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1. Introduction 

In a previous paper! two of us investigated the effects of a non- 

linear "beam-beam" force on random diffusion in a numerical simulation of 

one-dimensional (1-D) motion. Our investigation found that diffusion can be 

enhanced substantially by the nonlinear force if the non-linear force parameter 

("beam-beam" tune shift) be large enough to include a majorresonancewithin its 

width. 

In this paper we study this diffusion enhancement and develop analytical 

and numerical methods to estimate the magnitude and variation of this enhance- 

ment, and find substantial agreement between simulation results and our 

theoretical model that describes diffusion enhancement. In future papers we 

will extend this understanding to 2-D forces with multiple resonances and in- 

clude other effects to develop a realistic model of the beam-beam interaction 

in pp storage rings. 

2. The Effects of Resonances on Particle Motion - Theoretical Formulation 

In this section we follow standard methods to describe particle motion 

in a resonance region. The particle Hamiltonian is expanded in a double Fourier 

series with respect to phase and time and only lowest order resonant terms are 

retained. The resulting approximate Hamiltonian is used to obtain expressions 

for resonance locations and widths. These 

tions for explicit calculations and compari 

We start with the equation of motion: 

expressions are used in other sec- 

sons with numer ical simulations. 
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where the independent variable is s (distance around ring), and the dependent 

variable is x. The factors LN and 8, are the "linear tune shift" and the un- 

perturbed B-function value at the interaction region, 6p(s) is a periodic 

B-function and the nonlinear expression 

,2 

1 -e202 

z 
X 

202 

is the 1-D truncation of the beam-beam space charge force due to a round 

gaussian beam of rms radius o. To allow more general forms of this nonlinear 

function we rewrite equation 1 as 

x" + k(b)x = --f$p f(x) 6p(s) 
0 

or 

x" + k(6)x = -A $p 6p(s) 

f(x)dx a potential function and A E HIT Av/Po. 

To apply the single resonance approximation we must apply three suc- 

cessive canonical transformations to the Hamiltonian derived from 

equation (2): 

H = $p2+k(s)x2) + A U(x) Sp(s). 

(2) 

The transformations are a Courant-Synder transformation, an action angle 

transformation, and a slow variable transformation. As noted by Smith2 the 

three transformations can be combined into a single one with the following 

generating function 
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X2 
Sb,hs) = - 2B(s) 

[ 

@’ (a tan 44W) - 2 

I 
with 

(5) 

(6) 

B is the Courant-Snyder P-function! 2~rR is the circumference of the accelerator 

ring, vp is some resonant tune value (see below), + is a betatron phase. From 

the generating function we find: 

x = Lq- COSQI 

P=- 
I- 

z$ 

[ 

I 

sin@-% (7) 

The new Hamiltonian is: 

H(I,Q,e) = (v-vo)I +6p(B) A U(q c=d (8) 

where 0 E i and we have changed our independent variable from s to 8. (We 

have followed procedures similar to those used by Chao4 in these transfor- 

mations.) 

The beam-beam perturbation A cSp(0) U(J21So cos$) is expanded as a double 

Fourier series in 0 and $ using: 

6p(0) = & +f eine 
n=-03 

(9) 

and U(q cos$) = U,(I) +2 r, Urn(I) cos m$ 

= T Urn(I) eim+ 
-00 
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where U(qcos+) d+ 

U-,(I) = Urn(I) = & U(qcos@) cos m+d#. (10) 

We now use the "smooth approximation" which means ignoring fast 

changing parameters. In 

I 
R0 

+=Jl+vpe+ - 
0 

ds-" (&+) 

$ is the slowly changing variables Weset vp to a resonant tune $. Note 

that the integral over s' 
0 

is a fast oscillation and, in fact, all terms in the 

Fourier expansion except those with -v 
P 

= k are fast oscillations. We keep only 

slowly varying terms to obtain 

A dp(8) U(q co@) 

u 
;A g (1) '& y 'km 

k=l o 
(I) cos kmoq 

For the moment we keep only the lowest order resonant term k = 1. The 

resulting Hamiltonian is: 

H z (v-v,) I + & Uo(I) + ?&Urn 
0 

(I) cos mo$. 

From the equations of motion we find fixed points where $"O and I’=,0 

3H - l/J' =i$y- v-VP •t &Ui + gllk 
0 

cos mo* 

(12) 

(13) 
I’ = -?.!I!= 2AU ‘m sin m $ 

w HIT m. 0 0 
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we require 

l/J = 0, J- 
2(mo-l)r 

m ' ".' 
0 mO 

and 

v-VP + A u’ &2A u’ 
27~ 0 HIT m =0 

where the + sign comes from the even or odd multiplier of IT appearing in the 

argument of the cosine. If we assume Um is small, the fixed points are located 

at I= I p, the solution of the equation 

v-VP + & u;(I) = 0. 

We can expand U, around I 
P 

II 

u, 
uO = lJo(Ip) + u;tIp) (I-Ip) + -p-- Up) (I-Ip12. 

The Hamiltonian in the region around I can be written as: 
P 

H =” 1 s!i U” (1-I )2 + 2A 
22Tro p 2TT Urn (1 

0 p 
>cos moJI + Ho 

(14) 

(15) 

which is now recognizable as the Hamiltonian for a pendulum. A resonance 

width can be found from the boundary of the separatrix. It is: 

' 'rn 
A2 = wiax ; + z (I-Ip) 

2 
. (16) 

uO 
max 

3. A Model to Describe Diffusion Enhancement by the Beam-Beam Interaction 

In this section we describe the model which we use to explore diffusion 

enhancement. In the previous section we noted that resonances with characteristic 

locations IO and characteristic widths n can appear in particle motion. In 

FigurelA'weshow phase space plots - trajectories of individual particle 

positions measured at the interaction point - for a case with tune v = .16, 
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and Av = .04 (so that v. of reference 1 is .20). We clearly see resonant 

regions characteristic of sixth order resonance. Figures lB, lC, and 1D show 

other resonances for other tunes and tune shifts. 

Particle motion is significantly distorted by the resonance so that if 

a particle amplitude reaches the threshold amplitude IO-A the resonance also 

moves the particle to regions with amplitude (I,+A) from which a random kick 

easily moves the particle amplitude to the nonresonance region past I = Io+A. 

The effect of the resonance, when averaged over an ensemble of particles, is 

to add an effective change in amplitude I from IO-A to Io+A to each particle 

which reaches the lower resonant amplitude. 

The diffusion process, which is a random velocity kick, increases rms 

particle amplitudes in a Brownian manner. The resonance places the amplitude 

Ip-A and Ip+A adjacent so that the Brownian motion pushes rms amplitudes past 

the resonance. 

We have defined our emittance as 

2 
E: = 3 <k+x’2 (Jo> =” 6<1>. 

0 

Our model for diffusion gives us 

;:=;: o + 12 $t)A. (17) 

The factor E. = %@(Ax~)~ is the Brownian diffusion from the random velocity 

kicks of amplitude Ax’ of frequency (l/T) and which appears in the absence of 

resonant behavior. The resonance with width 28 provides the enhancement term. 

The factor i 

by the Brown 

by the total 

= IT is the rate at which particles reach the amplitude ( Ip-A) 

ian motion and the factor N normalizes the expression by d 

number of particles. 

ividing 

The factor N/N can be estimated by considering the change in the particle 

distribution function due to diffusion. The initial distribution function is 

gaussian: 
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2 42 

f(;,x') a ji2 . 2 .&.& 

or in action-angle variables: 
-1 

f(I,$) = --J--e I, 
27TIo did@ 

with IO = a2/p and I, is a function of time because of the diffusion. 

To estimate the particle flux through a threshold value of I, I = IT we 

calculate the change in the number of particles with I<IT obtaining 

d1 

iO 

-IT 

IO 

=IITe - 
0 

. . 
I 

We can recognize f &O as - and rewrite equation 17 as 
0 &O 

-IT 
. . 
E 2 E. +EIT, IO* 

&o IO 

This equation shows that the diffusion enhancement is "multiplicative" 

(proportional to the diffusion) as previously shown numerically in 

Reference 1. 

In the next section we will quantitatively compare 

of equation (18) with results of numerical simulations, 

4. Analysis of Sample Cases: 

the predictions 

(18) 

In this section we investigate diffusion enhancement by an analysis 

of sample cases. In figures lA, IB, lC, and 1D we show phase space plots 
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with sample particle trajectories. Resonances are clearly visible and 

their locations and widths agree quite well with calculations based on the 

previous section. 

In Table I we summarize some of these calculations, which include 

calculations of resonance location and width using equations 15-17. The 

potential function 
X2 -7 

X 
U(x) = &+? 1-e 2aL dx 

0 
X 

was integrated numerically and the Fourier component functions (Uo(I), U2(1 

etc.) obtained by the integrations in equation 10. Some of these functions 

are shown graphically in figures 2. The resonance widths and locations are 

calculated using these functions. In all these cases we have kept the 

initial parameters @, 02? E o at values given by P = 2 m, c 2.= .00667 (mm)2, 

&O 
= .02 mm-mr. 

We have also calculated diffusion enhancement xE using the model of the 

previous section. In this calculation, we have noted that the very wide 

resonances of fourth and sixth order show substantial deviations from the simple 

linearized theory at their inside edges (small-I) and therefore for the evaluation 

of IT we have used the phase-space plots directly (figures lA-1D) rather than 

the simple formula IT = Ip-A which would give an unreasonable negative value. 

Except for this adjustment, equations 14, 16 and 18 have been used directly. 

We compare these calculated values of xE with values from numerical simulations 

similar to those of Reference 1 and find excellent agreement. the deviations. 

are consistent with expected deviations from the linearizations in section 2. 

5. Discussion 

In Reference 1 it was reported that diffusion enhancement appears to 

remain constant as the tune shift Av increases with tune at zero amplitude 

v. constant when Av contains a major resonance. We now recognize this as a 
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partial cance llation between competing processes : As the resonant tune moves 
. 

closer to the origin (as Av increases) t increases but the resonant width A 

decreases. In fact the diffusion enhancement does vary, following equation 18. 

Also it was reported that the enhanced diffusion remains linear. This 

is only approximately true; the enhanced diffusion decreases when the resonance 

is "saturated"; that is, most of the particles have crossed the resonant tune, 

or at a time T such that 

The expanding distribution can also show an increased enhancement if the spreading 

distribution reaches a resonance at large I. 

In Figure 3 we show emittance as a function of time for v. = 30, Av = .08. 

There is initially a large enhancement due to the i resonance. After -200,000 

turns the diffusion decreases as the resonance issaturated. Then at -600,000 

turns diffusion is enhanced again as particles reach the & resonance at large 

amp1 i tude. 

In a second case v. = 
( 

.2,Av = ,lO, 
> 

our calculations show that both the k 

and i resonances contribute substantially to diffusion enhancement. This indi- 

cates that the presenceof more than one major resonance does affect diffusion. 

In the future we will explore the effects of overlapping or nearly overlapping 

resonances in 1-D and 2-D cases. 

Some of the detailed features of the enhancement are dependent on our 

choice of potential function, which has the large amplitude behavior U(X)@ .Rnx. 

This makes resonances for large values of I much broader than for other potentials. 

Also our distribution function, originally gaussian, has much fewer particles at 

large amplitudes than actual beam bunches. The analytical tools we have 

developed in this note allow us to explore the effects of other potentials and 

other distributions which more closely approximate physical,situations quite 

easily. 
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Conclusion 

In this note we have developed an analytical model which adequately 

describes diffusion enhancement in 1-D motion by a non-linear (beam-beam) 

force, in the case where this enhancement is dominated by a single or a few 

non-overlapping resonances. We hope to extend this analysis to 2-D motion with 

overlapping resonances. 
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Table I 

V Av 
vO vP 

I 
P 

A il --I N 'E 'E 

tune 
beam-beam 

tune shift tune 
at zero 

amplitude 

resonant 
tune resonance 

amplitude 
resonance 

width. 

I* T (Cal.) (sim.) 

(t=o) diffusion 
enhancement 

.16 .04 .20 l/6 .0325 .026 .043 2.7 2.3 

.24 .06 .30 l/4 .0325 .046 

.22 .08 .30 l/4 .012 .013 

4118 ,224 .0083 

.245 .015 

.lO 

.26 l/4 .014 .016 

.12 9.1 

.14 

3.7 

lo- 

.14 4.4 

.20 .20 l/6 ,004 .003 

7.5 

4.0 

4.7 

2.0 

J/8 ,020 .006 

2/18 ,051 .006 
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Figure 1D Particle trajectories with v. = ,20, Av = O,lO, v = .lO, l/6, l/8 
and 2/18 resonances are visible. 
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