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Abstract

Numerical models of beam behavior in cyclic accelerators are typically obtained by iterating a map which
transformsthe phasespace coordinates of representative particlesto their coordinates one beam turnlater. For such
purposes as dynamic aperture determination or simulation of extended processes, many iterations, 107 or more,
may be used. Therefore, itisimportant to establishthat limited numerical precision doesnot result in unacceptable
cumulative error. Adiabatic invariants have good stability with respect to numerical noise under iteration of a
symplecticmap. If themap istimeindependent, the effects of roundoff on the map itself are coherent; asymplectic
map offers no protectionfromthissort of error. In diagnosing apparent cumulativeerror, itisvery important tolook
at results for precisely matched initia distributions; otherwise numerical error can be confounded with the slow
evolution of the non-stationary distribution. A numerical evaluation of the Jacobian determinant gives a useful
quantitativemeasure of the precisioninthenumerical representation of asymplectic map. Thispaper specializesto
aone-dimensional longitudinal phasespace map for synchrotron motion. However, theapproach isgeneral enough
to be applicable, at least in part, to other maps.

I ntroduction

The general idea of studying the evolution of a beam particle distributionin a cyclic accelerator by iterating single-
particle, single-turn mapsis ubiquitousin beam physics. An example of such amap isatransfer matrix produced by
amatrix multiplication code like MAD[1] or TRANSPORT.[2] In these particular instances the component matrices
are not symplectic above first order, and emittance of a distribution within a region of stable motion may grow or
sometimes shrink.[3] The emittance change results from defects in the map and would appear even with ideal nu-
merical precision. A symplectic map is one that represents an exact solution for some Hamiltonian; it preserves all
of the Poincare invariants. A map is symplectic if it satisfies the condition
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and 7 is the Jacobian matrix, the matrix whose determinant ./, called the Jacobian, is employed in this note. An
explicit expression for 7 is evident from eq. 5 giving J for a particular map. Symplectic maps can be produced
by an inherently symplectic technique like Lie transforms, for example, or they can be, asit is said, symplectified
by adding the necessary terms. However, it is aso possiblethat the effect of truncation error in evaluating the map
might destroy the symplectic character at some level. Thisis subject to numerical test; the numerical evaluation of
the Jacobian determinant at a precision greater than the precision used in the mapping can expose discrepanciesin
the phase space volume preservation — systematic or stochastic, genera or localized in a region of phase space.
For a one-dimensional map, area preservation and symplecticity are equivalent. For maps of higher dimension, the
Jacobian test remains a useful diagnostic, but the symplecticity condition eg. 1 isthe full test for symplecticity.

It has been shown by Forest[4] that a map in which the potential is applied in impulsesinterspersed with drifts
is symplectic regardless of how faithful it is to the dynamics of the system in other respects. It constitutes a so-
called kick integrator for the system’ seguationsof motion. The equationsfor synchrotron motionwiththerf potential

where S is the so-called symplectic unit matrix
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appearing across an isolated gap fall naturally into this pattern without approximation:[5]
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where ¢ is a phase difference between a particle and the synchronous phase ¢, likewise ¢ is the energy difference
between a particle and the synchronousenergy F; i labels particles, and n labelsturns. All symbols are defined in
Tablel.

The ¢, e variables are not canonically conjugate, but it is simple to rewrite the map with the substitutione; ,, =
€in/win asthemap M
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However, the coordinates are subject to numerical noise, i. e. rounding error, for both the kick and the drift in
the map. Therefore, there is a continuous stochastic contribution to the trgectories which can be interpreted as an
extremely small fluctuating force. One approach to estimating the effects of truncation is to estimate the Fourier
spectrum of thisforce. For one dimensiona motion the action isan adiabatic invariant proportional to the emittance.
Therefore, one can anticipatethat emittance growth will be strongly inhibited compared to fluctuation of the phase of
motion along trajectories.[6] However, if the noise spectrum were to have significant strength at frequencies as low
as twice the synchrotron frequency, then emittance growth would certainly occur. The preservation of emittanceis
not directly explained by the adiabatic theorem, because the high frequency components apply force on atime scale
short with respect to the synchrotron period and yet have little effect on the adiabatic invariant.

Coherent Excitation from Truncation Error

In atracking model, the map may bestatic or it may betime dependent. If themap changes, theerror in evaluating the
map at different timeswill be an additional random perturbation. However, if the sameidentical map isiterated may
times, whatever error ismade initsnumerical representation isfixed and makes a coherent error in the macro-particle
trgjectories.

This paper arises from studies of the source of apparent numerical instability with the map eg. 3. Fig. 1 shows
aphase space trajectory taken over 106 iterationsfor the centroid of a compact distribution of four particlesinitially
centered on the stable fixed point. The parameters are fixed throughout the cal cul ation, providing a non-accel erating
bucket above the synchrotron transition energy. The coordinate axes in the figure are MeV on the ordinate and rf
phase divided by the harmonic number on the abscissa. The parameters for the map are those of the Tevatron at
injection energy (Table 1), and the four test particlesare at ¢ = 180° + 1°, ¢ = +1 MeV. In this period of time the
centroid trajectory has grown by about 2 - 1071 of the bucket width, that is about 2 - 10~ 15/turn. Note that there is
an underlying dipole oscill ation with amplitude about 10~ of the bucket width; it isnot spurious. It resultsfrom the
dependence of phase-dlip on energy. The particlesbel ow the synchronousenergy dlip less than those above, because
the energies are above transition. Since the distributionis symmetric about the stable fixed point but not matched to
the Hamiltonian flow, the macro-particle’s centroid, which is started at (0,0), averages below zero in energy.



The centroid trajectory shown in Fig. 2 results from 10° iterations with an approximate map that employs the
same slip factor for al macro-particles. In thisfigure the final trajectory extends only about 3 - 1076 of a bucket
width. Thus, the average increment to the centroid is approximately 3 - 10~22/turn. If one looks at just 10* turns
asin Fig. 3, the average systematic increment is larger but of the same order. However, on this scale one can see
also the stochastic nature of the centroid motion; the centroid tragjectory crossesitself many times. Because the major
distinction of the simpler map isremoving differencesin slip velocity above and bel ow the synchronousenergy, itis
areasonableinference that much of the drift of the centroid recorded in Fig. 1 arises from the fact that the little four-
particle distributionisnot quite matched to the original map, i. e., is not astationary distribution. The outward spiral
in Fig. 2 appearsto be approximately linear; it does not exhibit exponential growth like a collective beam instability.
Indeed there is no collective mechanism; only single particle motion in anearly linear potential isinvolved.

After removing theeffect of thesmall mismatch intheinitial distributionby using the simplified map, thereisstill
asmall systematic outward spiral of centroid, acoherent change of the mean energy of thedistribution. When themap
is used below transition for 107 turns, the centroid plot appears as shown in Fig. 4. Not only is the centroid motion
apparently fully stochasticin this case, but al so the region of wander istwo orders of magnitude smaller. Given that
the same map is used above and below transition, attention is naturally drawn to the constant term eV (¢, ,,) in the
energy kick; for an ordinary rf waveform, this term is proportiona to sin(0) below transition and to sin(7) above
transition. A value for the sine differing from zero by 10~ could introduce about this amount of energy/turn.

These phenomena may be called instability of numerical origin, but they are not of the stochastic type often dis-
cussed in a numerical analysis context. For the systematic energy increment there is a question whether the sine
function or its argument is the culprit. The sine was absolved by evaluating it in small steps either side of «. Inthe
following discussion numbers are described as doubl e precision, meaning that their computer representation is eight
bytefloating point, or quadrupleprecision, meaning that the computer representation issixteen eight-bit bytes. When
7w was evaluated in quadruple precision and the argument of the double precision sine was taken in steps of rationa
binary fractional increments of 7 in the range (1 & 10~°), the plot of the sine was apparently smooth and linear,
missing zero at argument 7 by 10~51. Furthermore, sin ¢ — 7 + ¢ produces a smooth cubic around the zero in this
range, asshownin Fig. 5. Theseresultsshow that the error in the sinefunctionisnot set by the scal e of the maximum
amplitude but rather scaleswith the value of the function. Thus, the observed energy increment must result from the
truncation of the value of theargument  to doubleprecision, i. e., possibly an error of asmuch as~ 10~!4. Onemay
reasonably questionwhether such asmall energy inputisof practical importance. The usual answer would, of course,
be no, but if one notices the phenomenon without knowing the cause, it may raise the question of the fundamental
correctness of the formulation. The following examination of effects of limited numerical precision has the object
of helping to validate map-based numerical models. Incidentally, in this special case, should the numerical error be
aproblem, thereis a simple work-around; the plus sign in front of the second term on the right-hand side of thefirst
equation in the map can be changed to a minus sign above the transition energy. Then the stable phase will remain
at lessthan 7 /2 but the direction of phase flow will reverse asit should.

Numerical Test of Area Preservation

The map in eg. 3 is supposed to represent the equations of motion for a conservative process. Therefore, the phase
space area enclosed by a trgjectory should be conserved when parameters change slowly, and the map should be
strictly area preserving. The discussion above illustrates that one can easily misjudge the cumulative error arising
from the map by tracking an unmatched test distribution. Getting a highly matched initial distributionis not entirely
simple, athough, with care good approximations can be made. It isdesirableto have acheck of the map not depend-
ing on the properties of atest distribution. It is possibleto verify that amap isnot only area preserving in principle
but aso in practice by eval uating the Jacobian determinant numerically from coordinate differences. Additional cal-
culations with the coordinates must be made at higher precision than used in the map itself to permit unambiguous
association of error in the Jacobian with errorsin the map aone. One can evaluate each of the four termsin the Ja



cobian determinant eg. 5 analytically. This providesa check on the precision of the numerical evaluationin this case
and helps to understand the practical tradeoff between precision of the difference approximation to the derivatives
depending on small separation of coordinatesand theloss of significant figures, whichisreduced by larger separation
of coordinates. The error in approximating the derivative might in principl e be reduced by mapping more pointsand
using a higher order formula. Given that the mapped pointsare not on a uniform grid, calculation of the derivatives
abovefirst order differences would be tedious.

In Fig. 6 we give adistribution of the Jacobian - 1 for eq. 3 evaluated numerically for a specific case which s, as
before, like the Tevatron at injection. The evaluationsare made on a25 x 25 grid spaced at 10° intervalsin rf phase
and 10 MeV in energy. The grid is centered on the synchronous phase of 180° and contains some points outside of
the bucket. The cell sizefor evaluation of the derivativesis0.2° x 0.2 MeV for thiscase. Thelongest bar in the plot
is1.1-10~1°. Thischoiceof cell sizeis purely arbitrary, providing an upper limit on the difference. Thelimit can be
optimized by seeking the minimum of the maximum difference asafunction of cell size. Two more cases are shown:
Fig. 7, with alongest bar of 3.3 - 10~!2, givesthe distributionfor cells of 0.02 x 0.02 and Fig. 8, with alongest bar
of 1.1- 10~ for cellsof 0.005 x 0.005. In Fig. 9, the maximum absolute value for the difference J- 1 is plotted as
afunction of the length of the cell edges. For the particular parameters of the example, the minimum value for the
error in the Jacobian is obtained with cell dimensions of about 0.02° x 0.02 MeV.

EveninFig. 8, where the cancellationin eva uating the derivativesin the Jacobian appears dominant, the vestiges
of the same systematic distribution are still apparent. Notethat J- 1 isindependent of E, and changessign at +7/2;
it appearsto be essentialy proportional to cos ¢. The systematic distributiona most surely arises from the map, with
which it has a shared symmetry, rather than from the limitation to first order differences for the derivatives, which
one would expect to show up in approximately comparable degree in both energy and phase differences. Given the
inherent cancellation in the difference equations, an error of afew parts in 10'? in the Jacobian derivative is very
satisfactory. Its systematic character looks consistent with the map.

Constancy of Adiabatic InvariantsUnder Stochastic Perturbation

Quantitieswhich are adiabatic invariants are more stabl e than other functions of the coordinates under iteration with
amap representing the equations of motion. Thisisfamiliar to many, but the underlying reason for the insensitivity
of these quantitiesto rapidly fluctuating perturbation is not elementary. The discussion on pp 291 — 297 of Arnold’s
Mathematical Methods of Classical Mechanics[6] providesthe basis for understanding but does not explicitly state
theresult. Inthe present context of numerical testsit isinterestingto compare aplot of longitudinal emittancevs. time
with aplot of some other function of the coordinateslike, for example, centroid position. This particular comparison
will be good only if thereis no comparable or greater coherent motion of the centroid.

Fig. 10 showsthe scaled rms emittance minus 0.5 eVsfor anominal 0.5 eV's closed contour during 106 iterations,
wherethe scaling setstheinitial valueto precisely 0.5. The parameters are again those of Tablell for the above tran-
sition condition. It is constant to +10~° with no changein mean value. Thisis an upper limit on the true fluctuation
of the emittance, because the rmsisnot in principle a determination of a phase space area. The centroid locus, how-
ever, has a spread of afew 10~* of the contour radius. Perhaps one might predict somewhat better constancy of the
emittance on the basis of the other results on precision; however, it isat least an order of magnitudeless variable than
the mean and constant enough for any practical purpose. An anaysiswhich avoids using the rms emittance might
lower the limit for numerical fluctuation of the emittance.

Summary

The observation of coherent growth of synchrotron oscillation in tracking for a non-accelerated bunch has led to a
study of effects of numerical error in extended simulationsusing iterated maps. The source of the growing oscillation
was identified as the truncation error in the synchronous phase of 7 radians. Because this error was constant for the



entirecalculation, its effect was cumul ative and coherent. The effects of fluctuating truncation and cancellation error
werea so considered. Thedifficulty in distinguishing emittance growth resulting from the evol ution of animperfectly
matched initial distributionfrom that arising from numerical error in the map hasled to devel opment of adirect, non-
iterativetest of themap. The numerical stability of adiabatic invariantscompared to other functionsof the coordinates
wasiillustrated.
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Table 1: Definition of symbolsin the difference equations

Symbol  Meaning

10) rf phase

s synchronous phase

0 difference between particle phase and ¢,

) index for particles

n index for turns

h rf harmonic number

e elementary particle charge (> 0)

E, synchronous energy

I6; relativistic velocity v/c

y relativistic energy E,/m.c?

Vr ~ of transition energy in synchrotron

v total potential

Wo angular frequency of beam circulation

W angular frequency of small amplitude synchrotron oscillations
£j difference between energy of jt particleand E,

Sin phase slip/turn of it particle wrt synchronous particle

Table 2: Parameters used in numerical tests of the synchrotron motion map

Parameter Symbol Vaue Units
mean reference orbit radius R, 1000.0 m
synchronous energy E,
abovetransition 150.938 GeV/c
below transition 17.777 GeV/c
transition energy/m.c? o 18.6
slipfactor v 2 — 2 n
above transition 2.8515-1073
below transition 3.1249-1073
rf pesk voltage Vit 0.4 MV
rf harmonic h 1113
synchrotron tune Vs 1.157-1073
bucket height Hp 110 MeV
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Figure 1: Locus of centroid of four macroparticles in a stationary Tevatron bucket at injection over 10° turns. The

ordinateisin MeV difference from the synchronous energy and the abcissais rf phase ¢ divided by the harmonic
number A = 1113. The macroparticles closely surround the stablefixed pointat AE = +£1 MeV and Ap = +1°.
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Figure2: Simillar to Fig. 1 except that themap issimplified to apply the same slip factor to all particles. Themodified
map is still symplectic, however.
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Figure 3: Simillar to Fig. 2 except that only 10* turns are tracked
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Figure 4: Simillar to Fig. 3 except that the tracking is done at the energy below transition giving the same synchtron
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Figure 5: Thethird and higher order terms for the double precision sine function at +10~57 around , i. €., the sine
in thisrange less the difference between 7 and the arguement

Figure 6: Plot of Jacobian determinant - 1 for synchrotron motion map on a grid with cells 0.2° x 0.2 MeV; the
parameters are those of a non-accel erating bucket at 150 GeV in the Tevatron accelerator.
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Figure 7: LikeFig. 6 with cell size0.02° x 0.02 MeV

Figure 8: LikeFig. 6 with cell size 0.005° x 0.005 MeV
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Figure9: Theabsol utemaximum Jacobian - 1 asafunction of the sideof the square cell used in evaluating the deriva-
tives. The minimum in thiscurve establishesthe cell sizeto find the best upper limitson the Jacobian -1 distribution.
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Figure 10: Fluctuation of theemittance during 10 turnsfor anominal 0.5 eV'sclosed contour using Tevatroninjection
parameters. The ordinateis the difference between 0.5 and the rms emittance scaled to approximately 0.5.
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