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1 Introduction 

The Relativistic Heavy Ion Collider(RHIC) at Brookhaven National Laboratory has  

the unique capability of colliding polarized proton beams with 500=s GeV. To 

achieve collision of such high energy polarized proton beams, polarization needs to be 

preserved during acceleration from injection energy (25 GeV) to top energy (250 GeV). 

This is accomplished by using Siberian Snakes - local spin rotators conceived by 

Derbenev and Kondratenko in 1988 [1] – to suppress spin depolarization resonances. For 

the RHIC-Spin Project, installation of two Siberian Snakes in the main rings was 

planned. Each snake is composed of four superconducting helical dipole magnets and 

generates 180o of spin rotation about the horizontal axis. The behavior of spin precession 

and orbital motion of protons, including the effects of Siberian Snakes [2, 3] and the 

strengths of spin resonance of intrinsic and imperfection type have been extensively 

studied both analytically and numerically. In those studies, the magnetic fields of helical 

magnets is approximated by an analytical model due to Blewett and Chasman [4]. Not 

surprisingly, real helical dipole magnets differ somewhat from this idealized model: they 

exhibit a non-negligible longitudinal magnetic field and fringing fields at both entrance 

and exit extremities. In 1997, magnetic field measurements on a prototype helical magnet 

showed excellent agreement with numerical calculations performed with the three-

dimensional magnetostatics code TOSCA[5]. This result suggested that it should be 

possible to perform reliable numerical study of spin motion by tracking orbital and spin 

motion around the ring using numerically generated Snake magnetic field maps. 

In the present paper, we obtain energy-dependent numerical orbital maps and spin 

matrices of a Siberian Snake, from injection to top energy. A technique based on spline 

interpolation functions is used to construct a suitably smooth field map. TPSA (Truncated 



Power Series Algebra or Automatic Differentiation) is subsequently employed to produce 

an orbital map. Since tracking involves in excess of 107  turns,  symplecticity must be 

enforced and we describe how this can be accomplished. Finally, results of spin tracking 

in the presence of Siberian Snakes are presented and discussed.  

 

2 Spin Matrices and Orbital Maps of Siberian Snakes  

The evolution of spin vector of polarized protons in external electromagnetic fields is 

governed by the Thomas – BMT equation [6]. Spin precession depends on the ambient magnetic 

field and thus is coupled with the orbital motion, which obeys the Lorentz equation. In Frenet-

Serret coordinates system, the equations of orbital motion are given as follows: 
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components of magnetic field in x, y and s directions, respectively. In the same coordinate 

system, the Thomas – BMT equation is [7]; 
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In principle, assuming either a measured or a numerically obtained field map, straightforward 

Runge-Kutta quadrature can be used to integrate Eq.(2.1) and Eq.(2.2). An orbital map and a spin 

matrix can then be extracted. TPSA (Truncated Power Series Algebra or Automatic 

Differentiation) approach [8] permits the calculation of a truncated Taylor map of an arbitrary 

element to any order and the Taylor coefficients of the resulting truncated map will be accurate to 

the precision of computer. In order to make use of the TPSA approach in the present study, the 

numerical magnetic field was fitted with spline functions, and then reconstructed, component by 

component, to be smooth in the first derivatives and continuous in the second derivatives. A 

fourth order Runge-Kutta integrator was converted into TPSA integrator using the LBNL version 

of the TPSA package [9], originally written by Berz and later modified by Etienne Forest. A 

Taylor map, truncated to second order, was obtained for trajectories starting from the entrance of 

the Snake. 

The spin matrix was obtained by sending three representative trajectories with initial spin 

conditions as == ),,( soyoxoo SSSS
&

 (1, 0, 0), (0, 1, 0), (0, 0, 1), respectively but with identical 

initial orbital conditions. Taking the values of spin components at the exit of  the Snake, we 

obtain the spin matrices in the form 

 

The spin matrix MS is then expressed as follows. 

 

Note that since the rotation of the spin vector is a subgroup of space rotation, SO(3), the spin 

precession transformation matrix can also be expressed as follows 
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where ω&  is the vector of spin axis and is the normalized eigenvector of the spin matrix MS.  θ is 

the rotation angle, which can be obtained by calculating the eigenvalues of spin matrix MS and the 

Ji s are 3 ×3 matrices defined as follows: 
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The angles of the spin axis are defined as (see Fig. 1) 

 

 

 

 

          In practice, the magnetic field of the Snake is optimized to rotate the spin as completely as 

possible for a specific energy, typically the injection energy. Since the Snake field  remains 

constant during  acceleration, the resultant spin matrices and orbital maps are energy-dependent. 

These energy dependent matrices and maps can be obtained by interpolation. However, care must 

be taken not to spoil the symplecticity of the maps as well as the unitary property of the spin 

matrices. Since the acceleration cycle involves on the order of 107 turns, violations of 

unitary/symplectic conditions larger than 10-8 are unacceptable. We first address the issue of 

symplecticity in the next section. We then discuss how to insert matrices and maps of Snakes into 

the RHIC lattice. 

 

 3. Symplectification of orbital map of the Snake 
 

A 2n×2n matrix M is said to be symplectic if the matrix M satisfies the condition, 
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Fig. 1  Angles of the axis of spin precession 
            



 

where MT is the transposed of  M, and J is defined as 

 

where I is the identity matrix. For a typical 4×4 linear orbital Snake matrix calculated by TPSA 

using numerically computed magnetic fields, it was found that symplecticity condition violations 

are on the order of 10-4. These violations can be attributed not only to the truncation process, but  

also to the fact that numerically calculated magnetic fields do not exactly satisfy Maxwell’s 

equations in the fringing regions. Since the map M (to second order ) from the entrance to the exit 

of the Snake is nearly the map for a drift of length equal to that of the Snake, we can construct a 

new map MK as 

 

where D(L/2) is a map for a drift half the length of a full Snake, and the linear part of MK is a near 

identity matrix which can be written in exponential form [10] as 

 

  

where  Id is the identity map and ∇⋅
&&

F  is a Lie operator.  

It is obvious that if MK is symplectic, ∇⋅
&&

F  should be a Poisson Bracket operator, i.e., 

                                                       ∇⋅
&&

F = :f:                                                               (3.5) 

where f  is a function related to F
&
.  

Then, we can calculate f  from F
&
 by 

where ),,,,,( tyx ptcpypxz ∆−=&
 is  a vector in the phase space. If the map 

corresponding to F
&

 is symplectic, then this computation involves an integral of a curl free 

function and the function f is unique. If the map corresponding to F
&

 is slightly non-symplectic, 
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then the function f is one possible symplectification of the vector field F
&

 and it will depend on 

the path of the integration. The path length chosen here is the diagonal of the 6–dimensional 

hypercube, which has one corner at the origin )0,0,0,0,0,0(=z
&

, and an opposite 

corner at ),,,,,( tyx ptcpypxz ∆−=&
.   

In the present study, a possible symplectic matrix (MK )symp. for MK was computed by an 

iterative process. Since the computation does not separate the map to be symplectified into the 

first and second order, it can be used for the symplectification of any order map.  Once :f:  is 

obtained from F
&

, the resulting symplectified map for MK  is given as  

 
                                              (MK)symp. = exp(:f:)Id                                                             (3.7) 

and 

  

The details of the symplectification will be published elsewhere [11]. Suffice it to mention that 

for a typical symplectified linear 4×4 matrix for a Snake at 25GeV violations of the symplecticity 

condition were found to be less  than 10-8.  

 

4. Upgrade of the code SPINK 

The general idea of code SPINK [12] is to track a certain number of protons through the 

machine lattice where matrices are used to transform the orbit and spin coordinates. The orbit 

matrices are built from a Twiss file, output from the code MAD [13]. Since the strength of spin 

resonances depends on the distance of a particle from the central orbit, misalignments of magnets 

and field errors must be taken into account. The code MAD was therefore modified to transmit 

machine element alignment errors and the associated corrected closed orbit and corrector 

strengths to the code SPINK. Accordingly, SPINK displaces and rotates the orbit maps, and treats 

correctors as kick magnets on spin motion.  

4.1 Insertion of energy dependent orbital maps into RHIC lattice  

There are two types of Siberian Snakes in each ring of RHIC. Their function is to rotate the 

spin by 180o around an axis at 45o with respect to the longitudinal direction s in the x-s plane for 

Type-A and at –45o for Type-B. Two types of Snake were introduced into RHIC lattice as 

follows: 
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where  M represents an orbital map MT or a spin matrix MS. MT is a 6-D symplectified orbital map 

of the Snake, L is the length of the Snake, DL/2  is a drift matrix for a half length Snake. Meffect is 

the thin map for the orbit motion and spin precession. It should be noticed that the map M 

generally includes a finite zeroth order (dipole) contribution which would perturb the closed orbit 

as computed by MAD. This is especially true in the low energy region below 100 GeV, although 

the deviations are quite small. Since the net dipole contributions from the Snakes errors would be 

normally taken into account by the closed orbit correction procedure, they are simply zeroed here.  

4.1.1 Interpolation of orbital map  

We obtained the symplectic orbital maps of the Snake by extracting the potential 

candidates :f: for the Poisson bracket operator from a single vector field representation F
&

 as 

shown in Eq.(3.7). To guarantee the symplecticity of the interpolated map, the Poisson bracket 

operator :f: (rather than the map itself) was pre-calculated at every 0.5GeV from 25GeV to 

250GeV and  interpolated.  

4.1.2  Interpolation of spin matrices 

The orthogonal 3× 3 spin matrix consists of 9 elements. The spin matrix at the energy E 

between Ei and Ei+1 (i=1, 2, …, n) could be obtained simply by interpolating each of the elements 

of the spin matrices at Ei and Ei+1. However, it was found that the unitarity of spin matrices 

interpolated in this way can not be guaranteed. Actually, spin polarization was totally lost after 

10,000 turns of tracking with thus obtained spin matrices.   

For this reason, we developed a new method of interpolating spin matrices. Since the rotation 

of spin is a subgroup of the space rotation SO(3), a spin matrix can be described completely using 

a smaller number of parameters i.e. the three components of vector ωθ && −== ),,( 321 vvvv   as is 

given in Eq.(2.3). Interpolation of the spin matrix with respect to vector v
&

 can be done as 

follows: First, by calculating the eigenvalues and eigenvectors of the matrix of Ms(Ei), we obtain 

the rotation angle θ and the normalized eigenvector ω& , and then ωθ && =v .  We then store the 

three components of the vector 

 

                           niEvEvEvEv iiii ,....2,1)],(),(),([)( 321 ==&
                                        (4.2) 

 
at energy E1, E2, …, En from the injection energy of 25GeV to the top energy of 250GeV with 

uniform step ∆E(=0.5GeV). Then, we interpolate the three elements of the vector v
&

 at the energy 

E, which is between Ei and Ei+1. Finally, the spin matrix can be recalculated by Eq. (2.3.3) and its 

unitarity is guaranteed by construction. 



4.2 Symplectification of orbit maps provided by MAD 

The orbital tracking was done with use of orbital maps of all the elements in RHIC lattice 

obtained from code MAD, which is not a long term tracking code. The symplecticity of these 

orbital maps was therefore checked. Although the maximum symplecticity violation for a single 

element was 9.57 × 10-8, the violation for a One Turn Map (OTM) obtained by concatenating all 

elements, except Siberian Snakes, is 5.6 × 10-6 in (x, px) phase space and 4.5× 10-9 in (y, py) phase 

space. Obviously, this is not accurate enough for tracking over 107 turns.  

It is known that a matrix M can be written in exponential form  

                                           M = exp(B)                                                                                  (4.3) 

where B is a real matrix.  The Cayley representation [10] of M is given as 

 

where T = tanh(B/2).  Let’s define a symmetric matrix W by taking the symmetric part of V, V = 

J-1 T , as follows: 

 
then, we define a symplectic matrix R by writing  

 

R will be a symplectification of M that we call the Cayley symplectification. The first order 

matrices of the elements in RHIC lattice were symplectified by this method, and the symplecticity 

of  matrices is guaranteed to be up to machine (computer) precision. 

 
5. Spin Tracking with “Real” Siberian Snakes in RHIC    
 

Armed with energy-dependent unitary spin matrices and symplectified orbital maps, we are 

now in position to track from injection to top energy. In this section, typical results of such long-

term tracking will be presented for different conditions. For single particle tracking, the 

“emittance” of a particle is defined as the area enclosed by the invariant phase ellipse contour. 

For multi-particle tracking, the tracked particles are assumed to be Gaussian                            

distributed inside the phase space volume. Each particle is tracked during the course of 

acceleration from the injection energy 25GeV to the top energy 250GeV. The momentum gain 

per turn is assumed to be 3×10-5 (GeV/c). Although there are 5 RF cavities in each RHIC ring, 
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only two of them are used for acceleration of polarized proton. Each cavity has a peak voltage of 

approximately 300 KV. The acceleration time is 80 seconds, which corresponds to a total of 

7.5×106 turns.  

 

5.1 Spin tracking with ideal Siberian Snakes  

 

We first consider the case were the Siberian snakes are ideal, i.e. where the orbital map is 

identity and the spin matrices are as follows: 

  

for Type-A: the spin axis is in the x-s plane and  for the Type-B: the spin axis is in the x-s plane. 

Fig. 2 shows spin depolarization for particles with a normalized emittance 5πmm-mrad, 

10πmm-mrad, 15πmm-mrad and 20πmm-mrad, respectively. The normalized polarization, 

horizontal and vertical amplitudes are plotted against  Gγ,   which is proportional to the energy. 

Symplectified orbital maps are used;  misalignment and field errors are not included. It is well 

known [14] that the intrinsic resonances are enhanced at Gγ = mP ± νy where P is the 

superperiodicity of the lattice, νy is the vertical betatron oscillation frequency and m is an integer. 

Intrinsic resonances are also enhanced at  Gγ = mPM ± νB where M is the number of FODO cells, 

and νB is the total accumulated phase advance in dipole cells [15]. The enhancement due to M is 

important because normally M>>P in high energy accelerators; furthermore, dominant 

resonances are located at m=odd integers since in that case spin kicks due to the focusing and 

defocusing quadrupoles add up coherently. 

Fig. 2 shows three strong depolarization resonances occurring at (Gγ)1 = 3×81- (νy –

12)=225.82, (Gγ)2 = 3×81+ (νy –12)=260.18, and (Gγ)4 = 5×81+ (νy –12)= 422.18, where 81 is 

the product of the superperiodicity P=3 and the “effective” FODO cells per superperiod M=27 

(which includes the dispersion suppressors) and 2πνB=2π(νy -12) is the accumulated phase 

advance of all FODO cells. A fourth strong depolarizing resonance is found at the location  (Gγ)3 

= 5×81- (νy –6)=381.82.  
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Fig. 2 Spin tracking with perfect Snakes in RHIC, orbit tracking with symplectified matrices  

            a. εx = εy =    5πmm⋅mrad,      b. εx = εy = 10πmm⋅mrad,   
   c. εx = εy = 15πmm⋅mrad,      d. εx = εy = 20πmm⋅mrad. 

 

 

5.2 Spin tracking with real Siberian Snakes  

5.2.1 Intrinsic resonances 
 

We now present results of long-term tracking performed with Siberian Snake maps derived 

from three-dimensional numerical field computations and symplectified using the technique 

previously described. Fig. 3 presents the result of single particle tracking assuming no 

misalignments and no field errors. Therefore, the depolarization resonances are intrinsic 

resonances.  Comparing with the results in Fig. 2, we find that “real” snakes maintain the 

polarization better than idealized snakes. With idealized snakes, the polarization can not be 

recovered after crossing the resonance at  (Gγ)3 =381.82 and decreases to 88% for  particles with 

emittance larger than 10π mm-mrad. Using realistic snakes, polarization can be maintained to 

95% under the same conditions. 

Realistic snakes introduce coupling that is not present with idealized ones.  This can be seen 

by observing betatron amplitudes in the x and y directions at a specific location where βT_x = 

9.956m, βT_y =10.044m. Due to adiabatic damping, the x and y amplitudes decrease with 

acceleration. With real snakes, the amplitudes in x plane and y plane are exchanged, shown in the 

left and right plots of Fig. 4, indicating the presence of coupling. The effect is most noticeable in 



the low energy region (Gγ<150) since the source of transverse coupling in “real” Siberian Snakes 

is the longitudinal component of the fringe field. The initial emittance is 5πmm-mrad . 

 

Fig. 3 Spin tracking with real Snakes in RHIC, orbital tracking with the symplectified matrices  

          from Code MAD. 

        a. εx = εy =    5πmm-mrad,      b. εx = εy = 10πmm-mrad,   
             c.  εx = εy = 15πmm-mrad,      d.  εx = εy = 20πmm-mrad. 

 

Coupling induces a change in betatron tunes. We calculated these tunes from the eigenvalues 

of the One Turn Map (OTM), obtained by concatenatating all the element matrices in the lattice, 

as well as the two Siberian Snakes’ maps. In Fig. 5, the betatron tunes are shown as a function of  

 

                                                             

              Fig. 4 Betatron amplitude in x and y plane at 6’oclock in the RHIC ring.  
 



                        

 
                          Fig. 5 The transverse betatron tunes Qx and Qy shifts through the acceleration 
 

proton energy. The maximum tune shifts from the designed working points are ∆Qx=0.01919 and 

∆Qy =0.0306 at injection energy (25GeV). Fig 6 is a tune diagram where tunes at different 

energies are marked with circles and the design working point  Qx = 28.19 and Qy =29.18 is 

marked with a triangle. In this diagram, neighboring sum resonances nQx + mQy = p, are 

illustrated as well as difference resonances Qx - Qy =-1 where n, m and p are positive integers and 

n+m denotes the order of the resonances. The RHIC design tune is located between the 5th order 

resonance at 28.20 and the 6th order resonance at 28.166, making the usable range approximately 

0.034. As the energy is increased, the tunes gradually move toward the design working point and 

cross the 5th and 10th order sum resonances (Gγ ~ 71.67) causing an increase in betratron  

amplitudes. In the energy region from 45 GeV to 70 GeV (Gγ from 86.01 to 133.79), the tunes 

crosse the difference resonance Qx - Qy =-1. Difference resonances cause amplitude exchange but 

do not induce further amplitude growth. Since spin resonance strengths are proportional to Gγ,   

spin motion is not seriously damaged by larger betatron amplitudes in the low energy region.  

 

5.2.2Intrinsic and imperfection resonances 
 

Imperfection resonances arise from magnet misalignments. Misalignments were assigned 

randomly to magnets in all FODO arc cells assuming a truncated Gaussian distribution. The 

effects of these misalignments as well as those of the closed orbit correction system on the spin 

motion are investigated. Two categories of simulation were carried out:  

Category 1: 

In this category, the effects of vertical closed orbit correctors are investigated. These 

correctors have horizontal magnetic fields, and it is anticipated that the depolarization will be 

large when the correction is strong. The standard deviation (σ) of the Gaussian  dipole magnet 

misalignment  distribution is set to be  0.1mm, 0.5mm, 1.0mm and 2.5mm,  in both the horizontal       
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Fig.6 Tune diagram showing the selected working point of RHIC at Qx = 28.19 and Qy = 29.18  

         (with symbol “�”) with neighboring sum and difference resonances. The shifted working  

          point due to the insertion of Snakes are shown with  symbol “o” in the diagram. 

 

and vectical planes. In addition, the corresponding value of σ for the main dipoles roll angle is 1 

mrad. For the main quadrupoles (QF, QD) and sextupoles the rms offsets are set to 1 mm in both 

planes. The closed orbit distortions were corrected to 0.180 mm (r.m.s.) using the Micado 

procedure[MICADO], and the tunes were kept at 28.19 (H) and 29.18 (V) by adjusting the 

quadrupoles’ strengths in the arc cells. Single-particle tracking was done for a particle of zero 

emittance εx = εy =0.  In this case, depolarization is mainly due to imperfections resonances. 

Tracking results are given in Figs. 7 (a), (b), (c) and (d), respectively. In these figures, one can see 

that depolarization increases with the magnitude of the misalignments, reflecting the effect of  the 

correctors on spin motion. For a given rms amplitude of the corrected closed orbit error, the 

corrector strengths increase with the misalignements. The transverse fields associated with both 

the magnet misaligments and the correctors result in a stronger perturbation of the spin motion.    

Category 2: 

In this case, the standard deviations for main dipoles offset and roll are set  to 2.5 mm and  1 

mrad respectively. The r.m.s offset of the main quadrupoles (QF, QD) and sextupoles are set to 1 

mm in both planes. Using Micado algorithm, the vertical closed orbit distortion was corrected to 

0.189 mm (r.m.s.) and 0.512mm (r.m.s.). The tunes Qx and Qy are kept 28.19 (H) and 29.18 (V), 

by adjusting the arc cell quadrupoles. Single particle spin tracking was performed for particles 

with emittance 5πmm-mrad, 10πmm-mrad, 15πmm-mrad and 20πmm-mrad, respectively. The 

results are presented in Fig. 8.1 and Fig. 8.2 for corrected closed orbit distortion of 0.189 mm and 



              

                                     (a)                                                                        (b) 

 

        
                                   (c)                                                                         (d) 
 

 
Fig 7 The effect of the misalignments of RHIC on spin motion. Spin tracking was   done by 

single particle extracted from the emmittance of zero. Corrected vertical closed orbit 
distortions ≈ 0.18mm. Original r.m.s. misalignments are 

                    (a) 0.1mm, (b) 0.5mm, (c) 1.0mm, and (d) 2.5mm 
 

0.512mm respectively. In these figures, depolarization is seen to be more serious due to the 

presence of both intrinsic and imperfection resonances. It is known that the tolerable imperfection 

resonance strength decreases dramatically due to the overlapping effect of two types of 

resonances [16].  For a closed orbit distortion corrected to 0.189mm (r.m.s.), the imperfection 

resonance strength is less than 0.07 -about 6 times less than the intrinsic resonance strength, and 

the polarization can still be kept at 88% for an emittance of 10πmm-mrad. On the other hand, 

when the corrected closed orbit distortion is 0.5mm, the polarization drops to 36% for an 

emittance of 5πmm-mrad, and to 44% for 10πmm-mrad case.  

 



 

   (1) Corrected closed orbit distortion  ≈ 0.2 mm   (2) Corrected closed orbit distortion  ≈ 0.5 mm 

 

 Fig 8 Spin tracking with real Snakes in RHIC, orbital tracking with the symplectified  

            matrices from Code MAD. Misalignment randomly assigned,        

            a. εx = εy =   5πmm-mrad,      b. εx = εy = 10πmm-mrad,   
  c. εx = εy = 15πmm-mrad,      d. εx = εy = 20πmm-mrad. 

 

 
5.3  Multi – particle tracking results 
 

Multi – particle tracking is performed with 32 particles randomly distributed in transverse 

phase space assuming a Gaussian distribution. We observe from single particle tracking results 

two strong depolarization resonances happening at Gγ =381.82 and Gγ= 422.18. Therefore, 

particles are not tracked with acceleration from the injection energy, but rather from 197.92 GeV 

(Gγ =378.18) to the top energy of 250 GeV (Gγ= 477.67). A r.m.s. emittance of 10πmm-mrad is 

assumed for the ensemble.  

The r.m.s. polarization is calculated as follows: 

 

where N is the number of particles, Sy is the polarization of each particle during the acceleration. 

First, we compare perfect Siberian Snakes with “real” Siberian Snakes assuming the RHIC lattice 

without misalignments.  Fig. 9a and Fig. 9b show the resulting r.m.s. polarization. Strong 

depolarizing resonances occur around Gγ= 411 - νy =381.82 and 451 - νy = 421.82.  Perfect 
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snakes can preserve 88.9% of the average and 87.7% of  r.m.s. polarization at the top energy of 

250 GeV. In contrast, the corresponding figures for “real” Siberian Snakes are 96.25% and 

94.65%. These results are consistent with those obtained from single-particle tracking. 

            
   
                   a) with “perfect” snakes in RHIC                             (b) with “real” snakes in RHIC 
 
Fig 9 The average results of polarization from the tracking of 32 particles in RHIC with  
          No misalignment and no field errors. Original emittance:10πmm-mrad.    
 

 

 

 
Fig 10 The average results of polarization from the tracking of 32 particles in RHIC with  
            r.m.s. misalignment of 2.5mm and corrected vertical closed orbit distortion of  
            0.189mm.   Original emittance:10πmm-mrad.    
 

 



We also considered real snakes in conjunction with 2.5 mm r.m.s. misalignments and a 

vertical corrected closed orbit distortion of 0.189 mm. The results are presented in Fig. 10; and 

the spin polarization drops to 63.1% (average) and 73.0% (rms), as expected.  

 
6. Conclusions 
 

Siberian Snakes are installed in the RHIC ring as local spin rotators to prevent depolarization 

during acceleration from 25 GeV to 250 GeV. These Snakes are composed of super-conducting 

helical dipole magnets. The field distribution calculated with the 3D magnetostatics code TOSCA 

was found to be in close agreement with measurements performed on a prototype magnet. This 

result motivated tracking studies based on numerically obtained field maps to predict polarization 

for several accelerator conditions.  

To obtain reliable results, the unitarity of spin matrices and the symplecticity of the 

orbital maps should be guaranteed. Orbital maps obtained by straightforward application 

of the TPSA approach exhibit violations of the symplectic condition of the order 10-4.   

This is caused not only by truncation of high order terms but also by the non-Maxwellian 

character of the numerically obtained magnetic field. We have developed procedures to 

symplectify numerical maps. Using these procedures, we have produced Siberian Snakes 

orbital maps symplectic to machine (computer) precision as well as spin matrices for 

which deviation from unitarity is smaller than 10-8.  

We performed long-term spin tracking in the RHIC lattice with maps based on 

realistic fields obtained from 3D computations. The effects of corrector magnets for 

vertical closed orbit corrections have been investigated. If the misalignments are large, 

the strengths of corrector magnets must be strong to make the closed orbit values 

reasonably small. The important conclusion is that the misalignments should be as small 

as 0.2 mm when the emittance is less than 10 πmm-mrad. It is shown that the polarization 

can be kept with “real” Siberian Snakes in RHIC to more than 95% through acceleration 

for an ideal machine without imperfection resonances. When the latter are included, the 

polarization drops to 88% assuming misalignments of 0.1 mm and a closed orbit 

distortion corrected to less than 0.2mm (r.m.s). 
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