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Summary 
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ing them according to a predetermined prescription. The predicted result is 
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Summary 

A method is given for reducing the most trouble- 
some sextupole harmonics in a ring by measuring the 
sextupole field in groups of magnets, and ordering 
them according to a predetermined prescription. The 
predicted result is a decrease in se 

f 
upole related 

distortions by a factor [2/(5 + l)]’ 2 where J 
magnets, covering one or more betatron periods, are 
measured at one time. Simulations performed for 
typical SSC lattices confirm the expected improva- 
ment 8. 

Introduction 

The presence of unavoidable normal and skew aex- 
tupole errors in the dipoles of a superconducting ring 
are known to cause -nonlinear oscillations in the beam 
size, and a resultant decrease in the dynamic aperture 
of the ring. Although the growth is not completely 
described by one or two “resonances”, the harmonic 
description of the effect is useful in pointing out 
which regions of the harmonic spectrum are most 
troublesome. Such an analysis in first order in the 
sextupole amplitudes leads to the conclusion that beam 
size oscillation due to the ,th harmonic of the aextu- 
pole error, an, are proportional to cr., and inversely 
groportional to the resonance denominators Iv - n1 and 
!zv; rrAral;h;;e;he x and y tunes, vx and vy are taken 

. 

If all aextupole errors are known, it is conceiv- 
able that the order of the magnets could be chosen ao 
that all harmonics in broad bands around n - v and n - 
3v could be made sufficiently muall, thus reducing the 
beam size oscillations. Such “shuffling” is imprac- 
tical, however, since it requires measurements on all 
magnets before any can be positioned. For this 
reason, we propose an alternate acheme for meamrring 
and positioning J magnets at a time, which is capable 
of reducing the expected value of all harmonics in the 
troublesome band, and therefore theeam size oacilla- 
tions, by a factor of order J -l/2* 

Description of Shuffling Scheme 

For our analysis, wa vi11 consider a regular lat- 
tice consisting of MJ magnets, where H is an integer 
near the tune v, and where .I magnets cover an integral 
number of magnet focussing periods. After neaarring 
the first group of J magnets, wa will place them in an 
order to be specified later, correlated vith the dre 
of the aaxtupole error. The next group of J magnets 
are then measured and placed in an order which is 
anti-correlated with that in the first group, i.e., 
the magnet with the fi lowest (moat negative) aaxtu- 
pole error in the second group is placed in the 
position corresponding to that of the j% higheat 

(most positive) sextupole error in the first group. 
The process is then continued until all magnets have 
been measured and positioned. Aside from statistical 
fluctuations in the size of the e highest sextupole 
error, we then have a sextupole error which repeats 
with a sign change every J magnets. (Note that the 
parameters 3, and 8, repeat every J magnets.) Thus, 
we have now created systematic sextupole harmonics of 
order M/2, 3M/2, SM/2, etc. All other harmonics have 
been reduced int#ize because the width of the distri- 
bution of the j.- highest sextupole error is reduced 
from that of the total distribution by a factor of 
order J-112. 

Analysis of Shuffling Scheme 

The standard action-angle treatment of the third 
integer resonances1 leads to five driving terms in the 
Ramiltonian, each of which can be represented as a sum 
of harmonic s2. The form of the five coefficients is 
illustrated by a typical nth harmonic coefficient 
written in phase amplitude form as 

ien 
Bile 

in8 
m_t 

+ iQj 

(1) 

Here Smj is the integrated strength of the e aaxtu- 
pole in the & group of magnets and the amplitude 
functions 8, and $ depend only on j becausa of the 
periodicity of the lattice. The phase Qj reflects the 
difference between the phase v9 and the phase I ds/$ 
within a cell and is therefore also independent of m. 
The independent variable 3 increases by 2n in one 
revolution, and S mj is given by 

e 4 = ej + (q2n 

becauaa of our measurement and placement acheme. 

If we now perform the atm over P firat in Eq. 
(l), wa have 

1 pj z rl 8, 
e2 uimulH (2) 

In order to proceed further, ua mow evaluate dj> and 
<PjFj,>, statistical averages over the distribution of 
rxtupole errors. If we es-e a distribution of seer 

tupole errors, p( II), symmetric around a = 0, the dip 
tribution of the e Nghest [(J + 1 - j\th lowest] 
wxtupole error is given by 

------ 
*Operated by the Universities Research Association, Inc. 
under contract with the U.S. Department of Energy. 
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Pj(s)ds = 
(J - jT!(j - l)! 

I,_“, dx p(x)] J-+J; dx p(x)]‘-1 p(s) ds (3) 

with 

P,l-j(S) = Pj(-6) 

One then finds, assuming H is even, 

(4) 

J 
<Fj> = ll rm dsX Pj((-1)’ sn) my1 Smje2xinm’W (5) 

t=1 I 

- <s(j)> [ y e2ninmln _ My1 e2 dnm/W 
I , (6) 

al=* m-1 
even odd 

where 

<e(j)> f j-m Pj(s) sds = - <~(~+~-j)> (7) 

It is now clear that the bracket in Eq. (6) vanishes 
for all n except n = rM/2 where r is an odd integer. 
We then obtain 

<Fj> - I M<P> , n - rM/* , r odd 0 , all other n I (8) 

In a similar way, we find 

<P p*,> = aj><P;.> + Mgjj’ jj 

where 

*jj’ 
2 <*(j)Jj’)> - <,(j)><s(j’)>. 

For the uniform distribution of sextupole errors 

one finds 

4J< (J + 1 - j,) A* 
*jj’ = (J + l)* (J + 2) 

where jc,j>, are the smaller, larger of j,j’. 

(10) 

One now can write Eq. (1) in the form 

<Bneip3 = 

(iWl6x) j e(')Pz'* e 
iQ,+inL" 

j , n - M/2, r odd 

I 1-l 
0 , all other II 1 

(11) 

and, for all n, 

<Bi> - I<gnei'%j2 + 

+ 3 ;1 (~,j6,j,)3’2 e’(‘j- Qj’)eia(ej - ‘j’)lljj* 
,L (l-2) 

We can only evaluate the arm over j in (Bi> explicitly 
for a given lattice and ordering arrangement. Row- 
ever, we can estimate the mm by assuming constant Bxj 
and Qj, and by neglecting the j f j’ correlation terms 
in the expectation of some cancellation due to the 
phase variation of n(Sj - Sjt). In this way we find, 
for n f M/2, 

(13) 

The first factor on the right comes from Ohnuma’s nor- 
malization of Bn, the second comes from the rms value 
of the sextupole error, and the third is the reduction 
factor coming from our shuffling scheme, and correctly 
becomes unity for no shuffling (J - 1 magnet in each 
“group”). 

Although we have considered here only one of the 
five distortion parameters, our shuffling scheme will 
simultaneously reduce all five by approximately the 
same factor, since the basic reduction comes from the 
reduced rms width of the distribution Pj(s). 

It should also be pointed out here that the 
specific result in Eq. (13) is valid only for a uni- 
form distribution of sextupole errors. A closed form 
can also be obtained for a parabolic distribution, bet 
the algebra required is much lengthier. 

Shuffling Within a Group 
16 

The remaining calculation of <B e *> in Eqs. 
(11) and (12) depends in Petail on t e ?I choice of the 
ordering scheme within a group, which is reflected in 
the values of Sj. Although the S dependent factor in 
Eq. (12) and in one other driving term is 83, ,the 
other three driving terms contain the factor S26 

Y X. 
The approximate constancy of 8, + By implies that the 
sensitivity to variations of 8, and 8, is most acute 
for the driving terms with 61. This mggests that 
magnets with the highest and lowest sextupole error 
should be placed where 6, is anallest, that is, near 
the quadrupole which is defocussing in the x direc- 
tion. Also, it ie desirable to alternate the signs of 
the sextupole errors in adjacent magnets so that 

16 
<B,e “> in Eq. (11) will be significant only for 
large r. One possible arrangement between focussing 
rqncts might be 

defocussing quad 
j - 1 dipole, highest S 
j - 2 dipole, 3nd lowest S 

j = 3 dipole, ?rd highest S 
---M-m 
--es 

focuasing quad 
-- 
----- 

j - J - 2 dipole, ?rd lowest S 

Ll-J - 1 dipole, & highcrt S 
j = J dipole, lowest S 

defocussing quad 

This scheme concentratee the hamonic content into the 
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immediate vicinity of r = J. 

Similar schemes are possible if J is an integral 
multiple of the number of magnets in a betatron 
oscillation period. 

uniform (U) or gaussian (G) error distributions for 
six (A - F) sample lattices. 

Approximate Sum Rule 

In the approximation of constant Sz, it is easy 
to show from Eq. (1) that 

? B’, = s il ,il Szj (14) 
n-l 0 I 

Thus, the rum of the squares of the harmonic ampli- 
tudes cannot be changed by shuffling. It is therefore 
apparent that any shuffling arrangement merely moves 
the sextupole harmonic content from one region of the 
spectrum to another. In our scheme we have depleted 
the harmonic content in all harmonica with II f rM/2 at 
the expense of enhancing the ones with n = rM/2, which 
cause much leas aextupole distortion. In particular, 
the shuffling scheme mggeated within a group concen- 
trates the harmonic content into the ones close to n = 
W/2 which cause little aultipole distortion. 

Two Parameter Shuffling 

There are circumstances where one wants to reduce 
IWO independent error families at the aame time. One 

xample occurs in magnets with uncorrelated but 
co&j?arable normal and skew aextupole errors. Another 
would occur in any 2-in-1 magnet assembly. A third 
example might be uncorrelated quadrupole and aextupole 
errors of comparable magnitude in a single dipole 
magnet. 

We expect that the shuffling process outlined 
earlier would at111 work, but now one must order the 
errors into two parameter “bins”. Aa a remAt the im- 
provement factor is expected to be significantly re- 
duced from that for one parameter shuffling. 

Numerical Results 

Simulations have been performed for several SSC 
lattices, including inaertiona. In those cases where 
the number of magnets in a superperiod la not an inte- 
gral multiple of twice the mmber of magnets in a 
betatron period, a few of the “beat” magnets are aet 
aside for the unbalanced group, and the remaining onea 
distributed according to the original prescription. 
Four* of the five driving terms have been evalueted 
with ten independent sets of random aextupolea, first 
with a truly random placement, and then tith our ug- 
geated ordering. As a final figure of merit, we 
obtain 

Al = 1 $dered,F Brandw 
n ; nl (15) 

for each of the four (1 - 1 - 4) driving terms, where 
the atm over harmonica n la taken over the 100 
harmonics centered at M  or 3M aa appropriate. Futher- 
more, the numerator and denominator in Eq. (15) are 
averages over the ten independent random aeta of 
error a. 

The following table indicates the rerulta for 

Figure of Merit Predicted 

Lattice Al %  I3 x4 - r * .J + 1 
\1/2 

%l 

.% 

BlJ 

BG 

cv 

cc 

9J 

DC 

=lJ 

EG 

FU 

FG 

.lS .23 .13 .23 .22 

.ll .21 .19 .28 .22 

.OS .09 .33 .2S .18 

.09 .14 .30 .32 .18 

.12 .13 .37 -36 .28 

.12 .19 .32 .37 .*a 

.24 .25 .30 .31 .34 

.19 .33 .25 .36 .34 

.13 .16 .43 .40 .28 

.14 .22 .37 .44 .2g 

.08 .30 .09 .27 .20 

.08 .15 .08 .lO .20 

The prescribed ordering appears to yield improve- 
ments which are in most cases as good aa predicted, 
for either uniform or gauaaian distributiona. 
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