
at 36 national accelerator laboratory 
TM-179 
2040 

NONLINEAR TRANSFORMATIONS IN ACTION-ANGLE VARIABLES 

F. T. Cole 

June 13, 1969 

1. INTRODUCTION 

The purpose of this note is to record the effects of a sequence of 

Moser transformations used in analysis of single -particle nonlinear 

1 
resonances. The calculations are carried out here in action-angle 

variables and the work is restricted to one dimension. (For resonance 

calculations in complex variables and in two dimensions, see Ref. 2. ) 

Higher -order terms are calculated, both terms in which the (n + 1 )st 

order gives corrections to n th -order resonances and terms in which a 

th st 
nonlinear term in the n order gives a new resonance in the (n + 1) 

order; this last can be referred to as a “higher-order resonance” and 

has apparently not been previously examined. 

I began this work at LRL when P. F. Meads found higher -order 

resonances in digital computation for the Omnitron design work. I have 

also carried out some computational work and hope to be able to discuss 

the agreement between computational and analytical work in a later re- 

port. The cases of impulsive (6-function) nonlinear forces treated here 

are aimed at this numerical work. It should also be remarked that the 

treatment of these &-function terms is the main difference between this 
3 

work and earlier work of Laslett in action-angle variables. 

e Operated by Universities Research Association Inc. Under Contract with the United States Atomic Energy Commissior 
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The equation of motion treated in this report is 

q” + K(s)q + M(s)q’ + N(s) q3 = 0. (1.1) 

Here s, the independent variable, is the arc length along the equilibrium 

orbit. Derivatives with respect to the independent variable are de- 

noted by primes. The coefficients K, M, and N are periodic functions 

of s with period L. The dependent variable q is the transverse displace- 

ment from the equilibrium orbit. The equation of motion (1 S 1) is derivable 

from the Hamiltonian 

H = H(p,q) = +p2 + $Kq” + +Mq’+ ;Nq”. (1.2) 

The momentum p canonically conjugate to q is thus q’, the tangent of 

the angle of the particle orbit with the equilibrium orbit. 

The “order” of a term will be used throughout this report to mean 

the power of q or p in the Hamiltonian (1.2). 

The Moser method is a sequence of canonical transformations, 

each of which removes the dependence on the independent variable s from 

one order to higher orders. The result is a Hamiltonian independent of 

s and therefore invariant. At any step in the sequence of transforma- 

tions, a resonance term may be recognized because of its small denom- 

inator. These resonance terms are treated by a special canonical 

transformation to remove their dependence on s. In the one -dimensional 

case discussed in this report, the method will treat only one resonance 
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and cannot give information on the combined effects of two or more 

different resonances. 

2. TRANSFORMATION OF THE LINEARIZED MOTION 

The dependence on s of the linear-motion terms (terms of second 

order in the Hamiltonian) can be removed by transformation to action- 

angle variables. In the linearized motion F/r(s ) = N(s ) = 0 ] , the qua- 

dratic form 

J = ;(Yq2+2qP+PP2) =$ ls2+kl+PP~21> (2.1) 

is an invariant; that is, J ’ = 0. Here CY, p, and v are the Courant- 

Snyder parameters of the linear -motion transformation matrix. 
4 

We 

take J as a new canonical momentum. The canonically conjugate co - 

ordinate is L/J , the polar angle in the (q,p) phase space. The transfor- 

mation from (q, p ) to (Go, Jo ) is 

I q = - dTo cos qo’ 

p = dv(sin +,+~cos+~). 
(2.2) 

The inverse transformation is 

il Jo =zp -I- [q2 + (as+pP)21, 

tan 4~~ = CY + pp/q. 

(2.3) 

This canonical transformation is derivable from a generating function 
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G = G(qAod = - z p 

by the rules 

(2.4) 

(2.5) 

which reproduce the transformation equations. The new Hamiltonian is 

JO -;;=--- $ (VI 
312 312 

P 
M(s) Jo cos3Go + /3’N(s) 3; ~0~~4~. (2.6) 

In the linear approximation, Hamilton’s equations are 

I afi 

Jo=F =O 
0 

c - 

+;2&L = $. 

0 

(2.7) 

The first equation reproduces the constancy of Jo in the linear approxi - 

mation; the second shows a method for eliminating the s -dependence of 

the linear term Jo/p in H. The phase change of the linear oscillation 

in one revolution of arc length C = NL is, from this equation, 

G,(C) - l/Jo(O) = J C ds 
- = 2lTu. 

0 P 
(2.8) 

The independent variable 
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(2.9) 

advances by HIT in one revolution. The transformation from s to 4 is 

canonical; the new Hamiltonian is 

- ds 
Ho=Hq 

= v Jo + A3(+) J 312 
0 

COS~+~ + A4(4) J 
2 

cos 
0 4 *,, 

where 2 312 A3(b) = -3 VP 512 M($), 
I A4(9) = v P3W ). 

(2.10) 

(2.11) 

The linear -motion part of Ho is v Jo, independent of 5,. In the linear 

approximation, trajectories in phase space are now circles. Curves of 

constant Ho are also curves of constant Jo. The total Hamiltonian is a 

periodic function of 4. The n 
th order term, which came from the term 

proportional to qn in the original Hamiltonian, now has the form 

A,($) J n/2 
0 

cosnqJo. (2.12) 

It may be remarked that this tranformation differs from that of 

Snowdon, which introduces a coordinate 

5 = 40-a+J$+ 

in place of $, . Neither of these transformations is applicable to two - 

dimensional nonlinear cases, because either involves use of the 
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amplitude-function p (in the linear transformation in our case, in the 

nonlinear parts in Snowdon’s ), which is different for the two dimensions. 

3. NONLINEAR TRANSFORMATIONS 

The Transformation 

The purpose of the nonlinear transformations is to remove the 

q5 -dependence from the nth order and transform it to higher order. We 

take as the general form of the Hamiltonian 

n/2 
H = 

0 
vJo +AnWJo cosn+o’ 

The transformation from (Go, Jo) to the new variables is taken to 

be a function of $,, J1, and s. The transformation rules are 

8% 

We choose a generating function 

n/2 Gi = qoJ1 +w(+o&J, 

(3.1) 

(3.2) 

(3.3) 

so that 
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We require that the transformation be a periodic function of c$, in order 

to keep the transformed Hamiltonian periodic. 

The new Hamiltonian in mixed old and new variables is 

n n 

HI = vJ1 + J1 
3 

+Jo z Ancosn$o+. . .; 

the old variables must be expressed in terms of the new in HI. We 

write first 

n n n-l 

JO 
z = J1 

z+n aw 
zc Ji f... 

0 

and 

n 

HI = vJI + J1 
!T aw +v- aw n-l 

a4 a+, 
+ An COS”+~ 1 Ancosn$o + . . . 

We then write \ii, in terms of 4, as 
n-2 

and write the Hamiltonian in new variables as 
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n 
2 

H1 = “Ji + JI Q(+,,qU +; Jin-’ & 
1 

An cos + aQ 
1 - w -q + . . . ) (3.5) 

I 

where 

QN>d4 = 2 + v $ + Ancosn$. (3.6) 

The last term of the Hamiltonian is the correction term, showing the 

effect of the transformation of the n th order on higher orders. In the 

correction term, we have neglected the difference between +I and 4,. 

because we shall not carry the calculation to still higher orders. 

Analysis of the n th Order Term n 

Let us investigate the conditions under which the term QJI z 

can be transformed to zero. Then 

Q(+,q$) = 5 + v 2 + Ancosn+= 0. (3.7) 

The analysis can be carried out in complex exponentials, in real 

trigonometric functions, or by expanding An cos YJ in Fourier series. 

We shall use complex exponentials; we set 

cosn 4 = 
z 

ewJ 
an4 ’ 

where I takes the integral values An, *(n - 2), etc. , down to *1 for n 

odd and 0 for n even. In the third order, 

(3.8) 

1 

I 

a33 = a-33 = g 

3 
a3i = a3-l = g J 



-9- TM-179 
2040 

and in the fourth order, 

1 
a44 = a4-4 = 16 I 
a42 = a4-2 = 4 

3 
a40 = s 

We then seek a solution of Eq. (3.7) of the form 

w(+, 0) = 

7 

w  (~),wJ-w 

4 

.  (3.9) 

Then (with primes now denoting derivatives with respect to (5) 

w; = - a,An($)eiev’ 

or 

wB = wBo - ant J ’ o Ati We “‘dq5, 

where w 
10 

is a constant of integration. 

We now impose the condition that wI be periodic in C#I, that is, that 

From this condition it follows that 

arlt J $A,($ )e”‘dqS. 
0 

(3.10) 
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If the coefficient of w 
LO 

on the left is different from zero, we can solve 

for the wao that gives a periodic solution. Then we have transformed to 

zero all nth order terms and the new Hamiltonian is still periodic in c$. 

If, on the other hand, the coefficient of wao vanishes, we cannot 

find a non-trivial periodic solution unless the right -hand side also van- 

ishes. The coefficient of wao vanishes when Iv/N is an integer, or when 

Iv =mN, (3.11) 

with m an integer. Eq. (3.11) is a resonance relation and the terms for 

which it is satisfied are called “resonant” terms. What we have shown 

is that all terms in a given order except the resonant ones can be trans - 

formed to higher order, leaving the resonant terms for the special treat - 

ment discussed in the next section. 

Even if the resonance relation (3.11) is not exactly satisfied, but if 

(Jv - mN) is small, the corresponding term in wa will be large, which will 

give large terms in higher orders. It is not even net essary that the 

resonant term be that for which (Iv - mN) is smallest, because the 

change of v with amplitude may drive the motion away from this reso- 

nanc e . We therefore choose the resonant term and transform all other 

terms to higher order by the method above. 

Resonant Terms 

Only those terms for which Bv 2: mN are left in the n 
th order of the 

Hamiltonian. Furthermore, from Eq. (3.10), the integral 
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must be different from zero. We shall call the particular values of 1 

and m for which resonance is possible 1 and m r r’ In the integral above, 

we can replace Brv by mrN because they are approximately equal, thus 

expanding An (4 ) in Fourier series : 

r 
25F (3.12) 

(Because A,(4) is real, A.* = A nm n-m . ) Thus the term that drives the 

resonance Prv = mrN is identified as the m th harmonic of A,($ ). r 

If the relation lrv = mrN is satisfied, so is the relation 

-lrv = - m,N, since 1 and m come in positive and negative pairs. There 

are thus two resonant terms and the Hamiltonian is 

eWr+l - m,N$ 1 
nm 

r 

n 

A e-Wr+l -m,N$) 

I 
J1 

z +a n-Pr n-m +. . . , 
r 

which can be written as 

n 

Hi = vJi + 2ati !Anm lr$i - mrNgi + 6nm 2 (3.13) 
Ji + . . . , 

r r r 
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where lr and mr are now to be taken 

is a phase angle. We have neglected 

which we shall return in Sec. 4. 

2040 
as non -negative numbers and 6 

nmr 

here the higher -order terms, to 

There are two kinds of resonant terms, those with Pr = 0 and 

lr # 0, that require separate treatment. 

(i) Terms with 1 = 0. r These terms occur only in even order be- 

cause P has only odd values in odd orders. Furthermore, mr = 0 when 

‘r = 0 and the term is therefore independent of both 4 and 4 and has the 

form n 

2a A Ji . I 1 
z 

no no (n even) 

These terms change v as a function of J, or equivalently, with amplitude. 

If there were never any resonant terms with Br # 0, the Hamiltonian 

could be transformed to 

and the equations of motion would be 

dJ aH -= 
d4 -3 = O* 

so that J would be a constant of the motion and the effective v value would 

depend on J or, equivalently,- on amplitude. 
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(ii) Terms with Br # 0. These are the terms that can give rise to 

unstable motion. In them, the dependence on 4 is contained in the argu- 

ment of the cosine in the form lr$l - m,N$. A transformation from L/J~ 

to 4J2 = 4, - m,N4/1 r, that is, to a rotating coordinate system in phase 

space, will remove this dependence. This transformation can be derived 

from the generating function 

Then 

G, = G&J2,$) = J2 . 

aG2 
B9, 

= J2, 

aG2 m,W 
- =ys> 
aJ2 r 

aG2 mN 

Hi + v 
= H1 - J2 -$- , 

r 

(3.14) 

and the new Hamiltonian is 

n 
z 

J2+Zati lAnm!J2 cos 
r r 

(3.15) 
+. . . 

r 

If terms of higher order are neglected, this Hamiltonian is independent 

of C$ and is therefore a constant of the motion. The stability of the motion 

can be predicted from this invariant. 
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4. HIGHER -ORDER TERMS 

There are two reasons for interest in higher -order terms. First, 

when there is a resonance in the n th order, the stability limits will be 

affected by those terms that change v with amplitude (terms independent 

of +and 4). Even when there is no resonance in n th order, but one exists 

in (n+i) st order, its stability limits will be affected by such change-of- 

-v terms transformed from the n th to the (n+1) st order. 

Second, the higher -order terms can give new resonances. The 

cases of the preceding section, in which IZr f h as the form In - 2 tl (t an 

integer), are not the only possible resonances that can arise from a given 

term in the original Hamiltonian of Eq: (I. 2 ). 

The next higher -order term is given in Eq. (3.5) as 

c 

; Jin-' aw - 

a% 
AnWc&l aQ 

-WaC, 1 
Q=%+v$ 

1 
+ An COS~$~. 

(4.1) 

Let us consider the two terms separately. We must also distin- 

guish between the cases when there is or is not a resonance in the n th 

order. We can use Eqs. (3.8) and (3.9) to write the first term as 

This term is periodic in both $and 4 and can therefore be expanded in a 
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Fourier series 

WW) = c R 
Qm 

ei@+ - mN4) 9 
Q,m 

(4.2a) 

and we find that 

2Tr 
R iN 

Pm = ZG c 
Q1 

‘ian@-Q,) 
N 

A,($)wQ ($)ei(mN - Ql”)‘d$. (4.2b) 
1 

If there is a resonance Qrv = mrN in the n th order, then the terms 

containing w 
‘r 

and w 
-Qr 

are missing from R 
Qm’ 

Consider now the second term of Eq. (4.1). If there is no reso- 

nance in n th order, then Q is identkally zero and the second term makes 

no contribution to higher orders. If there is a resonance in n th order, 

then 

Q = 2ati 
r 

IAnmlcos (Q& - m,W + hnrn 
r 

1, 

and 

1 
w = 

c 
wQ We 

WI - 4) 
J 

Q 

where the prime on the summation is to remind us that the terms with 

Q = +Qr are not included. Then 

SNJ1’$) = w $ = 
1 

-Qr2a&/Anm/ x 
r 

c 

I X w,(4 )e W, - 4) -mrN$ + 6 
L 
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can make a contribution of interest only in certain cases. A contribution 

term of interest would be to a) the change -of-v -with -amplitude term (the 

independent of +and $), b) a different higher-order resonance, or c 

another term of the same (Qrv = m,N) resonance. 

In order to make a contribution in case a), there must be an I such 

that Q*Qr = 0. But these terms of w are specifically excluded from the 

sum. The second term therefore makes no contribution to case a). 

Case b) is beyond the reach of the theory. If we have made a 

transformation to rotating coordinates to remove the I$ -dependence from 

the resonant term with Qrv = mrN, we cannot treat a different resonance 

without reintroducing 0 into the original resonant term. We therefore 

cannot treat case b). 

Only the terms of w with Q = 0 or 1 Q 1 = 26 can make a contribu- r 

tion in case c), since we must have Q f Qr = Qr. Terms with Q = 0 occur 

only in even order. Thus, if there is a resonant term proportional to 

J2> there will be a higher -order term of the same resonance propor - 

tional to J’. This kind of correction is the only contribution that the 

second term of Eq. (4.1) can make to the theory, 

In order to derive more specific results for higher -order terms, 

we need to specify An($). In the next section, we shall treat two such 

particular cases. 
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5. APPLICATIONS 

We write 

A,($ ) a Fourier Series 

TM-179 
2040 

. A,(4) = 
1 

CnmcosmN$+DnmsinmN$, (5.la) 
m2:O 

in real representation. We can also write 

A,($) = 1 AnmemimN’, 
m 

and 

A nm Cnm+iDnm 
i 

(m> 01, 

A = Cno, no (5.k) 

(5.ib) 

A - nm - nln-4 
- iDnirn, (m < 0). 

The constant of integration of the transformation function w can be 

calculated. For the case in which Qv/N is not integral, 
2rr 

ant 

s 

N 
wQo = 1 _ e2~v/N A (4) eiQv’dd = iati n 2 

m 
Qv >zN . 

0 

The transformation function is then 

w(*, 4) = i 1 1 Qym>t eicQg+ mN4). (5.2) 
Q m 

When there is a resonance in n th order, say Qrv = mrN, the term with 

Q = Qr, m = m 
r 

and the term with Q = -Qr, m = -mr are to be dropped 

from the double sum of Eq. (5.2). 
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A 

R 
cc 

nm lAdm-ml) 

= - Qm 
Q 

‘1 an(Q-QI)anQl Q,,v - mlN 

1 ml 

I 

where the same resonant terms are to be dropped when there is an n th - 

order resonance. 

(i) Resonance in n th order -Change -of-v -with -amplitude term, 

We combine terms of *Band rtm to find 

m>O 

For example, for the resonance 3v = mrN in the third order, the 

correction term in the Hamiltonian is 

9 C 
2 

--V 4 + D2 3m 3m 
i 

1 

m2N2 -9v2 

1 

m2N2 2 -V 

Laslett has calculated3 this term in the special case with 

+ 

Hamiltonian 

Ns b. + bl cos R 1 . 
Both his direct calculation and our method give for the invariant near 

3v =N 
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3/z 3/z 
J bicos34 + 

6v 1 
N2 2 - -- 

-V N + 3v 

(ii) No resonance in n th order - Change -of-v with amplitude term. 

This is the same as the preceding problem, except that is simplified 

because there are no resonant terms requiring special treatment. Then 

(5.5) 

m>O 
For n = 3, the correction term in the Hamiltonian is 

3 
-32 J2 ! 

2 2 
3m + D3m )i 

1 1 
m2N2 + _ 9 2 22 2 

V m N -v 13 

(5.6) 

(iii) No resonance in n th order- New resonance in higher order. 

As an example, let us calculate the qth order term with Q = 4 arising 

from-n = 3. The result is 

& J2 3 1 + 
3v 

A A 
-mlN v -miN 

)[ 
3ml 3(m-mi) e 

iW-mN$) + 

+A 3(-mi)A3(-m+mi)e 
-i(4+-mN4) 1 (5.7) 

Thus a Hamiltonian with only sextupole (n = 3) terms will give 

rise to fourth-order resonances through this correction process. In 
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physical terms, one can say that the sextupole term distorts the wave- 

form of the oscillation so that the first and second harmonics combine 

to make an equivalent third harmonic. 

A,($);a 6- function 

We choose Q, = 0 to be at the location of the 6-function. Thus 

A,c$) = Ali(g5). 

Then 

anQ 

A 

wlo = 2Trilv ’ 

and 

1 N -e 

W(4J>4) = c an! A 

-2dv e 
WlJ-4) 

Q 
i i 

. 

eN -1 

(5.8) 

(5.9) 

As in the Fourier-series case, the equations for w must take into ac - 

th 
count the effects of resonances in the n order. We shall omit those 

terms for which Qv/N is an integer, denoting this by a prime on the sum. 

Then 

iN 
2n 

QlanQlan(Q -I,.) A2 

-2Trip . (5.10) 

eN -1 

Note that Ram is independent of m, because the 6-function contains all 

harmonics equally. 
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(i) Resonance in n th order -Change -of-v -with - amplitude term. 

2 1 
R - iNA 

00 - 2Tr 
c 

2 
QlanQl 

.p 

cot - N ’ (5.11) 

Ii>0 

Thus for the third-order resonance 3v = mN, the correction term in the 

Hamiltonian is 

27 - -- 
256 J 

2 Ni2 cot n-v -. TT N (5.12) 

(ii) No resonance in ntn. order -Change -of-v -with amplitude term. 

The result is just Eq. (5.11) without the prime. For n = 3, the correction 

term is 

9 NA2 J2 31Tv -- 
256 IT 

3cotE+cotF . 1 (5.13) 

(iii) No resonance in n th order-New resonance in higher order. As 

we did in the Fourier -series example, we shall calculate the Q = 4 terms 

in fourth order arising from n = 3. The result is 

3lTv -- 
N 

+cot g cos (4$ - mN4)- sin(4+-mNr$) 
3 
(5.14) 

We have explored numerically the effects of this term and shall 

report the results in a later report. 
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