
TM-1298

TM-1298
0812.000

CAM& 488 Module
68000 Based GPIB Interface Module

K. C. Seino

March 1985

TM-1298

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

LIST OF ILLUSTRATIONS

1 System Connections
2 C-Card Block Diagram
3 Timing Waveforms - Write Registers to FIFO
4 Timing Waveforms - FIFO to Read Registers
5 Timing Waveforms - CTM DMA
6 Timing Waveforms - MTC DMA
7 M-Card Block Diagram
8 Memory Map
9 Byte ffanipulation
10 Front Panel
11 Software System
12 GPIB Test Page
13 Spectrum Analyzer Page
14 Spectrum Analyzer Display

Table 1 Interrupt Vector Assignment

TM- 1298

1. 0 INTRODUCTION . .
1. 1 Main Features .
2. 0 HARDWARE
2. 1 C-Card _ . . .
2. 1. 1 Block Diagram
2.1.2 CAMAC Interface
2. 1. 3 FIFO Control

. .

. -

. .

. . .

.

I .

. .

2. 1. 3. 1 CTM FIFO Control . _
2. 1.3.2 MTC FIFO Control . .
2. 1. 4 DMA Control . _ . .
2. 1. 4. 1 CTM DMA Control .
2. 1. 4. 2 MTC DMA Control .
2. 1. 5
2. 1. b
2. 2
2. 2. 1
2. 2. 2
2. 2. 3
2. 2. 4
2. 2. 5
2. 3
2. 4
2. 4. 1
2. 4. 2
2. 4. 3
2. 4. 4
2. 4. 5
3. 0
3. 1
3. 2
3. 3
3. 4
3. 4. 1
3. 4. 2
3. 4. 3
3. 5
3. 5. i
3. 5. 2
3. 5. 3
4. 0
5. 0
6. 0

GPIB Interface .
TCK Decoder _ . . .

M-Card
Block Diagram . . .
Memory Nap . .
DMA Controller . . .
Interrupt Controller
Byte Manipulation . .

Front Panel . . _ _
Hardware Tests . . _ . .

Tests With Emulator
Tests Under GBWG . .
CAMAC Command Test . .
TCK Test _ . .
Overall Module Tests .

SOFTWARE _ . - . . . _ .
GBUG _ .
GAS _ . . .
PROTO- . .
GAG

System Environment
Interior Design
Data Flow . .

Application Pages
GPIB Test Page
Parameter Page . .
Spectrum Analyzer .

CONCLUSION . . .
ACKNOWLEDGMENT . : : : : .
REFERENCES

. i

. 2
2
3

. 3

. 3

. 4

. 4

. 5

. 5

. 5

. 5

. 6

. 6
7

. 7
7

. 8

. 8

. 9
10
11
11
11
11
12
12
13
13
13
14
15
15
15
15
lb
16
16
16
17
17
17

APPEND1 X A CAMAC INTERFACE

APPENDIX B FPLA DESIGN DETAILS

TM-1298

1.0 INTRODUCTION

E. Malamud of Tev I listed approximately twelve GPIB devices on
his 7/22/83 document. NOWI how do we integrate such devices into the
ACNET computer system (hardware and software)?

Setting up a device locally may be accomplished by pushing ten
buttons on the front panel. Each button pushed corresponds to a
command, which is equivalent to a ASCII string sent to the device over
the GPIB interface. Therefore, setting up a device remotely is
accomplished by sending the correct sequence of the ten corresponding
ASCII strings. Some commands result in the return of data. The data
returns in different forms, i. e. , ASCII strings, binary words, binary
bytes and so forth. The amount of data varies from several bytes to
2K bytes.

What kind of hardware and software should we come up with to
interface GPIB devices with the existing computer system? One idea
which D. Bogert suggested was to use a commercially available
Multibus card, BLC 8488 from National Semiconductorl whose on-board
280 would manage the GPIB read/ write functions and handshakes. With
this card, one could make a hardware system which would consist of (1)
CAMAC 080, (2) Multibus crate, (3) M. Shea’s M68000, (4) MO801 (5)
BLC 8488 and (6) memory board. And the software considered for such a
hardware package was GAS, which had been an established software
pat kage for communication between the ACNET computer system and smart
CAMAC modules.

D. Beechy pursued the idea and put a system together for the
takeout system in a relatively short period of time. However, a few
other people suggested another idea. The idea was to Put everything
Of7 a two-wide CAMAC module. They made a comment like ‘It is ugly and
wastful to have a two-wide CAMAC module, a Multibus crate and several
cards in it Just to interface to GPIB devices.

The <zut.hor pursued the second idea and came up .with a two-wide
;: AMAC module called C488. it was not easy to reduce the space.
Needless to say, it was a completely new design. When the artwork was
generated, we had to allow 8 mil line/ 8 mil space and two lines
between IC pads. The modification on the software (GAS) turned out to
be simple and it was completed in few days.

The author will describe the hardware - block diagrams, circuit
blocks, front panel and hardware tests. He will also refer to the
software - sy5temJ modules and applications. The software was done by
L. Chapman, S. Morris and W. Marsh. If the reader wants to know
more about the scftwarer he should read the references listed in this
report and/ or talk to the programmers mentioned above.

CAMAC 488 Module: V 1.0
TM-1298

1. 1 Main Features

+ Motorola MC68000, which is clocked at 8 MHz, is the CPU of the
module.

u Hitachi HD68450, which is clocked at 8 MHz, is the DMA controller.
The channel assignments are Ch.0 for CAMAC to M-bus data transfer,
Ch. 1 for M-bus to CAMAC data transfer and Ch. 2 for N-bus from/ to
GPIB.

u Two FIFOs are on the module, i. e. I one for CAMAC to W-bus data
transfer and the other for M-bus to CAMAC data transfer. The
size of the FIFOs is 64 bytes each.

+ Memory sizes are 16K bytes of GBUG PROM, SK bytes of GAS PROM,
8K bytes of PROTO PROM and 64K bytes of RAM.

9 AMD 9519A is the interrupt controller. The interrupt level
assignments are Lvl.2 for HINT, Lvl. 3 for EOPl, Lvl.4 for EOP2,
Lvl. 5 for GPIB and Lvl.6 for 15 Hz.

* TT TMS9914A provides an interface between the M-bus and the GPIB
specified in IEEE-488 1975/ 78 standards and IEEE-488A 1980
supplement. The device is programmable and can function as a
controller, a talker or a listener.

u The module has two RS232 ports, i.e. I one for an optional local
terminal and the other for an optional remote RS232 device.

9 The module communicates with the ACNET computer system via a
modified 080 to Mb8000 version of GAS.

* It is a two-wide CAMAC module. The M-Card can be easily
detached from the rest by removing two screws and two ribbon
cables.

u Connections to GPIB devices and a RS232 device are made via
a patch panel.

2. i) HARDWARE

The GPIB module consists of C-Card, M-Card and a front panel.
The front panel forms a module, physically fastening the two cards
together. The electrical connections between the cards are made
through a 50 conductor ribbon cable/ connector assembly.

The overall connections between the m'odule and peripherals are
shown in Fig. 1. By connecting a terminal to a RS232 port which is
located on the front panel, one can do basic.diagnoses on the module.
Another RS232 port and a GPIB port are brought out to a patch panel
from the I/O connecters of the cards. The patch panel can be mounted

2

TM- 1298
CAMAC 488 Module: V 1. 0

on either the front or rear of the relay rack. From the patch panel,
one can make connections to devices with GPIB and/ or a device with
RS232 interface.

2. 1 C-Card

The C-Card constitutes the right half of the module, and its
prime function is to interface with CAMAC. The name ‘C’, came from
CAMAC.

2. 1. 1 Block Diagram -

A block diagram of the C-Card is shown in Fig. 2. The data is
transferred in two directions, i. e.) from CAMAC to M-bus (CTM) and
M-bus to CAMAC (MTCI. In case of the CTM direction, a CAMAC command
writes data into a set of registers, and the data is transferred from
the registers to the CTM FIFO whenever the FIFO input is ready. The
data then wait for a DMA operation. A DMA controller is armed by the
sof twarer and it starts an operation when it receives the first
request. The DMA control circuit sends requests to the DMA
controller, and the controller returns acknowledges back. When a
predetermined number of data bytes have been transferred from the FIFO
to the memoryI the controller terminates the operation. The control
circuit receives a DONE signal from the controller at the end of
operation, and it is reset by the signal.

The DMA operation for the MTC direction is almost same as the CTM
except the fact that data bytes are shifted into the MTC FIFO from the
memory by DTC signals. A DTC signal is generated by the DMA
controller toward the end of the acknowledge period. Whenever a set
of registers are empty and whenever the MTC FIFO has some data, the
jata bytes are transferred from the FIFO to the registers. A CAMAC
-rimmand reads them out of the registers.

2. 1. 2 CAMAC Interface -

The CAMAC interface consists of write registers, read buffers and
registers, status buffers, command buffers and decoders, module number
buffers; a LAM generator and read/ write managers.

CAMAC commands are listed in APPENDIX A.1. Module status bits
are listed in APPENDIX A. 2. Conditional Q responses are illustrated
in APPENDIX A.4.

The CAMAC write managing circuit consists of two flip-flops (U3,
Schematic ED35871, SH-l/3)1 two AND gates (U&2) and a one-shot (U50).
When the first write command clocks the flip-flop on the left

3

TM-1298

(refering to the schematic), it stays as reset with its D-input being
initialized to be low. Thus at the Sl time, CWRCK becomes true and
latches write data into the write registers. At the same time, the
one-shot is triggered and its output sets the flip-flop on the right
indicating a write is in progress. When the data bytes have been
transferred from the write registers to the FIFO, WRHEN arrives and
resets the flip-flop. The same things repeat for write commands which
follows the first one. However, if another write command arrives
before the data bytes for the previous one are transferred, two things
happen -- (1) CWIP becomes true, and thus the Q response is not
generated, and (2) CWRCK becomes falser and thus the new data bytes
are not overwritten into the registers.

The CAMAC read managing circuit consists of two flip-flops (US),
a NAND gate (U&5), a OR gate (U27), a one-shot (U18) and other small
gates. When read data bytes are transferred from the FIFO to the read
registers, the flip-flop on the right is set by RRHCK indicating that
the read data is valid. When a read command arrives and clocks the
flip-flop on the left, the flip-flop is set. In this situation, two
things happen -- (1) CRDVAL becomes true and thus Q is generated, and
(2) CRREN becomes true and thus the data in the read registers is
enabled for a read operation. However, if a read command arrives
before the data becomes validn Q is not generated and the read data is
not enabled either.

2. 1. 3 FIFO Control -

2. 1. 3. 1 CTM FIFO Control -

The control circuit provides timing pulses for transfering data
i+om the llrrite Tegisters to the CTM FIFO. The timing pulses are shown
:n Fig. 3. As illustrated in the figure, the low byte of the write
registers is first enabled by WRLEN and shifted into the FIFO by FYSI.
?he middle and high bytes are enabled by WRMEN and WRHEN respectively,
and shifted into the FIFO by FYSI, immediately after the low byte.
Basic timing pulses are generated by two one-shots (U57, Schematic ED
35871, SH-l/3), a shift register (U56), a FPLA (U55), and other gates.
A write command normally consists of 3 bytes, and thus 3 shift pulses
are needed for the data transfer. However, when the write command
brings in a header, the WTF period is extended and the fourth pulse
shifts a dummy (assurance) byte into the FIFO. A one-shot (U79) and
its associated gates determine whether it is a three byte transfer or
a four byte transfer and produce a proper timing pulse to clear the
control circuit.

TM-1298

2. 1. 3. 2 MTC FIFO Control -

The control circuit provides timing pulses for transfering data
from the MTC FIFO to the read registers. The timing pulses are shwon
in Fig. 4. As illustrated in the figure, the first byte is latched
into the low byte of the read registers by RRLCK. The second and
third bytes are latched into the middle and high bytes of the read
registers by RRMCK and RRHCK respectively. The leading edge of a
clock pulse latches the data appearing at the output of the FIFO, and
the lagging edge of the same puise shifts out new data to the output
of the FIFO.

2.1.4 DMA Control -

2. 1. 4. 1 CTM DMA Control -

CTM DMA control signals are shown in Fig. 5 for a header
transfer. When a F20AO command is properly received, HDRCK triggers a
one-shot (U37, Schematic ED35871, SH-l/3), and after 1 microsecond
delay, HSQ becomes true at a flip-flop (U67). When FYORl, 2 and HSQ
become true at U72, a one-shot (Wbl) is triggered and a flip-flop
(U60) is set. The output of l&O becomes DMRENI when the software sets
a flip-flop (U69) and when DMGOOl becomes true. The software needs to
arm the DMA controller chip first and then to allow the request to
reach the chip in order to operate the chip in a cycle-steal mode.
When the control circuit receives a DMACKO, it resets the request and
generates the next request after a delay. It repeats this hand
shaking four times for a header transfer. When the fourth DMACKD and
DMDONE arrive, the DMREQO is reset and remains reset, and the HSQ is
reset at the lagging edge of the DMDONE. The DMGOOl is reset by the
sof tuare.

A data transfer following the header transfer is similar to the
header transfer. It is started by a CTMCK, and it is terminated when
a predetermined number of bytes (a multiple of three 1 have been
transferred.

2. 1. 4. 2 MTC DMA Control -

MTC DMA control signals are shown in Fig. 6. When a header
transfer has been properly performed for a MTC DMA operation, the
software sets a flip-flop (U73, Schematic ED35871, SH-l/3) with MTCGO
and MTC becomes true. Then a one-shot (U74) is triggered, and it sets
a flip-flop tU73). When the software arms the DMA controller chip and
makes DMGOOl true, the output of the flip-flop is allowed to reach the
DMA controller chip as a request. When the control circuit receives
3n acknowledge, it resets the request and sets the request back after

5

TM-1298

a delay following the lagging edge of the acknowledge. It is
essential to hold back next request until the current data byte is
shifted into the MTC FIFO at the end of the acknowledge period. The
control circuit exchanges requests with acknowledges a predetermined
number of times. At the last exchange, a DMDONE resets the MTC and
DMREG 1, and the request remains false. The software resets the
DMGOD 1.

2. 1. 5 GPIB Interface -

The interface circuit consists of a controller chip (U17,
Schematic ED35871, SH-3/3), bus tranceivers (U5, Ulb) and a OR gate
(U27). The controller chip is the TMS9914A (Texas Instruments), which
provides an interface between a microprocessor and the GPEB specified
in the IEEE-488 1975/ 78 standards and the IEEE-488A 1980 supplement.
The device is programmable and can function as a controller, a talker
or a listener. For further details, one should refer to Ref. 1.

A device on the GPIB can request a service from the CPU via the
GPIB controller chip. For example, a device has data ready and makes
SRQ true on the GPIB. The controller chip sees it and interrupts the
CPU. In an interrupt service routine, the CPU does a serial poll and
reads the data.

Data can be transferred between the GPIB controller chip and the
M-bus via DMA. When the software arms the Channel 2 of the DMA
controller (U3, Schematic ED358871, Sfi-213) and #makes the DMGO;! true,
the GPIB controller chip and the DNA controller start to exchange
DMREG2 with DMACK2 and start transfering data. When a predetermined
number of bytes have been transferred, the DMA operation is
terminated, and the software resets DflGCl2.

2. 1. 6 TCK Decoder -

A voltage comparator (Ul, Schematic ED35871, W-3/3) converts
incoming signals to TTL signals. A one-shot (U3) and a decoder chip
(U15) work together to extract 8 bit event codes from pulse trains. A

FPLA (U4) detects up to eight event codes and produces a pulse when a
particular code is detected. The GPIB module needs to be updated by a
15 Hz event. For this reasonI the FPLA detects $OF (15 Hz event codei
and produces pulses, which are used as an interrupt to the CPU. A
pulse generator (U26) works with a one-shot (U37) and a OR gate (U27)
to provide back-up pulses when the TCK event pulses are not available.
For further details, one should read Ref. 2.

6

TM-1298

2.2 M-Card

The M-Card constitutes the left half of the module, and it is a
Motorola MC.68000 based microcomputer. The name ‘M’ came from
‘Motorola’. The card is called ‘M-Card’, and the bus on the card is
called ‘M-bus’.

2.2. 1 Block Diagram -

A block diagram of the M-Card is shown in Fig. 7. The CPU is a
Motorola MC&8000, which is clocked by a 8 MHz clock. A Hitachi
HD68450 controls DMA operations. The 68000 and 68450 are connected
together hand in hand. All the signals that are needed for the bus
come out from the two chips, and they are first tied together, then
buffered and distributed to the bus. The PROM/ RAM area can
accommodate up to seven pairs of memory chips, which can be either
PROMS or RAMS, and which can be either 24 pinners or 28 pinners,
Addresses are decoded by three FPLAs, which can be p’rogrammed for a
particular application that one envisions.

The status/ control circuit consists of registers and a DIP
switch. When the M-Card has a certain condition, its software sets a
bit in a register to indicate the condition to the C-Card and the
CAMAC. Or when the CAMAC wants to do a certain operation, it sets a
bit on the C-Card. The M-Card reads it and knows what to do. Or an
operator can set a bit on the DIP switch to indicate a certain
operation to the M-Card.

A Signetics SCNb8681 provides two RS232 ports. The first port is
used with a local terminal for diagnoses. The second port is used for
controling a device with a RS232 interface or for downloading programs
from the host.

e. 2. ‘5 2 Memory Map -

A typical memory map for the CPIB module is shown in Fig. 8.
There are seven memory blocks, i. e., MEMO thru MEM6, and these memory
blocks are located on seven IC socket pairs.

MEMO thru MEM3 are RAM blocks, each of which has 16K _ bytes.
These RAM blocks are made reference to by the CPU in two address
spaces, i. e. , supervisor program or supervisor data except the first
half of MEMO, which is accessible only in the supervisor data space.

MEM4 thru MEM6 are PROM blocks. MEM4 has 8K bytes, and a loader
called PROTO resides in this block. MEM4 is located between 0 and
1FFF in the SP space and between 80000 and 81FFF in the SP and SD
spaces. MEM5 has 8K bytes and accommodates GAS. MEM& has 1bK bytes
and accommodates GBUG. These blocks are accessible in either SP GT

7

TM-1298

SD.

The I/O block is accessible only in the SD space and it is
located between FF8000 and FFSFFF. Base addresses for different
devices are FF8000 (Status/ Control Bits), FFSlOl (Interrupt
Controller 1, FF8201 (GPIB Contoller), FF8301 (Serial Ports) and FF8400
(DMA Controller).

For details on the memory mapping fuseware, one should read
APPENDIX B.

2. 2. 3 DMA Controller -

The DMA controller is Hitachi HD68450, which has four independent
DMA channels. Channel 0 is used for transfering data from CAMAC 3
M-bus, Channel 1 is for M-bus to CAMAC and Channel 2 is for GPIB Fran,.!
to M-bus.

The DMA controller (U3, Schematic ED35871, SH-213) is first armed
by the software, and returns an acknowledge signal-when it receives a
.repuest signal. The data is transferred during the acknowledge
period. The controller generates a DONE signal after a predetermined
number of data bytes have been transferred.

When we constructed a prototype module, we experienced
difficuties in making a HI)68450 work properly. We had to put pull-up
resisters on some control signals of the chip.

When Channels 1 and 2 received requests simultaneously or very
closely in time‘ the HO68450 could not properly sort them out and
acknowledge them. If different priority levels were assigned on them,
the chip should have been able to service two requests with two
different priority levels. According to Hitachi, ones with R-mask had
,3 deficrency in handling multiple requests. They said that they would
repiace ones with R-mask with ones with S-mask.

For further details on the HDb8450, one should read Ref. 3.

3 2.4 b. Interrupt- Controller -

The interrupt controller is AMD 9519A, which has Interrupt
Request Register, Interrupt Service Register, Interrupt Mask Register,
Auto Clear Register, l?esponse Memory and others. Interrupt Reg i s ter.
inputs are captured and latched in the Interrupt Request Register.
Any requests not masked by the Interrupt Mask Register will cause a
Group Interrupt output to the CPU. When the CPU is ready to handle
the interrupt, it issues an Interrupt Acknowledge pulse, which cause5
(a) the priority of pending interrrupts to be resolved and. (b) a byte
from the response memory (a vector number) associated with the highest

8

TM-1298

priority interrupt to be read.

The Group Interrupt output of the interrupt controller (U41,
Schematic ED3587 1, SH-2/3) is connected to the Interrupt Control
inputs (IPL<O:2>) of the CPU (U8). These connections allow us to use
the Interrupt Level 6 of the CPU, which can be inhibited by the
interrupt priority mask. Although we use only Level 6 of the CPU, we
should remember that interrupt priority levels are assigned in the
interrupt controller.

The CPU fetches a vector number from the interrupt controller,
loads the program counter with the content of the interrupt vector and
services the interrupt in an interrupt handling routine. Table 1
shows the interrupt vector assignment of the module.

For monitoring interrupt level5 being serviced, the software
turns on corresponding bits in a register (U66) and LEDs on the front
panel.

For further details on the interrupt controller and interrupt
handling, see Ref. 's 4 and 5.

2. 2. 5 Byte Manipulation -

The GAS software package had been written for a 280 based system,
and hardware byte swapping and software four byte rotation were needed
to make the GAS work on a 68000 based system. These manipulations are
Illustrated in Fig. 9.

When data words arrive with CAMAC commands F22 (or Fib), as shown
in Fig. 9b, the low byte is first shifted in the FIFO, and the middle
byte and the high byte follow in order. On the 68000 based system,
the high order byte has an even address that is the same as the word
3’ld?-es: 2nd the iow order byte has an odd address that is one count
n 1gi;2r than the word address. In order to convert the data
.organization from 280 to 680001 byte swapping is performed. The first
byte CIlJt Of the FIFO is normally stored at an even address by the
upper data strobe IUDS). However, it is stored at odd address by the
lower data strobe ILDS) instead. The second byte is stored at an even
address by the UDS. These operations are accomplished by swapping UDS
and LDS during the CAMAC to M-bus or M-bus to CAMAC DMA operations.
The swapped UDS and LDS are called XUDS and XLDS respectively. Byte
swapping is performed on all the pairs of bytes that follow the first.

Glhen a header arrives with a CAMAC command F20, an assurance byte
1s added at the end after low, middle and high bytes have been shifted
into the FIFO. When the header bytes are transferred From the FIFO to
the memory, byte swapping is performed on the pairs of the bytes.
After the header bytes have been stored in the memory, the software
rotates them as illustrated in Fig. 9a. List Set command is shown in
Fig. 9c as an example of byte manipulation.

9

TM-1298

Byte swapping on the M-bus to CAMAC data transfer is exactly the
same as the one on the CTM transfer except the fact that it is
performed in the reverse direction.

2. 3 Front Panel

The front panel control/ monitor functions are shown in Fig. 10.

C AMAC
N:
LAM :
SQ:
sx:

status
XTO:

EXH:
HSQ:
CTM:
MTC :
FYIR:
FZIR:
FZOR :

Control
ON:
ENBL:

On when module is addressed.
On when LAM conditions exit.
On when module generates Q.
On when module generates X.

On when data transfer .times outi possible data transfers
are II) Write Registers to CTM FIFO and (2) MTC FIFO to
Read Registers.

On when header is expected.
On when four bytes of header are being transferred.
On when CAMAC to M-bus data transfer is in progress.
On when M-bus to CAMAC data transfer is in progress.
On when input of CTM FIFO is ready.
On when input of MTC FIFO is ready.
On when output of MTC FIFO is ready.

On when ON bit is true.
On when ENBL bit is true.

M-bus
MPU HALT: On when 68000 is reset or stopped.
DMA<O : 3> : On when DMA operations are in progress1 numbers

are associated with channel numbers.
INTR LEVEL<O: 7,: On when interrrupts are being serviced,

numbers are associated with levels.
RESET: When this switch is pushed, it resets module

hardware and reboots software.

GAS Managed Status
HB: Off llrhen heart beat of module stops.
ICTI: On when I (GAS) can’t take data in a set or list set

command.
RUM: Off when module has unsolicited message for RLI.
HUM : Off when module has unsolidited message for host.
INI: Off when module Just booted and waits for host to

initialize it.

$ower Supplies

10

TM-1298

+12V, +SV, -5V and -12V are monitored.

Misllaneous
LCL/ REM: By selecting LCL, operator can indicate to host

that he wants to locally control GPIB devices.
TCK: On when TCK is detected.
TERMINAL: This is connector for RS232 terminal.

2. 4 Hardware Tests

When the modules arrive from an assembly house, we first inspect
them visually, and then measure resistivities between the ground and
the power supplies. If all the above checks are good, we proceed to
do the following tests.

2. 4. 1 Tests With Emulator -

If the GBUG does not work on the module, we can do
trouble-shooting with an emulator. First, we try to write to the
memory and read from the memory. Then, we try to read a few important
locations of the PROTO and GBUC PROMS. Thirdly, we try to write to a
register of the DUART (U49, Schematic ED35871, SH-2/3) and read from
it. Lastly, we attempt to run the GBUG and break here and there along
the way.

2. 4. 2 Tests Under GBUG -

With the GBUG working on the module, we can test ‘3 v t different
ports. First, we write to a register and read from it on the UIC
(U41, Schematic ED35871, SH-2/3) and the DMAC (U3). Secondly, we test
control, status and interrupt level bits by writing to or reading from
them. Thirdly, we test addressing to all the RAM and PROM pairs.
Fourthly, we write to a register and read from it on the GBC (U17,
Schematic ED35871, SH-313).

2. 4. 3 CAMAC Command Test -

Our CAMAC test facility consists of a CAMAC crate, Kinetic
Systems i 5110 Multibus Adapter and 3908 Crate Controller and System

27 (Z80 based, with Multibus, CDOS 1.7 running). At this stage of
the game, test
F30A0, F28AOWInd FlAO.

CAMAC commands FbAO, F9A0, F17A0, F26A0, F24A0,
Then, to test SQ, we try FOAO, and to test SX,

we try FlOAO.

CAMAC 488 Module: V 1.0

2.4.4 TCK Test -

We observe pulses at Pin 11 of Ull (Schematic ED35871, SH-3/3) to
see if they are of 15 Hz. And by removing the TCK input to the
module, we observe if the back-up clock circuit takes over. Lastly,
we carefully look at the output waveform at pin 10 of U3 (one-shot).

2.4.5 Overall Module Tests -

We developed module test programs on the EXORMACS development
system. The programs are assembled, linked, built, downloaded to the
module over the phone line and executed under the GBUG.

GBINTl program was written to test out the interrupt handling.
The i5 Hz clock pulses come in as interrupt requests, are acknowledged
and turn on INTR LEVEL 6 LED in a service routine.

GBDMA4 program was written to test out CAMAC to M-bus and M-bus
to CAMAC DMA operations. We first start running GBDMA4 under GBUG on
the module, and we send or receive data from the CAMAC by running a
CAMAC program. Two CAMAC prOgramsr i. e. I GBCTSl and GBCTS2 were
written in FORTRAN. With GBCTSl, we can test either the CTM data
transfer or the MTC data transfer. We normally send a definite data
pattern from the CAMAC to the M-bus and examine if the data pattern
has been transferred without any error. We then transfer the same
data pattern back from the M-bus to the CAMAC and examine it again.
GBCTS2 does a CTM transfer first and does a MTC transfer without
interruption of the program execution. It compares sent data with
received dadta and counts the number of errors.

GB488D program was written to test the GPIB interface. The
program initializes the bus, sends measurement parameters to
Racat-Dana boo0 digital multimeter, sends a GET (Group Execute
Trigger) and waits for a SRQ (Service Request). When the 6000 DMM has
data 'ready, it sends a SRQ. The SRQ goes through the GPIB controller
iu17, Schematic ED358711 SH-3/3i and the interrupt controller (U41,
Schematic ED358711 SH-2131, and come through as Interrupt Level 6 of
U41. The service routine for the interrupt does a serial poll and
sets up a DMA operation for transfering the data from the DMM to the
M-bus. When the DMA is done, another interrupt (Interrupt Level 4)
occurs. The service routine for this interrupt displays the DMM data
to n the terminal. After the service routine, the main program sends
another GET to the DMM for the next cycle. This process repeats
itself until the program execution is stopped.

12

TM-1298

3.0 SOFTWARE

The software system for the GPIB module roughly looks as shown in
Fig. 11. GBUG, GAS and PROTO are PROM-resident programsl and reserve
16K bytes, SK bytes and SK bytes respectively for their use. GAG and
its support modules (i. e., OPERA and drivers) are downloaded from the
ACNET to the RAM on the module.

3. 1 GBUG

GBUG is a PROM resident monitor program derived from Motorola’s
VMEBUG. If the system is rebooted with SWSO off (down pos.ition, high
true TTL level), it will run GBUG. Under GBUG, one can examine all
the components of the microcomputer, run programs and do
trouble-shooting on them.

3.2 GAS

GAS (GHASP Advanced Software) is a PROM resident software package
derived from GHASP. GHASP (General Host And Subsystem Protocol) is a
language for communication between smart modules and the ACNET
computer system.

The simplest way for a master to collect data from a module is to
send the module an address (STANC), wait for the module to generate
the answer and then read the answer. These features are supported in
GAS by Set commands and Read commands.

Most data collection is repetitive, and therefore it is efficient
to send a set of addresses once along with information about how often
to update the answer and then read the answer repetitively. GAS
supports three types of list commands, i.e., the List Setup (LS), the
iList Read (LR) and the List Delete (LD).

All GAS commands are transmitted as one or more CAMAC commands
Each GAS commands starts with a F2O. The remaining bytes of the
header (for Read, Set and List Set commands) are sent by two F22s.
For Read and List Read, a number of FO or F4 CAMAC commands are then
sent. For Set and List Set, a number of Fib CAMAC commands are sent
after the header.

When hardwre or software problems exist in smart module, it may
be impossible to successfully execute any of the five kinds of GAS
commands explained above. For a simpler form of testing, GAS may be
put in Regurgitation Mode. In this mode, the master sends three bytes
to the module with a F20 command, GAS does the CTM and MTC DNA
operations and simply returns the same three bytes. The master then
read the three bytes with a FO command.

13

TM-1238

Xn addition to supporting GAS commands, the GAS software controls
some status bits. The master reads them with a Ff command. The
status bits are as follows.

HB: 0 when heart beat of module stops.
ICTI: 1 when I (GAS) can’t ta-ke data in set or list set

c omman d.
RUM: 0 when module has unsolicited message for RLI.
HUM: 0 when module has unsolicited message for host.
INI: 0 when module Just booted and waits for host to

initialize it.

GAS reports errors to the master by placing an error message in
an unsolicited message queue. Whenever the host’s queue is not empty,
the module raises a LAM by clearing the HUM bit, requesting the host
to read the queue. Whenever the RLI’s queue is not empty, GAS clears
the RUM bit but this does not cause a LAM. GAS reports system events
as well as error messages to the masters via the unsolicited message
queues. Each GAS error and system event may be bypassed. If
bypassed, no message is generated even if the error or event occurs.

For further details on GAS, one should read Ref. 6.

3.3 PROTO

PROTO is a PROM resident program which knows how to download GAG.
When the power is applied to the GPIB module, the CPU fetches the
initial supervisor stack pointer and the initial program counter at
Address Locations 0 and 4 of PROTO, it starts executing PROTO from the
location pointed to by the initial program counter. When PORT0 is
ready t’or GAG to be downloaded, it flashes INTR LEVEL 7 LED. In order
to download GAG, one must use a “Download Microp” application page.
In the future, the ACNET will automatically detect the reboot of PROTO
and Idiil automatically download GAG.

IF one wishes to run GBUG, he turns swso off (down position)
before applying the power to the module. One of the things that PRCITO
does when it is Just starting is to read the status on SWSO. If the
switch 1s off, PROTO makes a Jump from itself to GBUG. From this
point 9nl everything is cotrolled and monitored by GBUG unless the
system is restarted.

PROTO is assembled and linked assuming that the beginning of the
program is located Address 80000 (HEX). However, since the memory
mapping circuit allows it to be accessed at either Location 0 or
Location 50000, the CPU can fetch initial stack pointer and program
rounter from Locations 0 and 4 without any problem at the time of
system start.

i4

TM-1298

3.4 GAG

3. 4. 1 System Environment -

GAG is a software system which provides communications between
ACNET and GPIB devices. GAG also provides translation between the
ACNET language called GAS and whatever language the GPIB devices
speak.

GAG allows three masters to exist, i. e. I ACNET, a resident local
master and an optional local terminal. The local master software task
resides in the same microcomputer as GAG and can use GAG to
communicate with the GPIB devices. This ability, together with the
,task’s own intelligence, lets it do local control such as closed
loops. The local terminal is intended for debugging and not a part of
the final system.

In addition to GPIB devices, GAG has a port for connection to an
optional RS232 device. When a software driver for this port is
written and added to GAG, the RS232 appears to be JUSt another GPIB
device to the three masters.

3. 4. 2 Interior Design -

GAG runs under a simple multi-task operating system called OPERA,
which is non-preemptive and of a round-robin.

GAS has two communication modes: transparent and opaque. In the
transparent mode, GPIB ASCII strings are sent between ACNET and GAG as
data in GAS commands. In the opaque mode, the ASCII strings are
stored in the GAG’s translator which converts them to/ From
traditional data-base orientated GAS commands and data formats.

3. 4. 3 Data Flow -

Each external device (RS232 or GPIB) has a FIFO queue associated
with it. The three master tasks ask GAG to enter commands into the
queues. The two external device driver tasks em? ty the queues,
sending commands to a correct external device and returning status and
data to the master who initiated the request.

The local resident master task can maintain a data pool of 1ts

own which is accessible to GAS.

The translation tables are downloaded to the microcomputer fl-Of%

ACNET via GAS and are used by GAG in the opaque mode.

15

TM-1298

For further details on GAG, one should read Ref. 7.

3. 5 Application Pages

At the time of this writing, two application pages have been
written. I am sure that there will be more developments in the
future, i. e. , changes and improvements will be made to the existing
ones and new one will be added. The author will talk about three
examples, which would give the reader some ideas how to communicate
with remote GPTB devices from the console.

3. 5. 1 GPIB Test Page -

A GPIB Test Page has been written as shown in Fig. 12. The
operator first specifies a device name (the device has to be in the
data basej and enters an ASCII string that he wants to send to the
device. The device returns data (if any), which is displayed in HEX,
ASCII or Integer.

In this crude wayI the operator has to know the details of the
device, i. e., how to operate the device and what specific ASCII string
to perform a particular function.

3.5.2 Parameter Page -

Some simple GPIB devices can be put on parameter pages. For
example, the dipole magnet current measured by a DMM can be monitored
on a parameter page. When the device name is entered and when the
interrupt switch is pushed under the name, the software sends
necessary commands to the device, brings data back and displays it CT1
the page. It will be updated in a 1 Hz or 15 Hz rate. If the
operator wants to control/ monitor a few functions on the device, he
can use the digital control/ status facility. For example, if the
operator wants to take a filter in and out of the DMMI he interrupts
under FILTER IN UUT cm the page. The information is carried on a bit
of the GAS data, GAG translates it to a ASCII string, and the string
is sent out to the DMM. The filter is thus manipulated on the DMM.

3. 5. 3 Spectrum Analyzer -

A Spectrum Analyzer Remote Control and Display page WdS under
development at the time of this writing. If one calls up the page, he
sees a page like the one shown in Fig. 13. If one enters a data base
name and terminates with an interrupt under INITIALIZE SPECTRUM
ANALYZER MODULE =<: 3, the program is initiated and it draws a

16

TM-1298
LHPIHL 4uu noaule: v 1.0

analyzer display on the Lexidata like the one shown in Fig. 14. All
the control/ monitor functions including the CRT display of the
spectrum analyzer are shown. When one interrupt5 under Update
Spectrum Analqter, the program is allowed to update the conditions of
the analyzer and to enable the Lexidata cursor. By moving the cursor

and interrupting under different functions, one can manipulate the
spectrum analyzer from a console.

Furthermore, one can plot, accumulate and save the trace data,
and he can plot the saved trace data.

4.0 CONCLUSION

It was a big effort to squeeze the space from the one occupied by
a two-wide CAMAC module and an Intel tlultibus chassis to the one
occupied only by a two-wide CAMAC module. Needless to say, it was a
completely new design. When the artwork was generated, we had to
allow 8 mil line/ 8 mil space and two lines between IC pads in order
to have all the connections neatly organized and made short. The pc
boards were nicely fabricated and assembled well with JUSt d few

shorts.

f had to use new chips to do an efficient and space saving
design. The software staff was ObJectionable to this because they had
to become familiar with new chips and to modify the hardware dependent
module of the GAS. However, it turned out to be a relatively simple
Job. They simply copied parts of my hardware test programs.

The cost of the Multibus based system seems to be over 33,000,
which can be compared with $1,500 for the new design. Furthermore,
the new design saves real estate as a whole.

5. 0 ACKNUWLEDGMENT

I am grateful to Richard Klecka for his efforts on the GPIli
module proJect. He constructed the prototype unit and did mechanical
design for the production. He was involved in correcting mistakes 011

the artwork, inspecting p c boards and supervising p c board assembly

6.0 REFERENCES

1. TMS9914A Generai P!Jrpose Interface Bus (GPIBJ Controller Data Manuai,
Texas Instruments 1982.

2. Accelerator Controls Tevatron Time Clock System Clock Decoder, D. G.
Beechy, June 1982.

3. HDbS450 DMAC (Direct Memory Access Controller), Hitachi WJ102.
4. Am9519A Application Note, AMD AMPUB-071.

17

TM-1298

5. l&Bit Microprocessor User’s Manual Third Edition, Motorola 1982.
6. Speaking GAS, ACNET Design Note No. 23. 3, Lee J. Chapman. September 21

1983.
7. GAG Software (GAS to GPIB translator), ACNET Design Note No. 48. 1,

Lee J. Chapman, 15 August 1984.
8. Accelerator Controls CAMAC 488 - GPfB Controller, Drawing No. 0812-

ED-35871, flay 1984.

18

TM- 1298

APPEND1 X A

CAMAC INTERFACE

A. 1 CAMAC Commands

All commands return X. Return of Q is conditional for some
commands.

FOAO

FlAQ
F4AQ

F6AO

F?AO
FlSAO
F17AO
F20AO
F22AO

F24AO
F2&AO
F2SAO
F3OAO

A. 2 status

Read Read Registers, non-block transfer, Q is
conditional.
Read module status, always 0.
Read Read Registers, block transfer reads, Q is
conditional.
Read module number, OOOlE8 (HEX), 488 (Decimal),
always Q.
Clear module, always Q.
SJrlte data into Write Registers, Q is conditional.
Clear module and reboot, always 0.
Write header into Write Registers, Q is conditional.
Write additional header information to Write
Registers, Q is conditional.
Reset ENBL bit, always Q.
Set ENBL bit, always Q.
Reset ON bit, always cf.
Set ON bit, always Q.

FlAO reads the following status bits.

R24: XT0 (Transaction Time Out)
This bit is true !=l) if the following transaction
times out; (1) Write Registers to CTM FIFO transfer
and (2) MTC FIFO to Read Registers transfer.

R23: EXH (Expecting Header)
This bit is set true by F9AO, Fl?AQ or power-up.
It is reset by proper receipt of F20AO.

R22: HSQ (Header Sequence)
R21: CTM (CAMAC to M-bus Sequence)

A-l

TM-1298

R20: MTC (M-bus to CAMAC Sequence)
Rl9: FYIR (FIFO-Y Input Ready)

This bit true indicates that FIFO-Y is ready to
accept data for CAMAC to M-bus transfer.

R18: FZIR (FIFO-Z Input Ready)
This bit true indicates that FIFO-Z is ready to
accept data for M-bus to CAMAC transfer.

R17: FZOR (FIFO-Z Output Ready)
This bit true indicates that FIFO-Z has data ready
CAMAC read.

Rib, R15 and R14 are not used.
R13: HB (Heart Beat)

This bit true indicates that MPU is alive and
updating status on M-bus.

R12: ICTI (I Can’t Take It)
This bit true indicates that GAS can’t take data
in set or list set command.

Rll: RUM (RLI Unsolicted Message)
This bit false indicates that this module has
unsolicited message for RLI.

RIO: HUM (Host Unsolicited Message)
This bit false indicates that this module has
unsolicited message for host.

R9: IN1 (Initialize)
This bit false indicates that this module Just
rebooted and that it needs to be initialized.

R8: Not used.
R7: ON

This bit true indicates ON mode.
R6: ENBL (Enable)

This bit true indicates ENABLE mode.
R5, R4, R3, R2 and Rl are not used.

A. 3 L.AM Generation

LAM 1s generated by some ol? the status bits, i. e. I HB,
HUH and INI.

A. 4 Conditional B Responses

Q is generated by ANDing the following conditions for a
given command.

: FO I F4 : Flbl F20: F22:
--------+----+----+----+----+----+
CRDVAL : 1 : 1 : I I I * i CAMAC Read Data Valid
CWIP : / I : 0: 0: 0: CAHAC Write In Progress
EXH : , 4 I 1 : , , I I I
FTR I I 010: : I , I I FIFO-Z to RR transfer
FZOR L I I I I 0: 0: 0:
HSQ : oto: 10: I I

A-2

TM-1298

APPENDIX B

FPLA DESIGN DETAILS

FPLAOl

/WRHEN = / (TA3+/TA4*.‘TA5*WTF)
/WRMEN = /(TA~u/TA~*/TA~+/TA~*WTF~
/WRLEN = /(TAl*/TA2*/TA3*/TA4*/TA!%WTF1
FYS I = DLYA2*WTF*C(TAl*/TA2*/TA4+/TA5)

+ (TA2*/TA3*/TA4*/TA5)
+ tTA3u/TA4*/TAS)
+ (TA4*/TAS*HSQ)l

RHSQ = /RCTM*HSQ

FPLA02

3RHCH
RRMCK
RRLCK
FZSO

= TB3*/TB4*FTRsDLYB2
= TB2*/TB3+/TB4*FTR*DLYB2
= TBl*/TB2*/TB3*/TB4*FTR*DLYB2
= DLYB2*FTR*C(TB3*/TB4*>

+ (TB2*/TB3*/TB4)
+ (TBlu/TB2*/TB3*/TB4)1

FPLA03

/F30AOSl = /(/Fl*F2*F4*F8*F16*SN*Sl1
F28AOS 1 = /Fl*/F2*F4*F8*F16*SN*Sl

B-l

TM-1298

/F26AOSl = /(/Fl*F2*/F4*F8*F16*SNwSI)
F24AOSl = /Fl++/F2*/F4*F8*F16*SN*Sl

/zs2 = /(ZSS2)
F(16,20,22) =

[(/Fl+/F29/F4a/F8*F16)+(/F~~/F2~F4~/F8~Fl6~
+(/Fl+kF2*F4*/F8*F16Jl*SN

/CAMRE = /(C(/Fl*/F2*/F4*/F8*/Fl6I+tFl*/F4w/F8*/Fl6~
+(/Fl*/F2*F4w/F8*/Fl6)l*SNI

FPLAOS

/F6AO
/FlAO

F(O, 4)
NSl

FPLAO6

/CKEVl

FPLA 12

41 MEMb

/MEH5

/HEM4

/ INTACK

FPLA13

iMEH3

/MEM2

= /(BO*B~UB~*B~*/B~*/B~*/B~*~B~*DVAL~

= iifAi4oAl5uiAl6*iAl79/Alas/A19)
w(/FCo9FClwFC2+FCO~/FCluFC2~~ASl

= /i(/A14*A15~/A16*/A17~/Al8~/Al9~

B-2

TM-1298

/MEMl

/MEMO

FPLA14

/SLDMAC
/SLSPRT
/EXOP

/SLBGC
/SL.UIC
/WMBSC
/RMBSC
/MB1

B-3

TM-1298

Fig.1 GPIB Module - System connections

C - CARD
J

M - CARD

GPIB
MODULE

W/M232

DIAGNOSTIC
TERMINAL

TM-1298

Fig.2 GPIB Module - CSard block diagram

GPIB

w<1:24>

R <t :24>

F<l:l6>

A <1:0>

Sl ,SP,N,Z

LQJ

>
) cm

FIFO - \I

< I
.

> CAMAC

> INTERFACE BUFFER < ’ > M-BUS
MBD<O:I>

> 1
< 1 < MTC

FIFO

TCK TCK
DECODER

FIFO DMA DMDONE

CONTROL CONTROL
DMDTC

TM-1298

Fig.3 Timing waveforms - Write registers to FIFO

2SOnS 2SOnS 2SOnS 2SOnS

Fig.4 Timing waveforms - FIFO to read registers

FTR

RRHCK

RRMCK

RRLCK

Fzso

TM-1298

Fig.5 Timing waveform - CTM DMA

1ps qJs 1ps 1ps ‘PS

DMGOfb 1

DMACKP
I 1 I I

DMREQP

DMONE

HSQ

Fig.6 Timing waveform - MTC DMA

1ps 1ps 1ps 1ps *lrs
rnrnrn~rn

DMGO#l

DMACK 1

-P
.

MTC

TM-1298

Fig.7 GPIB Module - M-Card block diagram

\

CPU DMAC l DMACKl
CLOCK I

68000 68450 (Dm

c) DMACKP 4
I > DMDONE

> DMDTC

BUFFER

T

XR/W <
xuos< MISC ,

iiGa

L
INTERRUPT
CONTROL

951915

TM-1298

FF8oQo

FFAOOO

FFEDOO

00000

02000

04000

08000

10000

80000

so

I

8P

c
If0 4Kb F

MEW 1UKb

PRoM3GelJG

MEMS 8Kb
PROM2 GA8

MEMO 16Kb
RAW

ME841 16Kb

RAM2

MEM2 16Kb

RAMS

MEW 16Kb
RAM4

:

PF8ooo Ms8c

FF8101 SUJIC

FF8201 SLo#:

FF8301 SLSPRT

FF84m 8LDMAc

SF= SUPERVISM PROGRAM

SD =SUPERVBOR DATA

LD=LOADER PROTO)

TM-1298

Fig. 9 WI!3 Module - Byte Manipulation

(a) Header

:03:04:01:

:01:04:03:AS:

104:0l:AS:03f

:Ol:AS:03:04:

(b) Data

:21:10:11:

:30:31:20:

:51:40:41:

:60:61:50:

111:10:21:20:32

F20 Data Word

Shifted in FIFO

Transferred from.FIFO to memory

Rotated in memory

F22 (or Fl6) Data Wurd 1

II

:30:41:40:51

~10:11:20:21130131 :40 :41:50:51:60:61: In Memory

Cc) LS (List Set)

:LBCH:LBCL: TC : Header

I NS : ANF: LID:
:FTDH:FTDL: XX :
: T: ECH: DCLl
: NH : NL : A I
: xx : SCH: CL :

Data Word 1
Data Word 2
Data Word 3
Data Word 4
Data W.rd 5

In Memory

Data Word 2

Data Word 3

Data Word 4

50:61:60: In FIFO

: TC : AS :LBCH:LBCL: ANF: LID: XX : NS :FTDH:FTDLI I3CHI BCLI
A: TfNH:NL:SCH:CL:XX:

TM-1238

J

c

L
CAMAC 488

. LCL 0 yIE
REM

l FTR
.No

l FXR
. ICTI . ICTI

l FZOR l FZOR
l Ruy l Ruy

.NlJR . ON

. INI . ENOL

MTR LEVEL
Fig. 10 GPIB Module

- Front Panel
l 7 l

0
I

TCX
.

T RESET
E

:

:
A
L

i

a

-
l +12v

l +sv

0 -sv

I l -12v

. l

ED-3587 1

1 I-
+----- #DBCElOIJW -b@

TM-1238

Fig.1 1 GPIB Module - Software system

ACNET

CAMAC

. ..I.. ..“..........................

cl GBUG

q PROTO

,

GAG 0 OPERA

.

4 .

I \ f

RS232 GPIB
ORIVER DRIVER

I

. I

.I.....................

RS232
DEVICE r GPIB

DEVICES

I
l

GAS

DEVICEI

OUTPUT STRING:

RETURN DAtR
AD CD
l .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

+
.
.
.
.
.
l

.

.

l

.

.

.

.

.

WE% WSCI I
. .
. .
. .
. .
. .
. .
. .’
. .
. .
. .
. .
. .
. .
. .

l IWTFC~R
.
.
.
.
l

.

.

.

.

.

.

.

.

.

Fi,g. 12 GPIB Test Page

mREPE(IT
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

UED 139fEB-85 15808

26 SPECTRUN ClN(rLYZER REflOtE CONTROL’@ND DISPLAY TVTOSS man

l IWITI~LIZE SPECTRUM ISNfiLYZER HODULE - <LIlTSAT >

Fig. 13 Spectrum Analyzer Page

KEY FUMCTIW

P 1 1)1~17~85 1840
too l sea 180 MN2 CnLtBRATIoM SICMnC....

NMKLR

Fig. 14 Spectrum Analyzer Display

TM-1298

Table 1 GPIB Module - Interrupt Vector Assignment

:Vector:Address:Space: INTR iAssignment:
INumber: (HEX) I : Level: :

+------+-------+-----+--------me+----------+
: 64 : 100 : SD : 0 : :

+------+-------+-----+------+---+---+
: 4s : 104 : SD : 1 : :

+-e--w-- +-------+-----.+------+-~~~~~~~~-+
: 64 : 108 : SD : 2 : HINT I

+-e---- +------a+-----+------+------+
I 67 : 1oc I SD : 3 : EOPl :

+------ +-------+-----+------+--~~~~~~~-+
: 68 : 110 : SD : 4 : EOP2 :

+------ +-------+-----f------+-------+
I is9 : 114 : SD : 5 : GPIB :

+-----a +-------+-----+------+----------+
I 70 : 118 : SD : 6 : 15Hz :

+------+-------+-----+------+----+-~~---~~--m+
: 71 : 11c : SD : 7 : :

Note: Interrupt levels are assigned in the interrupt controller
chip (Am9559A) with Level 0 being the highest.

