TM—1298

‘Fermilab .
0812.000

T
L. J

CAMAC 488 Module
68000 Based GPIB Interface Module

K. C. Seino

March 1985

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

NONCTO LU~

Table 1

System
C~-Card
Timing
Timing
Timing
Timing
M~Card
Memory

LIST OF ILLUSTRATIONS

Connections

Block Diagram

Waveforms — Write Registers to FIFO
Waveforms — FIFO to Read Registers
Waveforms — CTM DMA

Waveforms — MTC DMA

Block Diagram

Map

Byte Manipulation

Front Panel

Software System

GPIB Test Page

Spectrum Analyzer Page
Spectrum Analyzer Display

Interrupt Vector Assignment

TM—-12328

INTRODUCTION .
Main Features
HARDWARE .
C-Card
Block D1agram
CAMAC Interface
FIFQO Control .
CTM FIFO Control
MTC FIFO Control
DMA Control . .
CTM DMA Control
MTC DMA Control
GPIB Interface
TCK Decoder
M-Card .
Block Dlagram
Memory Map . .
DMA Controller
Interrupt Controller
Byte Manipulation
Front Panel .
Hardware Tests .
Tests With Emulatur
Tests Under GBUG .
CAMAC Command Test .
TCK Test .

[N

CUSPPUWWN-
[LO I

WM

hh WU -

SOFTWARE .
GBUG
GAS .
PROTO
GAG .

System Env1ronment.
Interior Design
Data Flow

Application Pages

1 GPIB Test Page

2 Parameter Page

3 Spectrum Analyzer

CONCLUSION . . .
ACKNOWLEDGMENT .
REFERENCES .

COOUNUNUPPARRUNFORRE PP PUNNNNNN R e O~ O
W -

CUAVUUWUNUWURUUNNNNNNNNNNNNNNNNNUNNNRINRN - -

APPENDIX A CAMAC INTERFACE

APPENDIX B FPLA DESIGN DETAILS

Overall Module Tests.

TM—12398

CDONNNOCTuUUUeEPOWUWNRN-

TM=1298

1.0 INTRODUCTION

E. Malamud o# Tev I listed approximately twelve GPIB devices on
his 7/22/83 document. Now, how do we integrate such devices into the
ACNET computer system (hardware and software)?

Setting up a device locally may be accomplished by pushing ten
buttons on the front panel. Each button pushed corresponds to a
command, which is equivalent to a ASCII string sent to the device over
the GPIB interface. Therefore.: setting up a device remotely is
accomplished by sending the correct sequence of the tenm corresponding
ASCII strings. Some commands result in the return of data. The data
returns in different forms, i.e., ASCII strings, binary words, binary
bytes and so forth. The amount of data varies from several bytes to
2K bytes.

What kind of hardware and software should we come up with ¢to
interface GPIB devices with the existing computer system? One idea

which D. Bogert suggested was to use a commercially available
Multibus card, BLC 8488 from National Semiconductor, whose on—-board
Z80 would manage the GPIB read/ write functions and handshakes. With

this card, one could make a hardware system which would consist of (1)
CAMAC 080, (2) Multibus ctate, (3} M. Shea’‘s M68000. (4) MO080, (3)
BLC 8488 and (&) memory board. And the software considered for such a
hsrdware package was GAS, which had been an established software
package for communication between the ACNET computer system and smart
CAMAC modules.

D. Beechy pursued the idea and put a system together for the
bakeout <system in a relatively short period of time. However, a few
other people suggested another idea. The idea was to put everything
on a two—wide CAMAC module. They made a3 comment like ‘It is ugly and
wastful to have a two—wide CAMAC module, a8 Multibus crate and several
cards in it just to interface to GPIB devices. ‘

The author pursued the second idesa and came up with a two-wide
CAMAC module <called C488. it was not easy to reduce the space
Needless to say, it was 3 completely new design. When the artwork was
generated, we had to allow 8 mil line/ 8 mil space and two lines
between IC pads. The modification on the software (GAS) turned aut to
be simple and it was completed in few days.

The author will describe the hardware — block diagrams, circuit
blocks: fronmt panel and hardware tests. He will also refer to the
software — system, modules and applications. The software was done by
L. Chapman, S. Morris and W. Marsh. If the reader wants to know

more about the software, he should read the references listed in this
report and/ or talk to the programmers mentioned above.

TM—1298
CAMAC 488 Module: V 1.0

1.1 Main Features

Motorola MC&B0O00D, which is clocked at 8 MHz, is the CPU of the
module.

Mitachi HD68450, which is clocked at 8 MHz, is the DMA controller.
The channel assignments are Ch. 0 for CAMAC to M-bus data transfer,
Ch.1 for M—bus to CAMAC data transfer and Ch.2 for M—-bus from/ to
GPIB.

Two FIFOs are on the module, i.e., one for CAMAC to M-bus data
transfer and the other for M—-bus to CAMAC data transfer. The
size of the FIFOs is 64 bytes each.

Memory sizes are 16K bytes of GBUG PROM, BK bytes of GAS PROM,
8K bytes of PROTO PROM and &4K bytes of RAM.

AMD 9519A is the interrupt controller. The interrupt level
assignments are Lvl. 2 for HINT., Lvl. 3 for EOP1l, Lvli. 4 for EOP2,
Lvl.5 for GPIB and Lvl. & for 15 Hz.

TI TMS9914A provides an interface betueen the M-bus and the GPIB
specified in IEEE-488 19275/ 78 standards and IEEE-488A 1980
supplement. The device is programmable and can function as a
controller, a talker or a listener.

The module has two RS232 ports, i.e., one for an optional local
terminal and the other for an optional remote RS232 device.

The module communicates with the ACNET computer system via a
modified 080 to M&B0O0OO version of GAS.

It is a two-wide CAMAC module. The M—Card can be easily
detached from the rest by removing two screws and two ribbon
cables.

Connections to GPIB devices and a RS232 device are made via
a patch panel.

2.0 HARDWARE

The GPIB module consists of C-Card, M-Card and a #front panel.
The front panel forms a module, physically fastening the two cards
together. The electrical connections between the cards are made
through a 50 conductor rvibbon cable/ connector assembly.

The overall connections between the module and peripherals arve
shown in Fig. 1. By connecting a terminal to a RS232 port which is
located on the front panel, one can deo basic diagnoses on the module
Another RS232 port and a GPIB port are brought out to a patch panel
from the 1/0 connecters of the cards. The patch panel can be mounted

2

an either the front or rear of the relay rack. From the patch panel.
one can make connections to devices with GPIB and/ or a device with
RS232 interface.

2.1 C-Card

The C—-Card constitutes the right half of the module, and its
prime function 1is to interface with CAMAC. The name ‘C’ came from
CAMAC.
2.1.1 Block Diagram -

A block diagram of the C—-Card is shown in Fig. 2. The data is
transferred in two directions, i.e., from CAMAC to M-bus (CTM) and

M-bus to CAMAC (MTC). In case of the CTM direction, a CAMAC command
writes data into a set of registers, and the data is transferred from
the registers to the CTM FIFO whenever the FIFO input is ready. The
data then wait for a DMA operation. A DMA controller is armed by the
software, and it starts an operation when it receives the first

request. The DMA control circuit sends requests to the DMA
cantroller, and the controller returns acknowledges back. When a
predetermined number of data bytes have been transferred from the FIFO
to the memory, the controller terminates the operation. The control

circuit receives a DONE signal from the controller at the end of
operation, and it is reset by the signal.

The DMA operation for the MTC direction is almost same as the CTM
except the fact that data bytes are shifted into the MTC FIFO from the

memory by DTC signals. A DTC signal 1is generated by the DMA
controller toward the end of the acknowledge period. Whenever a set
5f registers are empty and whenever the MTC FIFO has some data, the

jata bytes are transferred fraom the FIFO to the registers. A CAMAC
zommand Teads them out of the registers.

2.1.2 CAMAC Interface -

The CAMAC interface consists of write registers, read buffers and
registers, status buffers, command buffers and decoders, module number
buffers: a LAM generator and read/ write managers.

CAMAC commands are listed in APPENDIX A. 1. Module status bits
are listed in APPENDIX A 2. Conditional Q responses are illustrated
in APPENDIX A. 4.

The CAMAC write managing circuit consists of two #lip—-flops (U3,

Schematic ED35871, SH-1/3), two AND gates (U&2) and a one-shot (US0)
When the first write command clocks the flip—flop on the left

3

TM—=12398

(refering to the schematic), it stays as reset with its D-input being
initialized to be low. Thus at the S1 time. CWRCK becomes true and
latches write data into the write registers. At the same time, the
one~shot is triggered and its output sets the flip-+flop on the right
indicating a write is in pragress. When the data bytes have been
transferred from the write registers to the FIFD, WRHEN arrives and
resets the flip—Fflop. The same things repeat for write commands which
follows the first one. However, if another write command arrives
before the data bytes for the previous one are transferred, two things
happen —— (1) CWIP becomes true, and thus the Q@ response 1is not

generated, and (2) CWRCK becomes false, and thus the new data bytes
are not overwritten into the registers.

The CAMAC Tead managing circuit consists of two flip—flops (U&S),
a NAND gate (Ubb), a OR gate (U27), a one—shot (U18) and other small
gates. When read data bytes are transferred from the FIFO to the read
registers, the flip—flop on the rtight is set by RRHCK indicating that
the read data is valid. When a read command arrives and clocks the
flip—flop on the left, the flip—-flop is set. In this situation, two
things happen —— (1) CRDVAL becomes true and thus Q is generated, and
(2) CRREN becomes true and thus the data in the read registers is
2nabled for 3 read operation. However, it a rvead command arrives
hefore the data becomes valid, Q is not generated and the read data is
not enabled either. '

2.1.3 FIFO Control -

2.1.3 1 CT™ FIFOD Control -

The control circuit pravides timing pulses for transfering data
#vom the write registers to the CTM FIFO. The timing pulses are shown
in Fig. 3. As 1llustrated in the figure, the low byte of the write
registers 1s first enabled by WRLEN and shifted into the FIFO by FYSI.
The middle and high bytes are enabled by WRMEN and WRHEN respectively.
and shifted into the FIFO by FYSI. immediately after the low byte
Basic timing pulses are generated by two one—-shots (US7, Schematic ED
35871, SH-1/3), a shift register (US6), a FPLA (U33), and other gates
A write command noermally consists of 3 bytes, and thus 3 shift pulses
are needed for the data transfer. However, when the write command
brings in a header, the WTF period is extended and the #fourth pulse
shifts a dummy (assurance) byte into the FIFO. A one-shot (U7%) and
its associated gates determine whether it is a three byte transfer or
a four byte transfer and produce a proper timing pulse to clear the
control circuit. ’

TM—12398

2.1.3.2 MTC FIFO Cantrol -

The control circuit provides timing pulses for transfering data
from the MTC FIFO to the tead registers. The timing pulses are shwon
in Fig. 4. As illustrated in the figure, the first byte 1is latched
into the 1low byte of the read registers by RRLCK. The second and
third bytes are latched into the middle and high bytes of the read
registers by RRMCK and RRHCK respectively. The leading edge of a
clock pulse latches the data appearing at the output of the FIFO, and
the lagging edge of the same pulse shifts out new data to the output
of the FIFO.

2.1.4 DMA Control -

2.1.4.1 CTM DMA Control -

CTM DMA control signals are shown iIn Fig. 3 for a header
transfer. When a F20A0 command is properly rteceived, HDRCK triggers a
one-shot (U337, Schematic ED35871, SH-1/3), and after 1 microsecond
delay, HSQ becomes true at a flip-flap (U7). When FYOR1, 2 and HSQ
become true at U72, a one-shot (U61) is triggered and a flip-+flop
(UGOD) is set. The output of U0 becomes DMREQGO when the software sets
a flip—flop (U&9) and when DMGOO1 becomes true. The software needs to
arm the DMA controller chip first and then to allow the request to
reach the chip in order to operate the chip in a cycle-steal mode.
When the contrel circuit receives a DMACKO, it resets the request and
generates the next request after a delay. It repeats this hand
shaking four times Ffor a header transfer. When the fourth DMACKO and
DMDONE arrive, the DMREQQ is reset and remains reset, and the HSQ@ 1is
reset at the lagging edge of the DMDONE. The DMEOO1 is reset by the
software

A data transfer following the header transfer is similar to the
header transfer. It is started by a CTMCK, and it is terminated when
a predetermined number of bytes (a multiple of three) have been
transferred.

2.1.4 2 MTC DMA Contral -

MTC DMA control signals are shown in Fig. b. When a header
transfer has been properly performed for a MTC DMA operation, the
zoftware sets a flip—flop (U73, Schematic ED35871, SH-1/3) with MTCGO
and MTC becomes true. Then a one—-shot (U74) is triggered, and it sets
a flip—-flap (U73). When the software arms the DMA controller chip and
makes DMGOO1 %true, the output of the flip-flop is sllowed to reach the
DMA ceontroller chip as a request. When the contrel circuit receives
an acknowledge, it resets the request and sets the request back after

5

TM—1298

a delay following the 1lagging edge of the acknowledge. It is
essential %o hold back next request until the current data byte is
shifted into the MTC FIFO at the end of the acknowledge period. The

control civrcuit exchanges vequests with acknowledges a predetermined
number of times. At the last exchange, a DMDONE resets the MTC and
DMREQG1, and the request remains false. The software resets the
DMGDO1.

2.1.5 GPIB Interface -

The interface circuit consists of a controller chip (U17,
Schematic ED35871, SH-3/3), bus tranceivers (US, Ul6) and a OR gate
(uz27). The controller chip is the TMS9914A (Texas Instruments), which
provides an interface between a microprocessor and the GPIB specified
in the IEEE-488 1975/ 78 standards and the IEEE-488A 1980 supplement.
The device is programmable and can function as a controller, a talker
or a listener. For further details, one should refer to Ref. 1.

A device on the GPIB can request a service from the CPU via the

GPIB controller chip. For example, a device has data ready and makes
SRG true on the GPIB. The controller chip sees it and interrupts ¢the
CPU. In an interrupt service routine, the CPU does a sevrial pall and

reads the data.

Data can be transferred between the GPIB controller chip and ¢the
M-bus via DMA. When the software arms the Channel 2 of the DMA
controller (U3, Schematic ED358871, SH-2/3) and ,makes the DMGO2 trvue,
the GPIB controller chip and the DMA controller start to exchange
DMREGZ with DMACKZ2 and start transfering data. When a predetermined
number of bytes have been transferred, the DMA operation is
terminated, and the software resets DMGO2.

2.1, 6 TCWK Decoder -

A voltage comparator (Ul, Schematic ED35871, SH-3/3) converts
incoming signals to TTL signals. A one—-shot (U3) and a decoder chip
(U13) work together to extract 8 bit event codes from pulse trains. A
FPLA (U4) detects up to eight event codes and produces a pulse when a
particular code is detected. The GPIB module needs to be updated by a
15 Hz event. For this reason, the FPLA detects $0OF (15 Hz event code)
and produces pulses, which are used as an interrupt to the CPU. A
pulse generator (U2&) works with a one—shot (U37) and a OR gate (U27)
to provide back—up pulses when the TCK event pulses are not available.
For further details, one should read Ref. 2.

TM=1298

2.2 M-Card

The M—Card constitutes the left half of the module, and it is a
Motorola MC68000 based microcamputer. The name ‘M’ came fraom
‘Motorola’. The card is called 'M-Card‘, and the bus on the card is
called ‘M—-bus”’.

2.2.1 Block Diagram -

A block diagram of the M~Card is shown in Fig. 7. The CPU is a
Motorola MC&A8000, which 1s «clocked by a 8 MHz cloack. A Hitachi
HD68450 controls DMA operations. The &48B000 and 6B450 are connected
together hand in hand. All the signals that are needed for the bus
come out from the two chips, and they are first tied together, then
buffered and distributed to the bus. The PROM/ RAM area can
accommodate up to seven pairs of memory chips, which can be either
PROMs or RAMs, and which <can be either 24 pinners or 28 pinners
Addresses are decoded by three FPLAs, which can be programmed for a
particular application that one envisions.

The status/ control circuit consists of Tegisters and a DIP
switch. When the M—-Card has a certain condition, its software sets a
bit in a register to indicate the condition toe the C-Card and the
CAMAC. Or when the CAMAC wants to do a certain operation, it sets a
bit on the C—-Card. The M-Card reads it and knows what to do. Or an
aperator can set a bit on the DIP switch to indicate a certain
operation to the M-Card.

A Signetics SCN&686B1 provides two RS232 ports. The first port is
used with 3 local terminal for diagnoses. The second port is used for
controling a device with a RS232 interface or for downloading programs
from the host.

2.2 Memory Map -

i

A typical memory map for the GPIB module is shown in Fig. 8.
There are seven memory blocks, i.e., MEMO thru MEM&, and these memory
blocks are located on seven IC socket pairs.

MEMO thru MEM3 are RAM blocks, each of which has 16K "~ bytes.
These RAM blocks are made reference to by the CPU in two address
spaces, 1.e., supervisorT program or supervisor data except the first
half of MEMO, which is accessible only in the supervisor data space.

MEM4 thru MEMS are PROM blocks. MEM4 has 8K bytes, and a loader
called PROTO resides in this block. MEM4 is located between O and
1FFF in the SP space and between 80000 and 81FFF in the SP and SD
spaces. MEMS has BK bytes and accommodates GAS. MEM& has 146K bytes
and accommodates GBUG. These blocks are accessible in either GSP or

7

TM—=—1228

sSD.

The I/0 block is accessible only in the ©SD space and it is
located between FFBOOO and FF9FFF. Base addresses for different
devices are FFB000 (Status/ Control Bits), FF8101 (Interrupt

Controller), FF8201 (GPIB Contoller), FFB8301 (Serial Ports) and FFB84Q0
(DMA Controller).

: For details on the memory mapping fuseware, one should read
APPENDIX B.

2.2.3 DMA Controller —

The DMA controller is Hitachi HD&68450, which has four independent
DMA channels. Channel QO is used for transfering data from CAMAC b)
M~-bus, Channel 1 is for M-bus to CAMAC and Channel 2 is for GPIB fron./
to M—-bus.

The DMA controller (U3, Schematic ED35871, SH-2/3) is first armed
by the software, and returns an acknowledge signal ‘when it receives a
request signal. The data 1is transferred during the acknowledge
period. The controller generates a DONE signal after a predetermined
number of data bytes have been transferred.

When we constructed a prototype module, we - experienced
difficuties in making a HD&6B450 work properly. We had to put pull-up
resisters on some control signals of the chip.

When Channels 1 and 2 received requests simuvltaneously or very
closely in time, the HD&8450 could not properly sort them out and
acknowledge them. If different priority levels were assigned on them,
the chip should have been able to service two requests with two
different priority levels. According to Hitachi, ones with R—-mask had
3 deficiency in handling multiple requests. They said that they would
replace ones with R-mask with ones with S-mask.

For further details on the HD&6L8450, one should read Ref. 3.

2.2.4 Interrupt Controller -

The interrupt controller is AMD 9519A, which has Interrupt
Request Register, Interrupt Service Register, Interrupt Mask Register,
&4uto Clear Register, Response Memory and others. Interrupt Register
inputs are captured and latched in the Interrupt Request Register
Any rTequests not masked by the Interrupt Mask Register will cause a
Sroup Interrupt output to the CPU. When the CPU is ready to handle
the interrupt, it issues an Interrupt Acknowledge pulse, which causes
(a} the priority of pending interrrupts to be resolved and (b} a byte
from the response memory (a vector number) associated with the highest

8

TM=12398

priority interrupt to be read.

The Group Interrupt cutput of the interrupt controller (U41,
Schematic ED35871, SH-2/3) 1is connected to the Interrupt Control
inputs (IPL<O:2>) of the CPU (UB). These connections allow us to wuse
the Interrupt Level & of the CPU, which can be inhibited by the
interrupt priority mask. Although we use only Level & of the CPU, we
should remember that interrupt priority levels are assigned in the
interrupt controller.

The CPU fetches a vector number from the interrupt controller.
loads the program counter with the content of the intervupt vector and
services the interrupt in an interrupt handling TtToutine. Table 1
shows the interrupt vector assignment of the module.

For monitoring interrupt 1levels being serviced. the software
turne on corresponding bits in a register (U&&) and LEDs on the front
panel.

For further details on the interrupt controller and intervupt
~handling, see Ref. ‘s 4 and 5.

2.2.5 Byte Manipulation -

The GAS software package had been written for a Z8B0O based system.
and hardware byte swapping and software four byte rotation were needed
to make the GAS work on a 68000 based system. These manipulations are
1llustrated in Fig. 9.

When data words arrive with CAMAC commands F22 (or F16), as shown
in Fig. Pb, the low byte is first shifted in the FIFO. and the middle
byte and the high byte follow in order. On the 68000 based system,
the fhigh order byte has an even address that is the same as the word
sddress and the low order byte has an odd address that 1s one count
higher than the word &address. In order to convert the data
organization from Z80 to 48000, byte swapping is performed. The first
byte owt of the FIFD 1is normally stored at an even address by the
upper data strobe (UDS). However, it is stored at odd address by the
lower data strobe (LDS) instead. The second byte is stored at an even
address by the UDS. These operations are accomplished by swapping UDS
and LDS during the CAMAC to M-bus or M-bus to CAMAC DMA operations
The swapped UDS and LDS are called XUDS and XLDS respectively. Byte
swapping is performed on all the pairs of bytes that follow the first

When a header arrives with a CAMAC command F20, an assurance byte
15 added at the end after low, middle and high bytes have been shifted
into the FIFO. When the header bytes are transferred from the FIFO to
the memory. byte swapping 1is performed on the pairs of the hytes.
After the header butes have heen stored in the memory., the softuare
rotates them as illustrated in Fig. Fa. List Set command is shown in
Fig. Fc as an example of byte manipulation.

=

TM—12398

Byte swapping on the M—bus to CAMAC data transfer is exactly the
zame as ¢the one on the CTM +transfer except the fact that it is
performed in the reverse direction.

2.3 Front Panel

The front panel control/ monitor functions are shown in Fig. 10.
CAMAC
N: On when module is addressed
LAM: - On when LAM condiftions exit
SaG: On when module generates Q.
sX: On when module generates X.
Status
XT0O: On when data transfer times out; possible data transfers
are (1) Write Registers to CTM FIFO and (2) MTC FIFOD to
Read Registers.
EXH: On when header is expected.
HSG@: On when four bytes of header are being transferred.
CTHM: On when CAMAC to M-bus data transfer is in pragress.
MTC: On when M-bus to CAMAC data transfer is in progress.
FYIR: On when input of CTM FIFO is ready.
FZIR: On when input of MTC FIFO is ready.
FZOR: On when output of MTC FIFO is ready.
Control
ON: On when ON bit 1s true.
ENBL.: On when ENBL bit is true.
M—bus

MPU HALT: On when 48000 is reset or stopped.

DMA<O: 3 On when DMA operations are in preogress: numbers
are associated with channel numbers.

INTR LEVELLO: 72: On when interrrupts are being serviced,
numbers are associated with levels.

RESET: When this switch is pushed, it resets module
hardware and rveboots software.

3AS Managed Status

HB: Off when heart beat of module stops.

ICTI: On when I (GAS) can’t take data in a set or list set
cammand.

RUM: Off when module has unsolicited message for RLI.

HUM: Of+# when module has unsolidited message for host.

INI: Of+f when module just booted and waits for host to

initialize 1it.
Power Supplies

10

TM—1238

+1i2V, +5V, -5V and -12V are monitored.

Misllaneous
LCL/ REM: By selecting LCL, operator can indicate to host
that he wants to locally control GPIB devices.
TCK: On when TCK is detected.
TERMINAL: This is connector for RS5232 terminal.

2.4 Hardware Tests

When the modules arrive from an assembly house, we first inspect
them wvisually, and then measure rTesistivities between the ground and
the power supplies. If all the above checks are goad:, we proceed ¢to
do the following tests.

2.4.1 Tests With Emulator -

If the GBUG does not work on ¢the module, we can do
trouble—-shooting with an emulator. First, we try to write to the
memory and tead from the memory. Then, we try to read a few important

locations of the PROTO and GBUG PROMs. Thirdly:, we try to write to a
register of the DUART (U49, Schematic ED35871, SH-2/3) and read #from
it. Lastly, we attempt to run the GBUG and break here and there along
the way.

2.4. 2 Tests Under GBUG -

With the GBUG working on the meodule, we can test aut different
ports. FiTst, we write to a register and read from it aon the UIC
(U41l, Schematic ED35871, SH-2/3) and the DMAC (U3). Secondly, we test
control, status and interrupt level bits by writing to or reading from
them. Thirdly, we test addressing to all the RAM and PROM pairs
Fourthly, we write to a register and read from it on the GBC (U17,
Schematic ED35871, SH-3/3).

2.4 3 CAMAC Command Test -

Our CAMAC test facility consists of a CAMAC crate, Kinetic
Systems’ 5110 Multibus Adapter and 3908 Crate Controller and System
27 (Z80 based, with Multibus, CDOS 1.7 running). At this stage of
the game: we test CAMAC commands F&6A0, FFA0, F17A0, F256A0, F24A0,
F30A0, F2BA0 and F1lAO. Then: to test 5@, we try FOAO., and to test 5X,
we try F10AO.

i1

TM—1298
CAMAC 488 Module: V 1.0

2.4.4 TCK Test -

We observe pulses at Pin 11 of Ull (Schematic ED35871, SH-3/3) to
see 1if they are of 15 Hz. And by removing the TCK input to the
module, we observe if the back-up clock circuit takes over. Lastly,
we carefully look at the output waveform at pin 10 of U3 {(one-shot).

2.4.5 O0Overall Module Tests —

We developed module test programs on the EXORMACS development
system. The programs are assembled, linked, built, downloaded to the
module over the phone line and executed under the GBUG.

GBINT1 program was written to test out the interrupt handling.
The 15 Hz clock pulses come in as interrupt requests, are acknowledged
and turn on INTR LEVEL & LED in a service routine.

GBDMA4 program was written to test out CAMAC to M-bus and M-bus
to CAMAC DMA operations. We first start running GBDMA4 under GBUG on
the module, and we send or receive data from the CAMAC by running a
CAMAC program. Two CAMAC programs,i.e.. GBCTS1 and GBCTS2 were
written in FORTRAN. With GBCTS1, we can test either +the CTM data
transfer or the MTC data transfer. We normally send a definite data
pattern from the CAMAC to the M—-bus and examine i¥# the data pattern
has been transferred without any error. We then transfer the same
data pattern back from the M-bus to the CAMAC and examine it again.
GBCTS52 does a CTM transfer first and does a MTC transfer without
interruption of the program execution. It compares sent data with
‘received dadta and counts the number of errors.

GB438D program was written to test the GPIB interface. The
program initializes the bus, sends measurement parameters to
Racal-Dana 4000 digital multimeter, sends a GET (Group Execute
Trigger) snd waits for a SRQA (Service Request). When the &000 DMM has
data ready, it sends a SRQ@. The SRQ goes through the GPIR controller
(U117, Schematic ED35871., SH-3/3) and the interrupt controller (U414,
Schematic ED35871, SH-2/3), and come through as Interrupt Level & of
Udi. The service routine for the interrupt does a serial poll and
sets up a DMA operation for transfering the data from the DMM to the
M—-bus. When the DMA is done, another interrupt (Interrupt Level 4)
OCCUTS. The service routine for this interrupt displays the DMM data
on the terminal. After the service routine, the main program sends
another GET to the DMM for the next cycle. This process repeats
itself until the program execution is stopped.

12

TM=1298

3.0 SOFTWARE

The software system for the GPIB module roughly looks as shown in
Fig. 11. GBUG, GAS and PROTO are PROM-resident programs, and reserve
16K bytes, BK bytes and BK bytes respectively for their use. GAG and
its support modules (i.e.., OPERA and drivers) are downloaded from the
ACNET to the RAM on the module.

3.1 GBUG

GBUG is a PROM resident monitor program derived #from Motorola‘s
VMEBUG. If the system is rebooted with SWSO off (down position, high
true TTL level), it will run GBUG. Under GBUG, one can examine all
the components of the microcomputer, TUn programs and do
trouble—shooting an them.

3.2 GAS

GAS (GHASP Advanced Software) is a3 PROM resident software package
derived from GHASP. GHASP (General Host And Subsystem Protocol) is a
language for communication between smart modules and the ACNET
computer system.

The simplest way for a master to collect data from a module is to
send the module an address (STANC), wait for the module to generate
the answer and then read the answer. These features are supported 1in
GAS by Set commands and Read commands.

Most data collection is repetitive, and therefore it is efficient
to send a set of addresses once along with information about how often
to update the answer and then read the answer repetitively. GAS
supports three types of list commands, i.e., the List Setup (LS}, the
t.ist Read (LR) and the List Delete (LD}

All GAS commands are transmitted as one or more CAMAC commands
FEach GAS commands starts with a F20. The remaining bytes of the
header (for Read, Set and List Set commands) are sent by two F2s
For Read and List Read, a number of FO or F4 CAMAC commands are then
sent. For Set and List Set, a number of Fié6 CAMAC commands are sent
after the header.

When hardwre or software problems exist in smart module, it may
be impossible to successfully execute any of the five kinds of GAS
commands explained above. For a simpler form of testing, GAS may be
put in Regurgitation Mode. In this mode, the master sends three bytes
to the module with a F20 command, GAS does the CTM and MTC DMA
pperations and simply returns the same three bytes. The master then
read the three bytes with a FO command.

13

TM—1228

In addition to supporting GAS commands, the GAS software controls

some status bits. The master reads them with a F1 command. The
status bits are as follows.

HB: O when heart beat of module stops.

ICTI: 1 when I (GAS) can‘t take data in set or list set

caommand.

RUM: O when module has unsolicited message for RLI.

HUM: 6 when module has unsolicited message far host

INI: O when module just booted and waits for host to

initialize it.

GAS reports errors to the master by placing an error message in

an unsolicited message queue. Whenever the host’s queue is not empty,
the module raises a LAM by clearing the HUM bit, requesting the host
to read the queue. Whenever the RLI ‘s queue is not empty, GAS clears

the RUM bit but this does not cause a LAM. GAS reports system events
as well as error messages to the masters via the unsolicited message
queues. Each GAS error and system event may be bypassed. If
bypassed, no message is generated even if the error or event occcurs.

For further details on GAS, one should read Re#f. 6.

3.3 PROTO

PROTO is a PROM resident program which knows how to download GAG.
When the power 1is applied to the GPIB module, the CPU fetches the
initial supervisor stack pointer and the initial program counter at
Address Locations O and 4 of PROTO, it starts executing PROTO from the

location pointed to by the initial program counter, When PORTO is
ready for GAG to be downloaded, it flashes INTR LEVEL 7 LED. In order
to download GAG. one must use a "Download Microp" application page.

In the future, the ACNET will auvtomatically detect the reboot of PRATO
and will avtomatically download GAG.

I# one wishes to run GBUG, he turns SWSC off (down position)
before applying the power to the module. One of the things that PROTO
does when i1t is just starting is to read the status on SWSO. I# the

switch 11s off, PROTO makes a jump from itself to GBUG. From this
- point an, everything is cotrolled and monitored by GBUG wunless the
system 1s restarted.

PROTO is assembled and linked assuming that the beginning of the

program 1s located Address 80000 (HEX). However, since the memory
mapping circuit allows 1t to be accessed at either Location 0O or
Locatiaon 30000, the CPU can fetch initial stack pointer and program

counter from Locations O and 4 without any problem at the time of
system start.

i4

TM=—1238

3.4 GAG
3.4.1 System Environment -

GAG is a software system which provides communications between
ACNET and GPIB devices. GAG also provides translation between the
ACNET language called GAS and whatever language ¢the GPIB devices
speak.

GCAG allows three masters to exist, i.e.. ACNET, a resident local
master and an optional local terminal. The local master software task
resides in the same microcomputer as GAG and can use GAG to
communicate with the GPIB devices. This ability, together with the
task’s own intelligence, lets it do local control such as closed
loops. The local terminal is intended for debugging and not a part of
the final system.

In addition to GPIB devices., GAG has a port for connection to an
optional RS232 device. When a software driver +for this port is
written and added to GAG, the RS232 appears to be just another GPIB
device to the three masters.

3.4.2 Interior Design -

GAG Ttuns under a simple multi-task operating system called OPERA,
which is non—-preemptive and of a round-robin.

GAS has two communication modes: transparent and opaque. In the
transparent mode, GPIB ASCII strings are sent between ACNET and GAG as
data in GAS commands. In the opaque mode. the ASCII strings are
stored in the GAG’s translator which converts them to/ Ffrom

traditional data—-base orientated GAS commands and data formats.

3 4.3 Data Flow -

fach external device (RS232 or GPIB) has a FIFO queue associated
with it. The three master tasks ask GAG to enter commands inte the
queves. The two external device driver tasks empty the gqueues,
sending commands to 3 correct external device and returning status and
data to the master who initiated the request.

The local resident master task can maintain a data pool of 1ts
own which is accessible to GAS.

The translation tables are downloaded to the microcomputer from
ACNET via GAS and are used by GAG in the opaque mode.

15

TM=—1238

For further details on GAG, one should read Re#f, 7.

3.5 Application Pages

At the time of this writing. two application pages have been
written. I am sure that there will be more developments in the
future, i.e., changes and improvements will be made to the existing
ones and new one will be added. The author will talk about three
examples, which would give the reader some ideas how to communicate
with remote GPIB devices from the console.

3.5.1 GPIB Test Page -

A GPIB Test Page has been written as shown in Fig. 12, The
operator first specifies a device name (the device has to be in the
data base) and enters an ASCII string that he wants ¢to send to the
device. The device returns data (if any), which is displayed in HEX,
ASCII or Integer.

In this crude way, the operator has to know the details of the

device, i.e., how to operate the device and what specific ASCII string
to perform a particular function.

3.5.2 Parameter Page -

Some simple GPIB devices can be put on parameter pages. For
example, the dipole magnet current measured by a DMM can be monitored
on a parameter page. When the device name is entered and when the
interrupt switch 1is pushed under the name, the software sends
necessary commands to the device, brings data back and displays it on
the page. It will be updated in a 1 Hz or 15 Hz rate. If the
operator wants to control/ monitor a few functions on the device, he
can use the digital control/ status facility. For example, if the
operator wants to take a filter in and out of the DMM, he interrupts

under FILTER IN OUT on the page. The information is carried on a bit
of the GAS data, GAG translates it to a ASCII string, and the string
is sent out to the DMM. The filter is thus manipulated on the DMM.

3.5 3 Spectrum Analuyzer -

A Spectrum Analyzer Remote Control and Display page was under
development at the time of this writing. If one calls up the page, he
sees a page like the one shown in Fig. 13. If one enters a data base
name and terminates with an interrupt wunder INITIALIZE SPECTRUM
ANALYZER MODULE =<: >y the program 1is initiated and it draws =&

16

TM=—12298

LAMAL 499 rmogule: Vv 1.0

analyzer display on the Lexidata like the one shown in Fig. 14, All
the control/ monitor functions including +the CRT display of +the
spectrum analyzer are shown. When one interrupts vunder Update
Spectrum Analyzer, the program is allowed to update the conditions o#f
the analyzer and to enable the Lexidata cursor. By moving the cursor
and interrupting under different functions, cne «can manipulate the
spectrum analyzer from a console.

Furthermore, one can plot, accumulate and save the frace data.
and he can plot the saved trace data.

4.0 CONCLUSION

It was a big effort to squeeze the space from the one occupied by
a two-wide CAMAC module and an Intel Multibus chassis to the one
occupied only by a two—-wide CAMAC module. Needless to say, it was a
completely new design. When the artwork was generated, we had to
allow 8 mil line/ 8 mil space and two lines between IC pads in order
to have all the connections neatly organized and made short. The pc
boards were nicely fabricated and assembled well with Just a feuw
shorts.

1 had to use new chips ¢to do an efficient and space saving
design. The software staff was objectionable to this because they had
to become familiar with new chips and to modify the hardware dependent
module of the GAS. However, it turned out to be a relatively simple
Job. They simply copied parts of my hardware test programs.

The cost of the Multibus based system seems to be over $3,000,
which <can be compared with %1, 500 for the new design. Furthermore,
the new design saves real estate as a whole

5.0 ACKNOWLEDGMENT

I am grateful to Richard Klecka for his efforts on the GPIR
module project. He constructed the prototype unit and did mechanical
design for the production. He was involved in correcting mistakes on
the artwork, inspecting p ¢ boards and supervising p c board assembly.

4.0 REFERENCES

1. TMS9914A General Purpose Interface Bus (GPIB) Controller Data Manual.
Texas Instruments 1982.

2. Accelerator Controls Tevatron Time Clock System Clock Decoder, D. G.
Beechy. June 1982.

3. HD&8B450 DMAC (Ditect Memory Access Controller), Hitachi #Ul02.

4. Am9519A Application Note, AMD AMPUB-071.

17

TM—12298

16-Bit Microprocessor User’s Manual Third Edition, Motorola 1982.
Speaking GAS, ACNET Design Note MNo. 23.3. Lee J. Chapman, September 21

1983.
GAG Software (GAS to GPIB translator), ACNET Design Note No. 48.1,

Lee J. Chapman, 15 August 1984,
Accelerator Controls CAMAC 488 - GPIB Controller, Drawing Ne. 0812-

ED-35871, May 1984.

18

TM—1238

APPENDIX A

CAMAC INTERFACE

A. 1 CAMAC Commands

All commands return X. Return of Q is conditional for some
commands.

FOAO Read Read Registers, non—block transfer, Q is
conditional.

F1AO Read module status, always Q.

F4AO Read Read Registers, block transfer reads, Q is

conditional.

F&6AQ Read module number, OOQ1EB (HEX). 488 (Decimal),
always G.

FPAO Clear module, always G.

F15A0 Write data into Write Registers, Q is conditional.

F17A0 Clear module and reboot, always Q.

F20A0 Write header into Write Registers, Q is conditional.

F22A0 Write additional header information to Write
Registers, Q 15 conditional.

Fz24a0 Reset ENBL bit, always Q.

F25A0 Set ENBL bit, always Q.

F284A0 Reset ON bit, always Q.

F30A0 Set ON bit, always Q.

A 2 Status
F1A0 reads the following status bits.

R24: XTO (Transaction Time Out)
This bit is true (=1) if the following transaction
times out: (1) Write Registers to CTM FIFDO transfer
and (2) MTC FIFD to Read Registers transfer.

R23: EXH (Expecting Header}
This bit is set true by F?A0, F17A0 or power—up.
It is reset by proper receipt of F20A0.

RrR22: HS5Q@ (Header Sequence)

R21: CTM (CAMAC to M—-bus Sequence)

A-1

TM—12398

camaC LNIERFACE

R20: MTC (M-bus to CAMAC Seguence)

R1%: FYIR (FIFO-Y Input Ready)
This bit true indicates that FIFO-Y is ready to
accept data for CAMAC to M-bus transfer.

Ri1B: FZIR (FIFO-Z Input Ready)
This bit true indicates that FIFO-Z is ready to
accept data for M—bus to CAMAC transfer.

R17: FZOR (FIFQO-Z Output Ready}
This bit true indicates that FIFO-Z has data ready
CAMAC read.

R16:, R15 and R14 are not used.

R13: HB (Heart Beat)
This bit true i1ndicates that MPU is alive and
updating status on M-bus.

R1i2: ICTI (I Can’t Take It)
This bit true indicates that GAS can‘t take data
in set or list set command.

R11: RUM (RLI Unsolicted Message)
This bit false indicates that this module has
unsolicited message for RLI.

R10O: HUM (Host Unsolicited Message)
This bit false indicates that this module has
unsolicited message for host.

R9: INI (Initialize)}
This bit false indicates that this module just
rebooted and that it needs to be initialized

R8: Not used.
R7: On

This bit true indicates ON mode.
Ré&: ENBL (Enable)

This bit true indicates ENABLE mode.
RS, R4, R3, R2 and Rl are not used

A. 3 LAM Generation

LAM 1s generated by some of the status bits, i.e., HB,
HUM and INI.

A.4 Conditional G Responses

Q@ is generated by ANDing the following conditions for a
given command.

! FO | F4 | F1lé61 F20: F22i
———————— B e e Sl et
CRDVAL H 100 13 : :] CAMAC Read Data Valid
CWIP i ; i 0+t 044 0tV CAMAC Write In Progress
EXH 1 ' i S S d
FTR o I ¢ : : i FIFO-Z to RR transfer
FZOR :] e o I '
HSQ i OV O 0 i

TM=12328

APPENDIX B

FPLA DESIGN DETAILS

FPLAO1L
/WRHEN = /(TA3#/TA4#/TASHWTF)
/WRMEN = /(TA2#/TA3#/TA4#/TASHWTF)
/WRLEN = /(TALI®*#/TAR2%/TA3#/TAA#/TASHWTF)
FYSI = DLYAR#WTF*#L[(TA1#/TA2#/TA3#/TA4%/TAS)
+ (TA2#/TA3#/TAA%®/TAS)
+ (TAJ#/TA4#/TAS)
+ (TA4#/TAS#HSQ)]
RHSG = /RCTM#HSQ :
FPLAQOZ2
RRHCK = TB3#/TB4#FTR*DLYB2
RRMCK = TB2#/TB3#/TB4#FTR#DLYB2
RRLCK = TB1#/TB2#%/TB3#/TRB4#FTR#DLYB2
FZs0 = DLYB2#FTR®#L(TB3#/TB4%*)
' + (TB2#/7TB3%#/TB4)
+ (TB1#/TB2%/TB3#/7TB4)1]
FPLAOS
/RDRCK = /(/Fi#/F2#F4#/FBuF16#5N#/FZOR#S51 #/HSQ*/CWIP2#EXH)
/CTMCK = /{L(/Flx/F2%#/FA%/FB#F 1&}+(/F1#F28F4#/F8#F16)]
#*SN#/FZOR#51#/CHIPY
MTCCK = C(/Fl#/F2#/F4%#/FB#/F1&6)}+(/Fl1#/F2%¥F4#/FB#/F16)]
#SN#S1#/FTR#/HSA#/CRDVAL
/SPCG = /{/F1%/F2#F4+#/FB#F1&6#5N#/FZOR#S1%/HSQ#/CWIP*EXH
+L(/F1#/FR¥/FA#/FB#F16)+(/Fl#F2#F 44 /FB8¥F16) 1#SN#/FZOR#/CWIP
+L(/Fi1%/FR%/Fa#/FBx/Fl1o)+(/F1#/F2%F4#/FB#/F16) J#/FTR#/HSQ#CRD
FPLAO4
/F30A081 = /(/F1l#F2#F4#FB%F16%#5SN#S51)
F2BA0S1 = /Flu#/F2#F4xFgB#F16%SN#51

B-1

FPLA DESIGN DEIALLDS

FPLAQS

FPLAOG

FPLALRZ

FPLALS

/F26A0S51
F24A0S51
/282

Fil14, 20,

/CAMRE

/BX

/PRTQ

/F?A0S1
F17A0S1
/F6A0
/F1A0
F(O. &)
NG1

/CKEV1

FMEMS

/MEMS

/MEM4

/INTACK

/MEM3

/MEM2

/(/F1#F2#/F4#FB#F 1 6#5N#51)
/F1%/F2%/F4#F8#F16#5N#51
/(Z#S2)

22) =
[(/F1s/F2#/F4#/FB#F16)+(/Fl1#/F2#F4#/FB*F16)

= /{L{/F1#F2#F3%FB#F16)+(/Fl#/F2%¥F4#FB*#F16)

[T I TR TR T

i

il

]]

i

+(/F1#F2#F4%/FB#F1&) J#SN

TM=—1298

/{LC/FLI#/F2%/Fa#/FB#/F1lAh)+(F1#/F2#/F4%/FB®/F16)

+(/Fle/F2#F4+#/FB%/F16) 1#8NY}

/{L(/F1aF2#F4#FB#F16)+(/Fl1x/F2#F4%xF8#F16)

+{/F1#F2#/FA%xFB%F1&6)+ (/Fi1#/F2%/F4#F8%*F164)
+(/F1#F#F4%/FB#F16)+(/F1#/F2%#F4%#/FB#F16)
+(/Fi%/F24/F4%/FB*F 14} +(F1#/F2%/F42FB#/F1&)
+(Fle/F24%/F4»/FBaF16)+(/F1¥F2%F4%/FB#/F16)
+(/F1#/F2#%F4%/FBR/F1&6)+(F1#/F2%/F4%/FB#/F16)

+(/Fi1#/F2%/F4#/FB%#/F16&6) J#SN}

+{/F1#F2%/F4xFB#F 1)+ (/F1%#/F2%/Fa4#/FB#/F14)
+(Fl#/F2#/FA#FB#/F16}+(F1#/F2%#/F4#/FB8%xF16)
+(/FLeF2#F4#/F8#/F16)+(Fi1#/F2%/F4%/FB%/F16) 1%SNY

/(Fi#/F2%/Fa#F8#/F156%#5SN*51)
Fi#/F2#/F4#/FB#F16#5N*51

/(/F1#F2#F4%/FB#/F16#SN)

/(F1#/F2#%/F4#/FB#/F16%SN)

SALC/F18/F24#F4%/FB#/F16)+(/F1%/F2%/F4x/FB#/F1&) J#SN}

SN#S1

/ (BO#B1#B2#B3%/B4#/B5%*/B&#/B7#DVAL)

/{L{/AL127#A13%/A14#A15#A16*ALT7THALB*AL1F?
+{(A12%A13%/A144A15#A16#A17#A1B*AL1T)
+(/A12%/A13#A14#ALSHALG#ALT7H#ALBRALD)
+{(A12#/A13#A142A15#A16#A17#A18#A1F)]
#[(/FCO#FCLI#FCZ2)+(FCOx/FC1#FC2}) 1#ASY

/{[AL13#A14#A15#+A16*A17#A188A17F]

#[L (/FCO#FC1#FC2)+(FCO#/FC1#FC2) I#AS}

JAL{/AL13%/A144/A15#/A16%/A17#/A18%/A1F)
#(/FCO®FC1#FC2)
+(/A13%#/A14%#/A1S#/A16#/A17#/A18%A19)
#(/FCO#FC1#FC2+FCO#/FC1#FC2) J#AS}

/(FCO#FC1#FC2#AS)

/L(ALARALSH/ALLGR/AL72/A1B%/AL1T)
#(/FCO#FC1#FC2+FCO#/FC1#FC2)#AG]
JUC/AL18%A15H/A16%/A1T7#/A18%/A19)

B-2

FPLALSG

/MEM1

/MEMO

/SLDMAC
/SLSPRT
/EXOP

/SLBGC
/SLUIC
/WMBSC
/RMBSC
/MBI

TM—1298

#(/FCO#FCL1#FC2+FCO#/FC1#/FC2)#AS8]

/C(AL4#/AL1S/AL6#/AL7TH/ALIBR/ALT)

#{/FCORFCLRAFC2+FCO#/FC14#FC2}#A5]

FEL{/A14#/ALD*/ALGR/ALT#/ALB#/ALT)
#(FCO#/FC1#FC2)
+(A12#AI3#/ALA*/ALSH/ALLH/ALTH/A18%/AL1T
+/A12#A13#/A14%/A1D%/A16R/AL1T7#/A18%#/A19)
#(/FCORFC1#FC2) 1#AS5)

/(/ABR/AFHALO#/AL12%/A13%/A14%/FC1#FB0O00)

/(AB*AF#/A1Q#/A12#/A13%/A14%/FC1#FB000)

/EC/ABR/ATRALOX/AL2%#/A13%/A14 :
+ABHAP#/A10#/A12%#/A13%/A14)#/FC14#FB0001

/{/AB#ARH/AL1O#/AL12#/A13#/A14%#/FC1#FB000)

/(AB# /A% /A10%/A124/A13# /A1 34 /FC 1 #FB000)

[{/ALBR/ABH/ATH/ALQO#/AL2%/A13# /A1 4% /FCL#FBOCO#* /ROW)

/(/AL#/ABR/APH/ALOR/AL2#/A13#/A14#/FCL¥FBO0OO*ROW)

/(AL#/ABR/AF#/ALO#/AL12#/A13#/A14%/FCL1¥FBOOO)

TM—1228

Fig.1 GPIB Module - System connections

C - CARD
> |
- GPIB
F MODULE
M - CARD DIAGNOSTIC
TERMINAL
L 1 1 L . |
PATCH
et o PANEL
-y
DEVICE
“————\ wW/GPIB
DEVICE

W/RS232

TM=12398

Fig.2 GPIB Module - C-Card block diagram

GPIB

W<1:28> ——> —> Fro Y
R<1:24> €—
F<1:16> —> CAMAC >
A<1:8> —>| INTERFACE
$1,52,N,2 |
LQ,X €— | mTC 'E J
F— FIFO
[
FIFO DMA
CONTROL CONTROL
Teck—> TCK L5 r———_—_—>

DECODER

CONT <—> GPIB

BUFFER l&—> M-BUS

MBD<0:7>

DMREQ®
DMACK@

DMDONE
DMDTC

DMREQ 1
DMACK 1

TM=—1238

Fig.3 Timing waveforms - Write registers to FIFO

l25008'250n8|250n$|250n$|

WTF —j 1_1:__.
I S

WRHEN |
NRMEN 1 Tniotcg::: %ENRLY
waen | |

FYsl &

Fig.4 Timing waveforms - FIFO to read registers

|260n3|25008|250n8|

FTR — l—
RRHCK J-l

RRMCK n

RRLCK 1

FZSO . n

TM—1298

Fig.5 Timing waveform - CTM DMA

l 1ps| 1psl lps, 1p5! 1pSl

DMGO@ 1 J 3 1 _
PUACK® L Y Iy O

WREGS T p JL M1 M|
PHoNE I

wsa I 1

Fig.6 Timing waveform - MTC DMA

’1psl 1ps,1ps l 1S l 1psl

;

1
L
DMGO@ 1 J

DMACK 1

L
DMREQ 1 ——l_(J-—-l_
¢ It

s
1

DMDONE

L]0

TM—1298
Fig.7 GPIB Module - M-Card block diagram

DMREQ$

DMACK§@

DMREQ1

cPU DMAC |——> DMACK1
CLOCK 68000 68450 |&———— DMREQ2

fb——3> DMACK2

L— owoone

t———> DMDTC

BUFFER
PROM/RAM BUFFER |[€——> MBD<0:7>
ADDRESS : STATUS
DECODE /CONTROL
XR/W €—]
e o [
XLDS €— A
T INTERRUPT
w 9
v g CONTROL
3 - 9519A
> P
Ol O
F 3 I

Fig.8 GPIB Module - Memory map

FF8000

FFAQOO

FFEOOOQ

00000

02000

04000

08000

0C000

10000

80000

V0 4Kb X

MEME 16Kb
PROM3 GBUG

TM=12328

FF8000

5

FF8101

FF8201 SLGBC

FF8301 SLSPRT

MEMS 8Kb
PROM2 GAS

MEM4 8Kb
PROM1 LD

MEMO 16Kb
RAM1

MEM1 16Kb
RAM2

MEM2 16Kb
RAM3

MEM3 16Kb
RAM4

S) 1

W
)
ALY

)|

MEM4 8Kb
PROM1 LD

LFFO«n SLDMAC

SP:=SUPERVISOR PROGRAM
SD=SUPERVISOR DATA
LD=LOADER (PROTO)

TM—=—1298

Fig. 9 GPIB Module - Byte Manipulation

{a) Header

103:04101! F20 Data Word
101104:03:1A5! Shifted in FIFD
{04101 1A51031 Transfervred from FIFO to memory
101 1A5103104! Rotated in memory

(b) Data
1211108111 F22 (or F16) Data Word 1
130131 120: " Data Word 2
1511401411 " Data Word 3
1601611501 " Data Word 4
1113110:1211201311301411401511501611601 In FIFO
110111120121130i31140141150151160:1611 In Memory

{c) LS (List Set)

JLBCHILBCLY TC Header

i NS | ANF! LID! Data Word 1
(FTDHIFTDL Y XX | Data Word 2
t T + BCH:I BCL Data Word 3
PONH O ONL G a Data Word 4
fXX 1 BCHI CL Data Word S

In Memory
FTDHIFTBL! BCH! BCL!

N T
8CHI CL 1§ XX |

! TC t AB ILBCHILBCL! ANF. LID: XX 5
NL

A D T P NH

TM=—12328

S L

CAMAC 488
GPIB CONTROLLER
™ .
HALT o n
[4 o LAM
e 80
oMA * sX
o 8
e XTO
o 2
e EXH
L |
® HSQ
e 0
o CTH
. LCL o MTC
REM ® FYR
o MUB
o FIR
e ICT)
* FZOR
o RUM
e WUN e ON
e N e ENBL B dul
Fig. 10 GP Module
PNTR LEVEL - Front Panel
5 ® 7 °
- ® 'Y °
=
w ° 3 ®
1 e 4 I
3
- o 3 .
. 2 ®
3 1)
. [] [)
L
TCK
L]
T RESET
€ ™
R
L J I,
]
] e +12V
: e +8Y
o -5V
s ~12V¥
e GND
™ .
ED-35871
o€ .
e

LI

TM—12398
Fig.11 GPIB Module - Software system

ACNET
CAMAC
GAS
GBUG
PROTO OPERA

GAG

RS232 GPIB

DRIVER DRIVER

RS232 GPIB

DEVICE DEVICES

CGPIB) CHPLD)

P30

TEST PAGE

IEEE 4088

DEVICE!

OQUTPUT STRING!

BREPEAT

BRINTEGER

RETURN DATA ¢ BHEX ®asSCll
co

Fig. 12 GPIB Test Page

TM—1298

HED 13-FEB-83 15102
Z6 'SPECTRUN ANALYZER REMOTE CONTROL AND DISPLAY TVTOSS Ll
BINITIALIZE SPECTRUM ANALYZER MODULE = <Z11TSAT >
CONNAND FUNCTIONS

Iy

| 4 X 1] [L T 1 J < |
| Bsupdate Spectrums Qnalyzer & i
| REnabdble LX cursor » |
I = n {
| BCRT Mode EQIN - WOF ¢ RHelp -C 1)+ BEdLIt Help Pases |
DATA ACCUNULATION/PLOTTING
4 - e h
)} maccumulate Trace Data Bplot trace data NFill Mode]
i i H
SAVE/RESTORE ’
| " -
] SFile Directory HpPlot Trace File ¢) RSave Trace BFi11 Mode
|
.
ANALYZER COMMUNICATIONS 7 ERRORS
11 ' AFE = .FALSE. |
12 LEXCUR = .FALSE, |
13 ANOB = _FALSE]
14 stplte _FALSE l
s ‘ EPLOT= .FALSE |
[. DISFIL= .FALSE !

Fig. 13 Spectrum Analyzer Page

gBd L —WL

10 & TRACE pisPLay Line| sueee
A-B | e ™|
. L . ENTER . ONCE
e
HOLD THRESHOLD | TRIGGER
d ® ‘
a-» ENTER LINE
vieu [[suank| 170 A |
SCALE
B r "
h
CLEAR]|] max SHAP LIN EXT Vll:Ol
WRITE]{HOLEB | |AsB

KEY FUNCTION| 1

k z s
lvu:u - oS qulsmn @

100 NHZ SPAN 210 KHZ £ 1 01717785 1840
3 kHz 10 kHz 100 aseo 160 MHZ CALIDRATION SIGNAL....

COUPLEI FUNCTIONS ' _ NARKER BATA FQ’CT!ON DATA

EEEEE e GRS
= [l 'f"l B2l e o onn] 4“5“[«3
oo s T [__=__| ; P NEEE

RENOTE PRESET| ¢ = 8 REF
INSTRUNENT CHECK I Il MKR 2| |PRE- lgrgnL ”""l e l::m. a .
REF SEL
8366A_SPECTRUM ANA RECeLl |SELy llTRackl] — grer |

TT-PACKAR

Fig. 14 Spvectrum Analyzer Display

g6 L WL

TM—=12398

]
]
[}
1

——

tAssignment

INTR
Leveli

GPIB Module — Interrupt Vector Assignment

(HEX}

Table 1
iVectoriAddressiSpace

iNumber!

o

&4
s Sttt SRS

-

-

&5

HINT
T

B et S S
2

3
s o

66

EOP1

3

sSb

B e e

10C

&7

EOP2

4

4

-+

e e e

GPIB

5

sb

114

69

[Sp—

-

15 Hz

6
¥

——p———
118 | SD

70

sSD

11C

-

71

Interrupt levels are assigned in the interrupt controller

chip (AmP519A) with Level O being the highest.

Note:

