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Purpose 

Occasionally one is interested in the steady-state values 

of the peak-to-peak ripple and the average response of a system 

excited by a periodic driving function. Also, the build-up of 

this response to the steady state is sometimes a point of inter- 

est. The author's problem was finding the maximum, peak-to-peak, 

steady-state ripple current in a quadrupole magnet driven by a 

six-pulse, SCR, bridge rectifier. The solution to this problem 

is treated in the examples (III) below. 

Method 

This type of problem can be solved rather easily by a tech- 

nique in the complex frequency domain. Essentially the principal 

parts of the Laurent expansions of Y:(s) about certain poles of 

this function are summed together forming the aperiodic response 

function A(s). This A(s) function has terms of the form 
?,k 

(s + sJn' 
which are valid everywhere in the complex plane 

except at s = -sc. These terms transform to the time domain as 

a Operated by Universities Research Association Inc. Under Contract with the United States Atomic Energy Commission 
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aJX n-leSSct 
(n-l)! I2 . 

Having found A(s), it is subtracted from Y(s) leaving a function 

p(s) I which is the periodic response function. 

It remains to describe which poles of Y(s) are to be used to 

obtain the summation of the principal parts of the Laurent expan- 

sions. Let H(s), a rational function, be the impulse response 

function of the linear, lumped parameter, zero initial energy 

system--i.e. H(s) = Y(s) 
x7 where X(s) is the driving function. 

Therefore, Y(s) = H(s) X(s) where: 

x(s) = 
“0 (s) 

l-emsT 

T 
x0(s) =&yx*(s)l = xO(t)emstdt 

0 

(t) : OFtiT 
x0(t) = 

0 : t<o and t>T 

S = cs + jw; T = the period. 

Thus we have: 

Y(s) = 
H(dXob) 

(pe-sT) l 

The poles of Y(s) about which Laurent expansions are to be made 

are those of H(s), those of X0(s), and the simple pole of 
1 

(l-eWST) 
at s = 0. H(s)Xo(s) may also have poles at s = 0. The principal 

part of the Laurent expansion about the poles at s = 0 yield the 
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aperiodic time domain terms that are non-zero as time approaches 

infinity (the steady-state average value), while all other princi- 

pal parts yield the aperiodic time domain terms that go to zero 

as time approsaches infinity. 

A typical Laurent expansion about a pole of order n at 

S = -s o looks like: 

1 a 
f(s) = - -n ", 4 

al ts+so) 
1 + a2(s+so) ..* 2+ 

-w~.-"~~~-l/~?-*"I_~ 2 
The princi-p.a-l parts valid 
at aI1 s except s = -SE0 

Valid at 
0 2 Is+sol s R 

For all poles of H(s)Xo(s) not at zero, the following formulas are 

valid and simple to use for the coefficients of the principal parts 

Y(s) about them: of the Laurent expansion of 

1 
a-l = (n-l)! 

dn-l 

dsn-1 [ (s+so)nf (s) 1 
S = -s 

0 

1 
a-k = (n-k)! 

d n-k 

dsn-k [ b+so)nf (s) 1 
S = -s 

0 

For the poles at s = 0, the principal part of the Laurent expansion 

is most-easily- found by expressing the numerator and denominator 

of Y(s) as an infinite series and using the long division algorithm. 

Not many terms are needed and in many cases only the first term of 

the numerator and denominator are needed. The examples below will 

indicate the ease in finding the principal parts of all pertinent 

poles. 
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With A(s) in hand, the periodic part of the solution P(s) 

can be formed: 

p (s) = Y (s.) - A(s) 

PO (s) H (s) X0 (s) 
l-e-~T = l,e-~T - A(s) 

P,(s) = H(s)Xo(s) - (1-eBST)A(s) 

This periodic part of Y(s) has only the poles of 1 
( l-ewST) 

except for the pole at s = 0, i.e. the periodic poles along the 

ju axis. As defined above P,(s) will transform to p,(t) in the 

time domain where 

(t) : OStlT 
p,(t) = 

0: t<o and t>T 

In numerical solutions, p(t) valid for the first period ,is all 

we need since it repeats in all succeeding periods. Thus the 

above e -ST term can be dropped and we have: 

PO (s) ’ = H(s)Xo(s) - A(s) 

p,(t)' =z-l[Po(s)'I = p,(t): Oi-iST 

knowing p,(t)', the peak-to-peak value of ripple may be found. 

The average value of p,(t)' is zero. Thus the total solution 

y(t) is: 

y(t) = a(t) + p,(t) ' 

where p,(t) ' repeats in every interval of length T. 

In summary, the technique may be formalized as follows: 



1. 

2. 

3. Form: 

4. 
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i 

T 
Find: x0(s) = x0 (t) e -Stdt 

0 
x(t) : 0.S.tS.T 

where x,(t) = 
0 : t<o and t>T. 

Determine the impulse response 

Y(s) H(s) = x(s) of the system. 

y(s) = H(s)X(s) = 
H(-dXo (s) 

pe-sT 

Collect A(s): the sum of the principal parts of the 

Laurent expansions of Y(s) about the poles of H(s), 

5. 

6. 

7. 

x0 (s) , and the pole of 1 

( l-eBST) 
at s = 0. 

Solve for 

PO (s) ' = H(s)Xo(s) - A(s). 

Transform A(s) and P,(s) ' to the time domain as a(t) 

and p,(t) ' (OrtrT). 

The total solution is YW = a(t) + p,(t)' 

where p,(t) repeats in every interval of length T. 

Examples of--the 'Method 

Three examples of this technique will be criven now conforming 

to the above summary. 
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EXAMPLE I. An Integrator Network 

1. E- r 1 
x(t) : i etc. 

ht 
0 Tl T1 T+T1 

EP 
x0 (t) : 

>t 
0 T1 

E(1-eWSTl) 
S 

2. 

1 1 
y(s) H(s) = x(s) = 

cs Rc 

&+R 
= ! 1 

i 
' s+= 

3. 

Y(s) = 
H(s)Xo (s) 

= 

where 
x0 (s) 

x(s) = q--q’ 
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4. Using the formula for am1 above: 

S =-- 
Rc 

or: 

PPl =- . 

Expressing the numerator and denominator of Y(s) as infinite 

series: 

Y(s) 

Using the long division algorithm 

iT1 1 
E\v-T s - 1 . . . . . 

Ts2 + . . . ETls~= .,. 

Collecting the principal parts: 

A(s)= E 
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5. P,(s) ‘ = H(s)Xo(s) - A(S) 

6. 

where y-l(t-Tl) = 
t-T110 

t-Tl<O 

Using the numerical values: 

T1=l; T=3; E = lv; R = lfi; c = 1 fd. 

A(t) = 0.33333 - 0.09003 eTt 

p,(t) ' = - (t-l) lqt-1) - 0.33333 

+ 0.09003 e -t 

7. y(t) = a(t) + p,(t) 

See Fig. 1 for a picture of these results. 
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EXAMPLE II. Full Wave Rectification Filter 

x0(t) : 1.. rl sin(Vt) 
1 

0 1 2 3 4 =-t 

-S 
x0(s) = 

x2:r2 + 
Te = r(l+ems) 
s2+lT2 (s2+lT2) 

2. 

H(s Y(s) _ R ),---= (R/L) 
x(s) R+Ls (s+R/L) 

3. 

Y(s) = 
H(s)Xo(s) 7r (l-kerns) 
( l-ews) = (s+~)(s*+IT~)(~-ems) 

L = lh 
R = IQ 
T=l 

where X(s) = 
x0 (s) 

(l-ems) 
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4. Using the formula for a-1 above: 

n(e+l) 
pp1FTe(7r2+J) (e-1).(s+l) 

PP*_ 
7r (ej’+l) = 0; PP3 0 

=-IT (l-jr) (-j*T) (l-eJk) gq-f 

pp2 and PP3 are zero because of the pole zero cancellation 

at these points. Expressing the numerator and denominator 

of Y(s) as infinite series: 

[ 
2 

Tr 

Y(s) = 
1+1-s+% - l l l 1 

(3 2 2 21 23 
\S +s d-IT s+Tr ] s -++. .y . . I 

Using the long division algorithm: 

0 2 1 + . . . 77s 
c 2 7-r s+*** I/[ *T - . . . I 

2Tr 

Collecting the principal parts: 

A(s) = - 77 (e+l) + 1 
(~~+l) (e-1) (s+l) s 
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5. PO (s) ' = H(s)Xo(s) - A(s) 

P,(s)' = 7r (l+evs) + 7r (e+l) _ (2/n) 

(s+l) (s2+Tr2) ( 7-r2+1) (e-l) S 

At this point it is important to notice that the first term 

has a shifting function, e-', which places that part of the 

periodic time domain solution out of the period of interest 

where p,(t)' is defined. Therefore, this part of the solution 

must be neglected before proceeding, i.e. 

P,(s) = 7r + n (e+l) _ (2/n) 

(s+l) (s2+Tr2) (7r2tl)(e-1) ' 

Now expressing the first term in partial fractions yields: 

I+\ l l 2.(-n-j) P,(s) = ,-@+ + (s+j-rr) + 2M+j) + r (e+l) -* 
(s-jn) (vT*+l) (e-l) (s+l) ' 

or 

PO(S)' = 2rre LiLZ+ SIT 

(7r*+l)(e-1) (s+l) ' (7r2+1) ls2+TT2) - (7r2+1) (s2+Tr2) 

6. 
-t 

a(t) = - n(e+l)e +2 
(n2+l)(e-1) ' 

-t 
p,(t) ' = 21re e 2 - - + 

') 
sin(7rt) _ Trcos (Trt) 

(.rr2+1) (e-l) \' (Tr2+1) (n2+1) 
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Evaluating the constants yields: 

a(t) = -0.62544 eBt + 0.63662 

p,(t) ' = 10.91446 eet - 0.63662 + 0.09200 sin(Tt) 

- 0.28903 cod 
J 

See Figure 2 for a picture of these results. 

EXAMPLE III. Approximation of a, 6-pulse SCR Power Supply 
Operating in the Constant Current Mode and 
Driving an Inductive Load 

1. 

0 T1 T T+T1 

(volts) mT1 

x0 (t) 

Note: The approximation in this problem is in assuming that 

the small portion of the sine wave shown above has a 

constant slope of -m. 

x,(t) = mT1 - mt + m(t-Tl)p-l(t-Tl) 

mT -ST 
X0(s) = --$ - 

1 
m + me 
S2 s2 
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2. 

3. 

4. 

I (s) 
1 1 -=l Ls 

I (s) = Y(s) = H(s)X(s) 

R 

H(s) = & = 
1 

-7-I 

= 
L s+$ 

i.e. 1 H(s) = ys; 0 

H(dXo 1s) y(s) = jl-e-ST) 
or 

y(s) m 
=E 0 

Using the formula for ael above: 
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or PPl = g 
, 1 

Expressing the numerator and denominator of Y(s) as infinite 

series: 

or 

Tlh 
- Ts-,lTsj2 + . . . 2! I 

Using the long division algorithm twice: 
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' Tls+(y)(T-g) S2- l *= 

-[$+(?$)(T-$)]s’-... 

:* PP* = 

or PP 2 = (;) (g) $ 

Collecting the principal parts: 

A(s) = ((0 i - 

] 

5. Pn (s) ' = H(s)Xo(s) - A(s) ” 
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6. 

- 
c 
'c-T (l-Q?'?] 

\ 
T e 

d 

7. y(t) = a(t) + p,(t) 

In order to find the maximum value of p,(t)' for O<t<Tl, 

the derivative of p,(t)' will be taken: 

d [PO (t) ‘1 
dt 

Setting the derivative equal to zero and solving for tmax 

yields: 
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Since this particular example was the "raison d'etre" of 

this work, two numerical substitutions will be made: Case A 

using simple numbers with Tl as a parameter and Case B using 

the actual values encountered in a 6-pulse SCR-power supply 

driving a constant current into a magnet load. In Case B 

Tl = T for maximum ripple current on the output. 

See Fig. 3 for a picture of Case A where: L = 1 hy., 

R = la, m = 1, T = 1, T = 2, i.e. 

p,(t) ' = 
: 

y-e -t ) - 
C 
t - (1-e -t ) 1 

+ 
C 
(t-Tl) - ( l-eBCtyT1) )I P-1 WT,) 

+ [(,Tl-1) - TJ T1 
-- 

(e2-1) 4 

Case B involved an Acme 6-pulse SCR-power supply driving 

a quadrupole magnet in the current mode. The worst case 

driving voltage waveform looked as follows: 

1‘ \ 265 v. 
I 

,1 d '-J =T= 
4-1 &0278 I+--- 

where T = Tl = 0.00278 

R = 1.65Q 

etc. 

1 ------+ 

L= 1.65 hy. 

‘I = L/R = 1 

m = 95,324 = o iEz78 . 
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The results of substituting these values in the general 

equations above are: 

a W = 80.3030 amp 

PO(O) ' = p,(Tl)' = -0.0372 amp 

t max -= 0.0013897 

PO(tmax) ' == +0:10186 amp 

peak-to-peak ripple = pO(tmax)' - ~~(0)' = 0.0558 amp 

It will be noted that the maximum value occurs almost at 

the midpoint of the period T so that the actual ripple output 

current must be approximately symmetrical about the value T/2. 

Acknowledgement 

This work is patterned after a section of LePage's book, 

'"Complex Variables and Laplace Transforms" 1961. However, he 

excludes. from consideration the common case where poles of 
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