface to

slice through the appropriate cells.



Reference (89) provides an excellent introduction to scme of the
current uses of the FD-TD technique. They include penetration of
narrow slots and lapped joints, coupling of wires and wire bundles,
penetration of biological tissue, scattering by relativistically
moving surfaces, and inverse scattering reconstructions in one and

two dimensions.

Existing programs commonly used for the calculation of
electromagnetic fields in the accelerator community include the
following:

POISSON calculates electrostatic and magnetostatic

fields (1}).

SUPERFISH computes resonant frequencies and fields in

radio-frequency cavities using linear dielectric and

magnetic materials and triangular cells (1).

URMEL uses the FIT method to formulate a matrix which is used
to solve for the eigenmodes of high @ cavities (14, 17).

TBCI uses the FIT method in the time domaln to calculate
beam wake fields (15, 17).

MAFIA is a combination of three-dimensional versions of
URMEL and TBCI within one integrated program (17).

The FD-TD code used in these studies was authored by Dr. Allen
Taflove at Northwestern Upiversity. The c¢ode 1s dociumented in
reference (10). This code, unlike the above, has implemented a
radiation boundary condition which allows modeling fields external
to a cavity. Because it solves only two of the four Maxwell’s

equations it will not work for static fields, however.



TI. THE TWO-DIMENSIONAL FINITE-DIFFERENCE TIME-DOMATN ALGORITHM

2.1 Solving Maxwell’s equations

The FD-TD technique is a computer algorithm used in solving
Maxwell’s curl equations given below. The curl equations will

satisfy Maxwell’s other two equations, V*D = p and VeB = 0, for

time varying fields (4).

8H _ _ 1 gyn _ fm g

e =~y XE-imE (2.1)
8E _ 1 gy - Ce

ar = o VXH - E (2.2)
E Electric field volts/meter

H Magnetic field amps/meter

€ Permittivity farads/meter

J Permeability henrys/meter

Oe Electric conductivity mhos/meter

Pm Magnetic resistivity ohms/meter

For the three-dimensional case, the FD-TD algorithm divides a
volume of space fully containing the scatterer, or cavity, into
cubes and assigns the six field quantities Hx, Hy, Hz, Ex, Ey, and
Ez to an appropriate location within each cube. The scatterer is

specified with the values of permeability, permittivity, electrical

conductivity, and magnetic resistivity for each scaler field
quantity. On alternate half time steps Hx, Hy, and Hz are
determined, then Ex, Ey, and Ez. This will simulate the

propagation of an electromagnetic wave though the data space of the
model. The radiation boundary conditioh allows the volume of space

being modeled to have a finite size. In order to reduce the



computation time and storage requirements only two-dimensional
algorithms are investigated. The results, however, should be

applicable to three-dimensional problems.

In order to implement a two-dimensional case, both the
excitation and the modeled geometry are not allowed to vary along
the z axis. This makes all partial derivatives with respect to z
identically =zero. With this simplification, Maxwell’s curl
equations reduce to two orthogonal sets termed the transverse

magnetic,or TM, and the transverse electric, or TE, cases.

TM case (Ez, Hx, Hy fields only)

8gHx _ 1 (BEz

at i [By + pme] (2.3)
8Hy _ 1 (8Ez _

3t~ u 3 pully) (2-4)
8Bz _ 1 (BHy _ BHx

Y [ax 3y GeEz] (2.5

TE case (Hz, Ex, Ey fields only)

8Hz 1 (8Ex _ OBy _

8t~ u [By B PmHZ] (2.8)
OE 1 (8H

9Bx - 2 [5;5 - aeEx] (2.7)
8Ey 1 (8H

3t - € [axz + ery] (2.8)

The above equations are equally valid when applied to total,
scattered, or incident fields separately. If used for the total
fields, however, the required continuity of the tangential field
components at the interface to dissimilar media is automatically

accounted for.



It is interesting to note that the TE and TM cases are the dual

of each other with the following mapping.

T™ TE
Hx # -Ex
Hy e -Ey
Ez # Hz
€ & /)

Jhs ] €

Pm “ Oe
Ce H Pm

Thus code written for the TM case is equally applicable to the TE
case. The c¢ode used for +this study, however, did not take
advantage of this symmetry and used separate algorithms for the two
cases. This requires offsetting the TE and TM fields within the
grid. This approach correlates better with the three-dimensional
case but requires more computer storage as both cases are solved

simultanecusly,

In 1966, an algorithm using second-order accurate central-
difference approximations for the space and time derivatives of the
electric and magnetic fields was introduced (18). A unique point
in space and time is specified with the four integer components
(1,3,k,n) which represents the point (ilx,jlAy,kAz,nAt). Using ¥ to
dencte a generic field quantity Hx, Hy, Hz, Ex, Ey, or Ez the
amplitude of a field at a wunigque point in space and time is

specified with;

F™(i,j,k) = F(ilx,jAy,kAz,nAt)



The space and time derivatives become;

BF7(i,i.k) _ FU(i+1/2.7.k) - FU(i-1/2,7.k)

Ox Ax (2.9)
aF (i, i,k) _ FRH/2¢0 sy L P20 00
Bt = At (2.10)

As seen later, space and +time discretizations are selected to
bound errors in the sampling process and to insure numerical
stability of the algorithm. In all subsequent work it is assumed
that Ax = Ay = A. For two-dimensions, the location of the fields
within a cell, and the c¢ross section of an arbitrary cavity are

shown in figure (2-1) below.
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Truncation Boundary

Conducting Surface

N

o
(| s |
| /]
\ Apervure
| /
/A _

K\Hm////// inC\\é::;fdﬁ%nc
Eine __

TM Plane Wave

Source
™ TE
(i, 5) E}’(i’g
Hy(i,]) Hz(i,])
C} T L—— 3 —
Ez(i,j) Ex(i,j)

figure 2-1. An arbitrary two—dimensional cavity and the

location of field components within the FD-TD cell

Applying the Yee approximations, equations (2.9) and (2.10), to

equations (2.3), (2.4), (2.5) and simplifying, the following

equivalent equations for the TM case are obtained (18, 13).
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m = mediaHx{(i,j+1/2)

xn+1/2

H (i,35+1/2) = Da(m) Hx™ 1/2(i,5+1/2) (2.11)

+ Db(m) [Ez"(i,j) - Bz"(i,j+1)]

m = mediaHy (i+1/2,])

n+l/2 n-1/2

Hy (i+1/2,3) = Da{m) Hy (i+1/2,3) (2.12)

+ Db(m) [Bz™(i+1,3) - Bz"(i,j)]

m = mediaEz(i,])

Ez""1(i,5) = Ca(m) Ez™(i,j) (2.13)
+ Ob(m) [Hy™* M 2(i+1/2,5) - Hy™" Y 2(im172, 1)
. B2, 5-172) - BxPYY 25, 541/2))
1 - e (m)AL
C _ 2¢ (m)
a(m) = AT (2.14)
L 2e (m)
At 1
) = C@yk T, en(mit (2.15)
2¢ (m)
1 - pm(m)dt
Da(m) = zﬁé%%t (2.16)
1t Toum)
At 1
Db(m) = iy T (2.17)
24 (m)

With only a few types of material being modeled it becomes more
efficient to use a media +type array which points tc the media
constants. For example one integer contains 16 bits. This could
be allocated to the 3 field quantities Hx, Hy, and Ez with 5 bits
for each, these 5 bits could point to 25 = 32 types of media. This

will require significantly less computer storage than storing the
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two floating point media variables for each field quantity. Again

note that Ca is the dual of Da and Cb is the duwal of Db.

Loocking at equations (2.11), (2.12) and (2.13), an important
aspect of the algorithm is revealed. Each new value of the
magnetic field at a specific point depends on the same quantity at
the same point but one time step earlier and two electric field
guantities evaluated one half time step earlier. This is similar
for the electric field. Thus, the algorithm first steps through
all space points updating the magnetic fields then one half time
step later updates all of the electric fields. This calculation is
performed in place and does not require extra computer storage. In
order to obtain time domain information one must allocate storage

and copy the appropriate field quantities at each half time step.

Because it is necessary to discretize both space and time, this
algorithm provides a step approximation to smoothly curved surfaces
and smoothly changing time domain functions. In many cases this
has been found to provide adequate sclutions. For the rectangular
geometries considered here, the spatial cells conform perfectly to
the surface. For curved surfaces, a model has been developed using
Faraday’s law in the integral form to allow a curved surface to

slice the appropriate cells (15).

2.2 The total/scattered field interface

The modeled volume of space is divided into two regions: the
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total field region near the object and the scattered field region.
The interface between these two regions is chosen to be a simple
gecmetry, usually a cube for three dimensions which reduces to a
square for two dimensions. Equations (2.11), (2.12) and (2.13) are
equally valid within either region, however, steps must be taken at
the interface to insure the separation of total and scattered
fields. The use of 'total fields near the object simplifies the
calculation of incident waves and improves the dynamic range of the
algorithm. Code which keeps track of scattered and incident fields
separately must calculate the difference of two possibly large
magnitudes at the interface of dissimilar media, if the difference
is small, numerical noise will result. This will require the
calculation of +the incident fields at this possibly complex
surface. Use of the scattered field region 1is required for the
application of the radiation boundary condition but also allows the
definition of a virtual surface on which the scattered fields are
defined and from which the far fields may be calculated, as for the

radar cross secticn.

For the TM case, the necessary corrections applied at the front
of the grid, the side parallel with the x axis and nearest to it,
are discussed below. The other sides are similar. The interface
is chosen to coincide with the Ez field points. Points lying on or
inside the interface are defined as representing total field. The
simple relation that must be maintained for tangential fields is
simply that the total field be continuous. In order to correct the

numerical algorithm, Ez incident is required on the interface
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at all four sides, Hx incident on the front and back sides, and Hy
incident on the right and left sides. Hx and Hy incident are
evaluated rone half cell outside of rthe interface. Rewriting
equations (2.11) and (2.13) explicitly indicating total, incident,
and scattered fields, the correction at the interface becomes guite
simple. The equations for Hx and Ez at the front interface are

shown here.

Hxseat™ 1/2(i,j-1/2) = Da(m) Hxscat™ */2(i,i~1/2) (2.18)

+

Db(m) [Eztot (i,i) - Ezscat (i,j~1)]

1

Db(m) Ezinc”(i,j)

= B2, 5-1/2) |y, + Db(@) Bxinc" (i)
Bztot™ *(i,i) = Ca(m) Eztot™(i,]) (2.19)
+ Cb(m) [Hytot™ 1/2(i+1/2,3) ~ Hytot™ 1/ 2(i-1/2,3)
" Hxscat™ 1/2(i,5-1/2) - Hxrot™ 1/2(i,j+1/2)]
= Bz (4,3) |yoo + Ob(m) Hxinc® /(5. 5-1/2)

The correction is performed by adding the appropriate incident
fields to those given by the numerical algorithm at the surface of
the interface, equations (2.11) through (2.13). At the corners, Ez
Trequires two extra terms. This can be absorbed into the algorithm
easily by allowing it to operate on the corner wvalue while
correcting both adjacent sides. As described in the next section,

these equations allow +the introduction of arbitrary incident

fields.
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2.3 Excitation with the incident fields

In order to improve the efficiency or decrease the number of
calculations, a look-up table method is used to determine the
required incident field values. The total/scattered field boundary
with an incident plane wave is shown in figure (2-2). The angle of

incidence with respect to the x axis is ¢ where 0 £ ¢ < 90°.

y 1
m
FA\ (i1,31)
r
d
¢
(io,j0) >
o
= klnc
Einc
i“-Iinc

figure 2-2. Incident plane wave with total/scattered field

interface.

The incident plane wave will make 1initial contact with the
lower left corner. The time required to reach a point m, where the
incident field is to be calculated, is the same as the time
required for the wave to travel from the initial contact corner to
point d. This is the basis for the 1look-up table approach.
Simulate the propagation of a plane wave along a cne-dimensional

A
grid parallel with the unit kjpe vector. In order to calculate a
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field quantity at point mn, d is determined and =a linear
interpolation is used between discrete steps in the one-dimensional
grid. Letting ie and je represent the x and y coordinates of the
first corner the plane wave reaches, then the following relations

are used.

0° < ¢ < 90° (ic,jc) = (i0,i0)

90° < ¢ < 180° (i1,3i0)
180° < ¢ < 270° (i1,31)
270° < ¢ < 360° (i0,j1)
Qinc = (cosd,sing)

r(m) = (i-ig,j-je) for m = (i,7)

d = | {(i-ig)cosd, (j-jc)singl

In order to generate the look-up table, or propagate the
incident wave, equations (2.11), (2.12) and (2.13) are simplified
to one dimension below.

n+1/2 n-1/2

Hine (d+1/2) = Hinc (d+1/2) (2.20)
At . n+1/2 . 1
t T T AN [E nc (d) - Einc (d+1)]
T ) '
P
Binc™t1(d) = Binc®(d) (2.21)
* =3 Toory Mine™/%(a-1/2) - Hinc™ /2 (d41/2)]

vp (#)

The ratio vp($=0°)/vp(¢) is wused to adjust A so that the wave

propagates along the one-dimensional grid at the same velocity it
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would propagate along the ﬁinc direction in the two-dimensional
grid. This will be discussed more thoroughly in section 2.5 which
covers dispersion. The required x and y components of the field
are extracted from the incident components according to the

following relations.

Hxinc(d) = Hinc(d)sin(¢)
Hyine(d) = -Hinc(d)cos(¢)
Ezinc(d) = Einc(d)

To induce a wave on the one-dimensional grid, simply set one
end point electric field to the time function required. If d¢ is
the point coincident with the corner and de-2 is the first peint in

the grid then the following relation is used.

Einc' (de-2) = Eo g(nht) (2.22)

The magnetic field quantities will be generated by the FD-TD
algorithm one half time step and one half cell later. In order to
terminate the end of the grid, the last point 1is set to the

previous value of the next to the last point as shown below.

Ez"*! (last) = Ez"(last-1) (2.23)

1 1
Ez""" (last-1) = Ez"" " (last-1) |y, (2.24)

The magnetic field is terminated similarly. This is equivalent to
the wave traveling through the boundary &nd is an exact solution,
at least to the order of the numerical resclution of the computer,

for the one-dimensional case.
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2.4 The radiation boundary condition

The computation zone or lattice is limited in size by the
amount of computer memory available. In order to eliminate the
simulated reflection of waves from the lattice truncation planes a
radiation boundary condition is applied. Basically, a "one-way"

wave equation is enforced on the tangential field components at the

boundary.

Assuming two dimensions, the wave equation operating on a
generic scaler field component, can be expressed in operator form
(13).

(7 - L §alr - o

1 82 82 1 92

LF = (Dxx + Dyy - Etht)F = [6;2 + 6§§ - EZEEE]F =0 (2.25)

dividing L intoc two parts;

LF = L'LF = 0

LT = Dx - %E 1-8 (2.26)

L* = Dx + 2% [1-§ (2.27)

_ 1Dy

5 = c Dt
The radical term involving B8 <classifies L- and Lt as a pseudo
differential operator that is nonlocal in both space and time. In

equations (2.26) and (2.27), L- represents a "one-way" wave

equation for waves traveling in the negative x direction with L+
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for the positive x direction. Exchanging Dx and Dy provides the

relations for the y direction.

Tt has been shown in (2) that that equations (2.26) and (2.27)
are exact solutions and would provide perfect absorption if applied
to the tangential scaler field components at the lattice truncation
boundaries. The presence of the radical prevents an exact
implementation, however, a two-term Taylor series approximation as

shown below is given in (8).

1-§2" ~ 1 - 82/2 (2.28)

or for a negative x directed plane wave;

- % . Dt Dyy -
L™ F = [Dx - 28, & 3Y Jr=o0 (2.29)

b2 ley

multiplying by Dt and expanding;

8_ 9 _ 12982 c B2 ] -

[Bx 3t " c 812 Tzoyz P70 (2.30)
Equation (2.30) is a ‘"one-way" wave equation for the negative x
direction. The equations for the other +three directions are
similar. The same set of equations have been derived by factoring

the dispersion relation and wusing a similar approximation for the

radical term (12).

The finite differencing scheme for equation (2.30) was
originally developed in (6), however the equations illustrated here

for two dimensions at the left boundary were obtained from (13).
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F(0,j+1) F(1,j+1)

F(0,j) F(1/2,3) [F(,3)

figure 2-3. Field points used to apply the radiation boundary

condition on the left side.

o) n+1 . 8 n-1
O p*l(1/2,5) - 53 FP(1/2,0)
Dxt FP(1/2,5) = —2X T Ox (2.31)
[Fn+1(1,a) . Fn+1£0,i)] . (Fn‘1(1,1> - Fn_l(O,il]
_ A
- 20t
2 2
pee F(1/2,5) = & (3% (0,5 + §gz R D)) (2.32)
_1 [FFn+1(0,i) - 2 F*0,1) + F*71(0,9)]
T2 A2
. Flasn - 2 FhaL) . Fn_l(l.i)1]
At2



o
ok

: 1 (82 . a2 .
byy F*(1/2,5) = 3 (325 F"(0,5) + 5oz F(1,)) (2.33)
1 [Fn(o,1+1) - 2 F%(0,3) + F"(0,j-1)
T2 Ay2
. FO(0.3+1) - 2 FP(1.§) + anl.i—l}]
Ay2

Substituting equations (2.31) through (2.33) intc (2.30) and
solving for Fn+1(0,j) the appropriate radiation boundary conditiocn

for the negative x direction is obtained.

+1 . -1 At A n+l . n-1 .
FP400,5) = - FP77(1,3) + 4 [F (L3 « F 7 (0,5)]
24 P e P (S 34N
+ CAt + A i.b (O;J) + B (1:3)_] (&.34)
(cAt) 2 n . 3 n . n .
+ 28 (cht + B8) [F~(0,j+1) 2 F (0,j) + F (0,j-1)
+ FP(1,3+1) - 2 F(1,3) + F (1,j-1)]
Similar equations may be found for the other three directionms.

2.5 Numerical stability and dispersion

Numerical stability of the algorithm described in section 2.1
places a restriction on the time step size relative to the grid

step size. It is shown in (13) that if the following limit is

maintained the code will be stable. The velocity is represente

v.

1 (2.35)
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or if Ax = Ay = Az = 4;

Ay ¢ B
NEN

For one dimension the time step must be less than or equal to the
amount of time required for an electromagnetic wave to propagate
from one grid point to the next. Typically for two dimensions, the
time step is chosen as A/2c¢ which provides a satisfactory margin

for stability.

The dispersion relation for the three-dimensional FD-TD
algorithm is found by substituting the equation of a plane wave for
the field quantities into equations (2.11), (2.12) and (2.13).
Combining the three equations to remove the field amplitudes

results in the dispersion relation below. (13)

et () - (P - (5™ e
- (g

In the limit when At, Ax, Ay, and A4z go to zero, the ideal
dispersion case, which may be derived similarly from Maxwell’s

equations, is obtained.

w2 2

2
w2 = Kkx °

+ ky© +ky (2.37)

For two dimensions, with the added simplification that Ax = Ay
= A and allowing a to represent the propagation angle with respect

to the x axis, the following equation is obtained.
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A Y2 . 2(wbt) _ _. 2(k cosa A . 2{k sina A]
[Uﬁt] sin [ 5 ] = sin 5 ] + sin > (2.38)
The above equation was solved numerically in (13). Figure (2-4)

shows the phase velocity versus propagation angle for three grid
sizes. Selecting a grid size of A/20 results in less than one half
of one percent variation in phase velocity with propagation angle.
Figure (2-5) shows the dependence of phase velocity on the grid
cell size for the two extreme propagation angles 0° and 45°. The
propagation velocity goes to zero between a grid size of A/3 and

A/2, depending on propagation angle.

Because the phase velocity decreases with increasing grid size,
or equivalently increasing frequency, pulse distortion will occur.

This will show up as high frequency ringing on the trailing edge of

fast changing fields. There are special cases where there is no
dispersion. For three dimensions this occurs when At = A/ci3 and
kx = ky = kz = k/i3. Equation (2.38) reduces to the ideal case
with these substitutions. . For one dimension this case 1is
equivalent to setting At = A/c. Figure (2-8) compares a gaussian

pulse, with ot of 796 psec, after propagating 7367 time steps in a

one-dimensional FD-TD grid with At = A/c, the ideal case, and At =
A/2c. The parameters were chosen to equate with those of the two-
dimensional FD-TD test case to be discussed in section 6.4. The

grid step size was .0397888 meters and the nominal velocity was c.
Figure (2-Y) uses the same model parameters as figure (2-6) except
with a 5 nsec wide square pulse. Because the rising and falling
edges are much faster, there 1is significantly more ringing after

only 393 time steps.
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Ideal case
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Wave propagation angle
figure 2-4. Variation of phase velocity with wave

propagation angle; reproduced from (14)
with permission of author
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Effect of time step size on the dispersion of a
gaussian pulse, with ot = 796 psec, after 7367
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Effect of time step size on the dispersion of a
square 5 nsec wide pulse after 393 time steps in
a one-dimensional FD-TD grid
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2.8 Obtaining magnitude and phase

Because the FD-TD algorithm calculates the scaler field
quantities, a special algorithm is required to obtain the magnitude
and phase at each +time step (10C). Shannon’s sampling theorem
states that that at least two separate time samples are required
within one period to uniquely specify a sine wave. This of course
assumes that a pure sine wave 1is being measured. The presence of

DC or more than one frequency will complicate the requirements.

The algorithm in the code used requires the storage of five
floating point numbers for each field quantity; Hx, Hy or Ez for
the TM case. The cost in terms of computer storage is quite high,
increasing the field storage requirements by a factor of five. The
qualities of each field component that are stored are the field
amplitude, the change or difference from the last time step, the

minimum and maximum value of the field quantity, and the phase.

" The algorithm works by monitoring the time derivative or the
stored difference number. If the difference changes from negative
to positive and the field component is negative, the minimum number
is replaced with the current field amplitude. If the difference
changes from positive to negative and the field is positive, a
maximum is assumed and both the maximum and phase are updated. The
phase is calculated by multiplying the current time step by the

number of degrees per time step at the excitation frequency. The
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phase is also corrected by interpolating between the old and new
difference values to estimate the fractional time step when the
difference passed through zero. This algorithm does not work when

the DC offset is larger than the sine wave’s amplitude.
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ITIT. THE METHOD OF MOMENTS ALGORITHM

3.1 The transverse magnetic case

The method of moments, hereafter referred to as MOM, is a
technique for solving integral equations wusing a computer. For an
arbitrary shaped, two-dimensional, perfectly conducting scatterer,
the electric field can be obtained with the application of the
Helmholtz wave equation to the scattered field and equating the sum

of the incident and scattered field to zero at the surface of the

conductor. The wave equation is given below.
2 2 .
V7Ezgscat + ko EzZscat = jwopolz (3.1)
ko is the wave number, or 27/X\, and Jz is the z directed surface

current induced by the total transverse magnetic field at the
surface. Figure (3-1) shows the <cross section for the two-

dimensional problem assumed.

figure 3-1. Cross section of an arbitrary two-dimensional

scatterer for the TM case.
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The solution te the Helmholtz equation 1is given in equation
(3.2) below (3). The zeroth order Hankel function of the second
kind is denoted by Ho(2), El is a vector which denotes the source
location, or position of Jz, and p’ indicates the field location,

or position of Ezgcat- As Jz exists only on the surface of the

conductor the integral is confined to the boundary of the scatterer

S. At the surface of a perfect conductor the total electric field

must be zero.

Brscat (p’) = - “3%0 [I2(p)Ho ) (kolp-p1)d1 (3.2)
8S

Ezscat + Ezjne =0 (on the surface of 8) (3.3)

Combining equation (3.3) with (3.2), the integral equation
which must be solved through the method of moments, or MOM,

technique is obtained.

Bzinc(p’) = Y040 [J2(p)Ho'?) (kolp-7"1)d1 (3.4)
oS
(p and p’ are both on the surface of S)

Let fn(p) be the set of basis functions used to discretize the

surface current. Choosing the pulse function, fn may be defined as

shown below.

1 Pn-A/2 < B < Pn+b/2
fn(p) = {0 (3.5)

otherwise
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The symbol A is used for the separation of samples along the
surface of S. Using fpn, the surface current may be expressed as a

sum over N points.

N
Jz(p) = 2_ an fn(p) (3.6)

n=1

Thus @p represents the surface current along the interval A.
Equivalently, the scatterer is replaced by N current filaments

equally spaced by A around the surface of S.

Now define a set of weighting functions wp, inner product
<wp,f>, and linear operator L. Choosing the set of delta functions-

as wg;

wn = 8(p’—Pu) - 3.7)
0 otherwise
- — 2 s

LE(p) = “eBo [1(pyHo®) (kolp-p’ 1) d1 (3.8)
38

wm, £(B7)> = [£(p")wm 41’ = £(Pm) (3.9)
a8

Let p, 1 and n indicate source location, p’, 1’ and m indicate

field location. Equation (3.4) may be rewritten using equations

(3.7), (3.8) and (3.9) as shown below.
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<wm,Bzinc(P’)> = <wm,LJIz(p)> (3.10)

Expanding the left hand side;

<wm,Bzinc(p?)> = [6(p’-Pn)Bzinc(p’)dl’ = Ezinc(pm) (3.11)
oS

Expanding the right hand side of equation (3.10);

<Wm,LJZ (ﬁ)>

[6p>-pw) #3402 [52(P)Ho P (ko1p-p" 1)aLdL’

as 85
N
- Uoka ( (57an20(5) ) Ho P (ko p-Pul)dl
88 n=1
N
= Tan(t9e [22(5)H6 ) (ko|p-Pul)d1]
n=1 as
N pn+h/2
= Tan(2g%e (15, (ko |p-pm|)d1] (3.12)
n=1 pPn-b/2
N N
= 2 _apn <wy,Lin(p)> = Eizan lmn
n=1 n=1

Letting Jz(fn) = @n, and using equation (3.11), equation (3.10) can

be rewritten in matrix form.

Ezinc{(Pm) = lmn J2(Pn)

Jz (fn) = [1mn]-1 Ezinc(Pm) (3.13)
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Thus the discretized surface currents can be found by first
calculating the matrix lmn, then inverting it and multiplying by
the discretized incident field along the boundary of S. An

approximation for lmn is given below (3).

dpn = |pn—Pml = I(xn“xm)Q + (Yn—Ym)2

m#n lpg = 220y Ho (2) (kodmn) (3.14)
. k

m=n lpn = 50704 [1 - 2 1n[ﬁzgé]] (3.15)

2
o = |§g ko = 7 = ¥0 = wolpoco

¥ 1.781 (eulers constant)

When m = n, dgmp = 0, and Ho(2)(0) =+ ®». In order to overcome this
singularity problem the small argument approximation is used for

+he Hankel function shown below.

Ho @ (2) = 1 - § 2 10g(32) (for z small) (3.16)

3.2 The transverse electric case

An approach for solving the TE case involves the sclution to
the Helmholtz wave equation applied to the magnetic vector
potential A. Using the solution to the wave equation, Hzgcat can

be expressed in terms of the surface current as shown below.
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A(p) = 48 (1)) (kolp-p7 1)dl

05
A-1i-vxa
Mo
_ _, . 2 s
Ascat () = 43 V X [T(@)Ho® (ko -5’ 1)d) (3.17)

0S8

Figure (3-2) shows the cross section of an arbitrary two-
dimensional perfectly conducting scatterer. As indicated, T is the
unit normal vector and 7 is the unit tangential vector to the
surface, so that 7 =2 X 1. Using the direction of surface current
shown, J7 can be expressed in terms of Hzinc and Hzscat-

J=7X ﬁtot

-I'r = —(HZinC + HZSC&t) (318)

T _inc
Fal
_ @_rU\J“" kinc

Hinc

figure 3-2. Cross section of an arbitrary two-dimensional

scatterer for the TE case.

Combining equations (3.17) and (3.18) and rearranging equation

(3.19) is obtained.
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Hzinc(p') = IT(P) + 53 ¥V X [RIr(0)Ho‘ ) (kolp-p” )41 (3.19)
as

(p and p’ are both on the surface of S)

The integral is then broken into two parts, 085-5¢ and So. The
singular region of S, denoted by So, is that locatien where J7 and

Hzjne coincide. The value of the latter integral is approximately

~Jr/2 (3).

Hzine() = IT(@) + 53 VX [R3r(Ho P (kolp-p’ a1
05-54
+ 37 x [£3r@H P (ko 1577 1) AL
| So |
- IT() /2
Heinc(’) = 5 I7() + 5= [IT(Ho P (ko (p-p 1) aL (3.20)
05-506

Using the pulse functions for fp and the delta functions for

wn, as in the TM case, an approximation for lpp can be found as
shown (3);
101 (8 ., (2 _ o,
L= 5+ 47 J5aie'® (kelp-p" D)
8S-Sg
pn+b/2
- 1 1 8 2 - =
lon = <vm,LEn(P)> = 5 + 55 [aHo ) (kolP-7ul)dl
Pn-b/2
1
m=n Inn = 5 (3.21)

R kobH; 2) (kodmn) fieR (3.22)



Xm—X

| Pm—Pn

>
I

T unit vector pointing from J7{(pn)
to Hzine (Pm)

%+ = unit normal at the location of J7(fn)

I7(Pn) = [lmn] > (-Hzinc(pm))

36

(3.23)
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IV. COMPARISON OF METHOD OF MOMENTS AND FINITE-DIFFERENCE

TIME-DOMAIN ALGORITHMS

4.1 Discussion of method of moments

MOM provides a solution for only a single frequency. Analysis
of a structure with an incident field that has arbitrary time
dependence would require decomposing the time domain function into
a sum of single frequency sinusoidal parts and applying MOM to each
separately. The result for each frequency requires storage at
least for a few spatial points of 1interest. Once the frequency
domain data has been taken, a Fourier transform could be applied to
convert it to +the time domain response. Alternatively, if all
frequencies are modeled and results saved one could convolve the
data with an arbitrary time domain function and obtain the desired

response.

MOM requires the evaluation of the incident field along a
possibly complex structure. The algorithm becomes complicated if
several types of media with arbitrary shape are being modeled.
Special treatment 1is required for the singularity point, and
corners on the scatterer must be treated with care. If the
structure is excited at resonance it has been shown that the

solution is not unique (16).

For N points around the surface, MOM requires the inversion of
and storage for, an N X N array. In addition, if analysis in the
time domain is performed, =storage for each frequency run is

required.
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For fields not on the surface, =a separate integral equation

over the surface must be formulated and solved.

4.2 Discussion of finite-difference time-domain

The incident fields may have any time dependence desired,
however like MOM, analysis in the time domain requires additional
storage. For N points around +the surface, FD-TD requires
approximately ((N+20)/4)2 storage when the lattice truncation

planes are located 10 cells from the scatterer.

The incident fields are only required on the surface of a
simple total/scattered {field boundary. In addition the time
dependence need only be evaluated at one point on the one-

dimensional incident field grid.

If an impulse incident field 1is wused, information about all
frequencies can be obtained with only a single run. If a single
frequency is applied, FD-TD requires a special algorithm to obtain
the magnitude and phase information. This algorithm has a strong

effect on the convergence of the final result.
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V. SELECTION OF MODELING PARAMETERS

5.1 The geometry and variables used

Two geometries were modeled. The simplicity of a solid square
cylinder offered a good starting point for the study. A slotted
hollow square cylinder with the same outside dimension, was used as
a simple cavity resonator. Both were assumed infinitely long in
the z direction. A cross section of the slotted cavity in the FD-
TD grid is shown in figure (5-1). The overall lattice size was 46
cells in the x direction and 48 «<¢ells in the ¥ direction. This
placed the 20 cell by 20 cell cylinder a minimum of 11 cells from
the lattice +truncation boundary. The total/scattered field

interface was 4 cells inside the lattice on all sides.

The permittivity and permeability were set to free space values
and the magnetic resistivity was assumed to be zero throughout the
grid. The scatterer 1is defined in the code by setting the
electrical conductivity of the <cells occupied by the scatterer to
that of copper, 3.72x107 mhos/meter. All other cells were defined
as having zero conductivity. The code could be easily modified
from that for the slotted hollow cylinder to the "solid" cylinder
by specifying the conductivity of the cells within the slot. Thus
the solid cylinder was really hollow. Several runs of the code
were made with the solid cylinder +to determine when a significant
amount of field would leak into the center. A frequency of 209.297
MHz and cell size of .0397888 meters were used. The frequency was

selected so that one half wavelength was equivalent to the inside
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dimension of the cylinder. This was done to amplify the effect of
fields leaking inside. With ¢ = 154 mhos/meter, about .1 to 1 part
per thousand of the total field at the outside front surface leaked
inside. The skin depth and attenuation through the one cell thick

wall is estimated below.

_ 1 _¢e _
f = 5 188 = 206.297 MHz
. _ 1 _
skin depth & = IE}Eﬁ = ,002803 meters
_ 4
attenuation through 1 cell = e 6 6.85x10“7
Because the wall is only one cell thick, and the model was
being driven near resonance, the FD-TD algorithm indicates more
leakage than one might expect. However, since & is related to ¢

times f with o0 = 3.72x107 mhos/meter, the leakage should be minimal
down to frequencies on the order of 209 MHz scaled by

(154/3.72x107), or 870 hertz.

For all of the calculations in +this paper the incident fields
consisted of a plane wave traveling in the positive y direction.
The frequency used for the frequency domain MOM/FD-TD comparisons
was arbitrarily chosen as 300 MHz whose scle advantage is providing
a wavelength of exactly one meter provided 4 and € are chosen to
yield a velocity of light of exactly 3x108 meters per second. The
cell size was chosen to make the 20 cell length of one side of the
scatterer the order of one wavelength. If A is the length of one

side in meters then choosing A = .0397888 meters provides a koA =
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5, where ko = 2%x/A. Thus one side is .7958\ long. This seemed far
enough away from obvious resonances, for example A = \/2. Finally,
the time step was chosen to be A/2c, or 66.315 psec, which is
safely below the numerical stability limit of A/ciZ2. 1In the model,
one wavelength at 300 MHz is about 25 cells, thus there should be
small variations 1in phase velocity with direction at this

frequency.

The equivalent surface currents were used to compare the MOM
and FD-TD results. The MOM algorithm solves for these directly.
For the FD-TD algorithm they are given by the simple relation J=7

X Htot, where fi is the unit normal to the surface and Htot is the

magnetic field one half cell from the surface.
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VI. RESULTS OF CALCULATIONS

6.1 Square solid cylinder excited with 300 MHz

The FD-TD code was allowed to run for 750 time steps or about
15 cycles. Figures (6-1) and (6-2) compare the resulting surface
current magnitude and angle from both the FD-TD and MOM codes, for
the TE and TM cases respectively. The vertical lines indicate the
position of the corners. For the TE case the difference between
the MOM and FD-TD results is less than 1% for both magnitude and

angle.

Loocking at the TM case in figure (6-2), the MOM points are

located in between the FD-TD points. This is because of where the
fields are located within the FD-TD wunit cell. Secondly, MOM
predicts larger currents at the corners of the scatterer. This is

because the FD-TD surface currents are calculated with the magnetic
field one half cell away from the surface. Finally, on the
backside of the scatterer the TM case diverges significantly for
.the two algorithms. The MOM algorithm indicates the amplitude
approaches zero and has a more continuocus phase, where the FD-TD
result has a larger magnitude and reports a phase of exactly zero.
These zero points were excluded from the phase plot. The first
attempt at understanding this problem was to increase the incident
field magnitude by a factor of 10, in the chance that the magnitude
and phase algorithm in the FD-TD code was not detecting zero
crossings. The code was also allowed to run for 50 cycles or 2500

time steps; identical results were obtained. Later tests indicate
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the magnitude and phase algorithm has difficulty with a DC
component present in the backside, or shadow region, of the

cylinder. This will be discussed more in the following sections.

6.2 Slotted cavity with 300 MHz excitation

Figures (6-3) and (6-4) compare the magnitude and phase of the
surface current for the TE and TM cases on the slotted cavity.
Both cases show larger differences than with the solid cylinder.
Again, the FD-TD TM case has trouble with the backside and the MOM
TM case has trouble with corners. The FD-TD numbers were obtained

by allowing the code to run for 15 cycles or 750 time steps.

Tn an effort to understand the difference between the MOM and
FD-TD results, the FD-TD code was modified to list the magnitude of
a few selected locations for each cycle of the field. The
locations chosen were at the center of the inside and outside back
surfaces. The code was allowed to run for 50 cycles, or 2500 time
steps, see figure (6-5). For both the TE and TM cases, the
currents on the outside back surface apparently converged after 15
cycles, or 750 time steps, which was the cycle wused for the
comparison of figures (6-3) and (6-4). The current on the inside
surface for the TE case has roughly a four cycle or 75 MHz
oscillation which converges eventually. The TM case, however, has
a large low frequency oscillation. These convergence problems are

discussed in the next section.
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6.3 Slotted cavity excited with 300 MHz in the time domain

The FD-TD code was modified to list scaler field components at
each time step. The tangential magnetic field components one half
cell from the surface, at the six locations indicated in figure
(6-6) below, were stored for each time step for both the TE and TM
cases. As both the scatterer and the incident plane wave have
symmetry around a line parallel with the y axis and passing through
the center of the scatterer, one need only be concerned with one

half of the structure.

cutside
back

\

inside

back

inside _{ [_ outside
right right

inside
front

coutside
front

figure 6-6. Locations of the sampled field points.

The relevant parameters to keep 1in mind for applying a Fourier
transform are: 1) the useful bandwidth is less than one over the
time sampling rate and 2) the frequency resolution is one over the
total sampling period. If At is the time per sample and N is the

total number of samples, then;

Mlb
0

frequency resolution = ﬁ%{ = Nb for At (6.1)
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frequency bandwidth = 537 = ﬁ (6.2)

The lowest frequency mode expected with the structure occurs at
the frequency when +the inside dimension 1is one half wavelength
long, or 209.3 MHz. The largest measurable Q will be the resonant

frequency divided by the frequency resolution.

c
resonant frequency = §TT§EY

NA N
Quax = 5. 5718A) = 4(18) (6.4)

The FD-TD code was allowed to run for 5000 time steps. This
required about 55 minutes of cpu time on a Vax 8650 computer, which
was just under the default time limit of one hour. At 300 MHz, the
excitation frequency, 5000 time steps corresponds to 100 cycles.
This provided a Qmax of only about 69.4 for the 209 MHz mode

expected.

Figure (6-7) shows the TE results and figure (6-8) shows the TM
results. In order to use a fast Fourier transform algorithm, the
5000 point time record was zero extended to 8192 points. Although
the entire time record is plotted, only the DC to one gigahertz
frequency domain data is plotted. The most surprising result was
the presence of energy at frequencies other than 300 MHz, most
noticeable in the Fourier transforms of the inside fields of the

cavity.
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front, e) inside right, f) inside back
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Energy at all frequencies is generated by abruptly turniang on
the 300 MHz incident plane wave. The excitation in the frequency
domain can be thought of as the convolution of a 300 MHz plane wave
with a pulse function having a period of 8192 At, equal to 1 for
5000 At and zeroc for (8192-5000) At. This is also what causes the
patterns below the noise level in the frequency domain, most
notable in the plots of the outside fields. This did not show up
when the time record was truncated to 4096 points, prior to the
application of the fast Fourier transform in figure (6-9). The
nulls in these plots are caused by the window function which is
slightly different in each because of the propagation delay

difference between the three locations shown.

Another interesting phenomenon is the presence of 44.5 MHz in
the TE case. On the inside this component has an amplitude of
roughly 30 db and on the outside it 1is 10 times smaller. The TE
case will excite currents in the structure which circulate around
its cross section. The 20 db difference between the inside and
outside amplitudes implies that the inside and outside are not
coupled very strongly. However, +the frequencies are identical at
least to the resolution of the pleot. The outside circumference is
4%x20, or 80, cells; this is one half wavelength at 47.1 MHz. On
both the 1inside and outside surfaces, there must be separate
surface current modes whose resonant frequencies are shifted
somewhat, and possibly coupled, through the complex impedance of
the slot. For the inside TE case, this 44.5 MHz has a significant

effect on the convergence of the 300 MHz component of the field.
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As an example, at the center of the inside right face, the 44.5 MHz
modulation is 8% of the 300 MHz amplitude after 5000 time steps.
The magnitude and phase algorithm, wused in figure (6-5), will
reduce this component by a factor of two. This algorithm
calculates the magnitude from the maximum and minimum values of the
field, which are separated by 1/2 of the 300 MHz period. 1In this
periocd of time, the 44.5 MHz will have only a 27° phase advance,

resulting in a maximum difference of 45% of its peak value.

The time domain plot at the center of the outside back surface,
shown in figure (6-8), reveals the reasorn for the differences
between the MOM and FD-TD results seen in figure (6-5) for the TM
case. Because an infinitely Jlong structure is being modeled, it
will have a TM mode resonance at zero frequency. The offset, which
arises because of this mode, caused the magnitude and phase
algorithm to fail. From the {frequency domain plot, the 300 MHz
component has an amplitude of 33.12 db or 45.3 amps/meter at the

center of the outside back. The MOM result was 38.7 amps/meter.

As shown in section (6.4), when this structure is excited with
a pulse, it has a lowest order TM mode at a frequency of about 2094
MHz, only 6 MHz away from the 300 MHz incident plane wave. The
difference frequency would have a period of 167 nsec, which
corresponds nicely with the 165 nsec period of the beat frequency
appearing on the inside surfaces for the TM case, see figure (6-8).
Noting that our first MOM/FD-TD comparison stopped after 15 cycles,

750 time steps or 49.7 nsec, the correlation between MOM and FD-TD
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for the inside surface currents was largely due to the choice of
time step. For the TM case the algorithm has difficulty with a DC
offset, and does not average over a long enough period of time to

smoeoth out the 6 MHz oscillations.

Finally, with a time step of A/2c = 66.3 psec, the bandwidth
should be 7.54 GH=z. Figure (6-10) is the Fourier transform from
the TM case inside back surface, covering DC to 5 GHz. There is a
clear discontinuity in the plot at 2.5 and 3.75 GHz. From the
dispersion relation, the phase velocity goes to zero when the cell
size equals; A/3, or 2.5 GHz, for a O° angle of propagation and
\/4, or 3.75 GHz, for a 45° angle of propagation. This dependence
of phase velocity on wavelength or frequency has the effect of a
low pass filter on the model. It alsc must shift resonant modes
towards lower frequencies. The amount of shift depends on the
angle at which energy of the mode travels or oscillates within the
grid and its frequency. Because +the velocity actually goes to
zero, the model must compress all possible modes within the 3.75
GHz limit. If one knew the angle and thus the appropriate velocity
shift, the spectrum could be corrected. Although easily done for a
specific, well understood mode, this would be impractical in

general because all angles are possible.

6.4 Slotted cavity with gaussian pulse excitation

For a rectangular two-dimensional cavity, as shown in figure

(6-11) below, the resonant frequencies are given by equation (6.5).
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resconant frequency = % j[§]2 + [%]2 (6.5)
y R
b
a x

figure 6-11. Cross section of two-dimensional cavity rescnator.

Tn equation (6.5), a is the x dimension width, and b is the ¥
dimension width. The indices m and n are the mode numbers, m being
the number of half wave variations of the magnitude of a field
component along the x axis, and n that for the y axis. For
example, with m =1 and n = 2 the TM12 mode has a z directed

electric field given by (5);

X nny

Ez = Eo sinma sin b (6.6)
When m = 1, Bz is zero at x = O and a, for one half wave
variation. For n = 2, Ez is zero at y = 0, b/2, and b, for two
half wave variations. This type of resonator will not support a TM
mode with m or n = O, as it would require a tangential electric
field at the surface of a conductor. For a square cavity, the

resonant frequency of the TEpn mode is the same as that for the
TEnm, TMnm and TMpp modes. The presence of the slot will break
this symmetry. Since the incident plane wave has no y directed

field components, all modes may not be excited.
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In order to study the modes of the =slotted cavity, the
structure was excited with an incident plane wave which had a
gaussian time dependence. This is particularly nice, as a gaussian

in the time domain is also a gaussian in the frequency domain.

-3 (&)°
g(t) = A e 7t (6.7)
A ‘% [5_]2
G(f) = —2— e f (6.8)
ot BT

The bandwidth in the frequency domain, of, is just 1/27x0¢. In
the FD-TD code, a time step of At = A/2c = 66.315 psec and a
spatial step of A = .0397888 meters were used. Selecting a of of
200 MHz provided a ot of 796 psec, or only 12 time steps. The
gaussian pulse is delayed by 200 time steps, or 16.7 o¢, in order
to minimize any transients caused by abruptly turning on the
source. Using a smaller ot would allow probing higher frequencies
but would require a rather coarse approximation of a gaussian time
pulse. In addition, a larger bandwidth pulse would suffer more
from distortion caused by dispersion at the higher frequencies.
Thus a gaussian pulse will not excite the higher frequency modes
which get compressed at the algorithm’s cut off frequencies of 2.5

and 3.75 GHz. An impulse excitation would tend to excite these.

Figures (6-12) and (6-13) show the time domain respomnse to a
gaussian pulse at 6 locations around the surface of the scatterer

for both the TE and TM cases respectively. Again, the TM case
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shows a response at DC and the TE case shows a response at 45 MHz,
as described in the previous section. The DC shift in figure
(6-13) for the outside back surface is the result of using only
Maxwell’s curl equations. Static field sclutions exist which do do
not satisfy the equations VD = p and VeB = 0. It does not pose a
problem in this analysis as the low frequency portion of the

Fourier transforms can simply be ignored.

A fast Fourier transform was applied to the TE and TM data from
the inside center back, see figure (6-14). The frequencies
obtained from this figure are listed below along with those
calculated from equation (6.5). In view of the fact that the
calculation does not take 1into account the presence of the slot,

there is fair agreement between caleculation and the FD-TD results.

mode FD-TD Calculated
figure (6-14) equation (6.5)

TE11 221 MHz 251 MH=z
TM11 294 251

TE12 428 468

TM12 461 468

TE292 603 592

TMoo 647 592

Figure (6-15) shows the effect of normalizing the TM mode case
of figure (6-14) with the fourier transform of a gaussian pulse.
With the 200 MHz ¢f gaussian pulse used, the useful bandwidth is

less than 1 GH=z.
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VII. WINDOWS

7.1 Application of windows

The next topic discussed is the application of windows to the
time domain functions prior to executing the Fourier transform.
The windows used are listed below with their definition, assuming N

time points (7).

rectangular w{n) =1 (7.1)
2n N-1
< £ —
N-1 0 <ns7y
Bartlett w(n) = (7.2)
2n N-1
— < N-
2 1 5 <nst N-1
Hanning w(n) = % {1 - cos{%%%]] (7.3)
Hamming w(n) = .54 - .46 cos[%%%] (7.4)
Blackman w(n) = .42 - .5 cos[%%%] + .08 cos[éi?] (7.5)

Plots of each window’s time function and expanded Fourier
transform are shown in figure (7-1). Te obtain the frequency
response, a 1024 point time record containing the window function
was generated then zero extended to 32768 points. A fast Fourier
transform was then taken and the {first 1024 points of that were
plotted. This has the effect of increasing the frequency
resolution by a factor of 32768/1024 or 32. The horizontal axis of
the frequency plot is scaled by this factor, thus a frequency

component at n indicates a frequency of n/Ndt, where N represents
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+he total number of +time samples, in this case 1024, and dt

represents the time spacing between them.

The effect of applying the window, or multiplying in the time

domain, can be estimated by mentally convolving the signal’s
Fourier transform with the window’s Fourier transform. Let Fmax =
1/dt and Fres = 1/Ndt. The Fourier transform of a sine wave of

frequency Fmax/4 would be a delta function in the frequency domain.
The effect of a rectangular window can be obtained from figure
(7-1). The delta function would fall exactly on the point N/4 for
a fast Fourier transform, since N is a power of 2. Locking at the
rectangular window, the neighboring points N/4 + 1, N/4 + 2,

fall on the zeros of the window’s transform. If, on the other
hand, the window is applied to a sine wave of frequency Fmax/4 +
Fres/2, the mneighboring frequency domain points fall half way
between the zeros, or on the window’s local frequency maximum. The
Fourier transform of these two sine waves are shown in figure
(7-2). The frequency response of the other windows investigated
fall off quicker than the rectangular window. This has the effect
of reducing the noise level. The price payed for improving the
noise level, or base line, is frequency resolution; compare for
example the frequency width of the Blackman window with the
rectangular window. This result is intuitive since the resolutiocn

is inversely proportional to the sampling period.

Figure (7-3) shows the Fourier transform of the inside back,

gaussian excited TM case surface currents. The Blackman window has
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figure 7-3. Comparison of the effect of applying windows prior
(continued) to the fourier transform of TM mode surface
currents at the inside back of the slotted cavity
excited with a gaussian pulse; a) rectangular,
b) Bartlett, ¢) Hanning, d) Hamming, e) Blackman



g1

L)
r")
-
— +
O N
-~ " .
QL -
e |
~
v o .
Q e~ )
E I} :
< -
N O
=ity y :
o ! 1 . .
2 .
e LA * » -
N R . . B T
| oy an “ bk L - . -
- e .. M "y . e
P A I s vy o - . . R .
-’--. » - et - [ - -t .,
I A TV P L R -y LI S
R AR R OAEER AL NN AR AL T TR AT L.
i 0.0 G.2 0.4 0.6 0.8 1.0
GHz
e) Blackman window
figure 7-3. Comparison of the effect of applying windows prior
(continued) to the fourier transform of TM mode surface

currents at the inside back of the slotted cavity
excited with a gaussian pulse; a) rectangular,
b) Bartlett, ¢) Hanning, d) Hamming, e) Blackman



g2

a noise level 30 to 40 db lower than the rectangular window. Also,
with this reduced noise level, structure that was not visible with
a rectangular window is revealed. The effect of a window depends
significantly on the exact frequency content of +the original
signal. Thus the Blackman window is not necessarily preferable,
even though it gave the best results for this particular set of

data.
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VIII. CONCLUSION

8.1 Single frequency analysis

The biggest problem encountered in single frequency analysis
was due to the presence of spurious frequencies in the incident
fields. These frequencies are generated by abruptly turning on the
source. Because of the causality principal, the falling edge

should have no effect.

For two-dimensional TM cases, the pole at zero frequency,
caused by an infinite length, can be excited with the zero
frequency component of these spurious frequencies. In a shadow
region of the scatterer, the DC component was several times larger
than the component at the excitation frequency. Because of this
the magnitude and phase algorithm failed. For static fields,
solutions to Maxwell’s curl equations exist which do not satisfy

the equations VeD = p and VB = 0.

For either the TE or TM <cases the natural modes of the
scatterer are excited by these spurious frequencies. For the
slotted cavity a natural TM mode only 6 MHz from the driving
frequency was excited to essentially the same amplitude as the
incident field frequency component. The beat frequency generated
from the sum of these two components showed no decay after 5000

time steps of the code indicating a large § for this mode.
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The amplitude of these spurious frequencies can be reduced by
slowly turning on the incident fields. Using the rising edge of

one of the window functions may prove worthwhile in this regard.

Ideally, the magnitude and phase algorithm would measure the
response, or amplitude, of the fields at the frequency of the
incident wave only and reject all other frequency components. This
infinite fregquency resoclution would require an infinite time
sampling period however. A good topic for further study would be
the optimum receiver problem using some minimum amount of
additional memory storage. It may prove worthwhile to implement a
digital filter and track a few selected field points in the grid.
The computation time and memory storage requirements may prohibit

its use on all field points.

8.2 Transient analysis

Because the FD-TD algorithm works on the field components in
place, additicnal computer storage must be allocated for time
domain analysis. For the 46 by 48 cell lattice used in these
studies approximately 324 Kbytes of storage was required. This
could be reduced to about 108 Kbytes by removing the magnitude and
phase algorithm not required for time domain analysis. In order to
track all field quantities, 108 Kbytes of storage would be required
for every time step or about 540 Mbytes for a 5000 time step run.

In order to limit memory requirements, only a few selected points
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can be tracked. Care must be used in selecting these points, as

they may fall at a null field point for a mode of interest.

Arother limiting factor 1is the amount of computer time
required. A 5000 time step run of the 46 by 48 cell lattice
required nearly an hour of CPU time on a Vax 8650 computer. The
5000 time steps resulted in a maximum measurable § of only about

70, for a resonant frequency of 209 MHz.

In order to minimize dispersion, the cell size should be chosen
to be about A/10 at the highest frequency of interest. The time
step size for two-dimensional cases is typically chosen to be A/2c.

The largest measurable § for N time steps becomes;

For a cell size of x/10, +the dispersion, or phase velocity error,
will cause a frequency error of about 1%, roughly eguivalent to the

frequency resolution after 2000 time steps.

The Q of devices in an accelerator can reach several thousand,
requiring the order of 40000 time steps, or 8 hours of cpu time, to
accurately model. The number of +time steps may be reduced by
decreasing the cell size, but this would require more time per time
step to solve because of the larger lattice. If the structure is
excited with a single pulse, at some point the fields will become

dominated by numerical necise.
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Using windows prior to the application of a Fourier transform
reduces fregquency resolution. However, it does reduce the noise
level in the frequency domain by about 30 db. For the example
studied, mode lines were rTevealed that could not be detected

without the window.

The useful bandwidth of the FD-TD algorithm is limited by
dispersion. The phase velocity goes to zero between the
frequencies of c¢/3A and ¢/2A, depending on propagation angle. This
has the effect of shifting all possible modes of the structure
below these frequencies. A gaussian time domain pulse can be
selected to excite the frequencies of interest while minimizing the
amount of energy at these FD-TD cut off frequencies. This
frequency limit is less than the one imposed by the time step size.
The bandwidth available from a Fourier +transform is given by c/A;
thus one could average groups of three successive time points prior
to the application of the transform. The resulting frequency
resolution would be unchanged but the transform would work on three

times fewer points.

8.3 Advantages of computer modeling

At the current +time, both the MOM and FD-TD algorithms are
limited by computer speed and memory storage requirements. The
alternative is to physically construct a model and test it. The
cost of equipment and construction can be significant. Depending

on the requirements, the time necessary for construction, testing,
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and interpreting the results could outweigh that of an equivalent

computer model.

A distinct advantage of computer modeling is that fields can be
obtained without disturbing them. In order to excite or measure
fields in a physical structure, some type of probe is required.
The fields can be estimated by measuring the effect of pulling or
dropping dielectric beads through an excited cavity or by measuring
the impedance of a stretched wire. In both cases the presence of
the probe must be taken into account when interpreting the results.
Small antennas in the form of loops or studs may be used to measure
fields directly. Their gain must be measured or calibrated at each
frequency of interest and again their presence will load the cavity

fieids.

Even with current computer limitations both the MOM and FD-TD
algorithms prove a powerful tool. As computer technology continues

to grow their usefulness will only improve.
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