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Abstract 

A two-step algorithm is introduced into the Monte Carlo program 
CASIM to calculate radiation dose in the vicinity of shielding penetra- 
tions. Calculated results are in reasonable agreement with measure- 
ments. 

1 Introduction 

Programs such as the Monte Carlo (MC) code CASIM [1] allow for quite 
complicated shielding geometries to be analyzed. In principle, unlimited de- 
tail can be introduced but practical considerations encourage one to adhere 
only to the gross features of the problem geometry. Inclusion of detail not 
only complicates coding but tends to destroy any approximate symmetries 
a problem may possess-which may otherwise be exploited to save compu- 
tation time and simplify analysis. And often it is obvious, on statistical 
grounds, that even an unreasonably long MC run will not adequately ex- 
plore some given geometrical detail. Such details are then either omitted or 
averaged over in such a way as to preserve symmetry. 

However, for certain problems the ‘detail’ is not so easily disposed of and 
such is the case for the topic of this note: the presence of a penetration in a 
shield, e.g., a duct cutting through the shielding berm from a service building 
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to the accelerator enclosure, or a culvert traversing the berm without enter- 
ing the tunnel. Often the geometry without penetration can be adequately 
approximated by a cylindrically symmetric one. Inclusion of the penetration 
not only destroys the symmetry but it is clear a priori that even in a long 
MC run insui?icient particles will be generated with the proper coordinates 
and direction to adequately explore the penetration and its immediate vicin- 
ity. Moreover, radiation safety considerations demand that one confront the 
‘worst case’, i.e., estimate the maximum possible dose [z] rate outside the 
penetration. Given a maximal beam loss mode, this means varying the lo- 
cation where beam is lost relative to the penetration and thus several such 
(unreasonably long) MC runs would be required to establish the maximum 
dose. To make analysis of these problems-particularly those of the worst 
case dose variety-more tractable this note introduces an algorithm for esti- 
mating the exit dose of a penetration within reasonable CPU time, though 
not without some additional approximations. 

The present effort differs markedly from the usual treatment of ducts and 
labyrinths in accelerator shielding (see, e.g., ref [3]). Two assumptions are 
basic to the latter: (1) the dose is predominantly due to low energy neutrons, 
which (2) are introduced (solely) at the entrance of the penetration where 
(somehow) their dose is assumed to be known. With the help of graphs or 
empirical formulae this entrance dose is then propagated along the pene- 
tration. When these assumptions apply, the procedure no doubt provides 
a useful approximation. But the assumptions-and hence the procedure- 
are of limited validity around a high energy accelerator, in particular when 
attempting to predict a worst case dose. In the example of calculating exit 
dose for a penetration connecting to the accelerator enclosure due to nearby 
beam loss, particles contributing to the dose will enter the shaft along its 
entire extent inside the shield-with most entering over a stretch which is 
typically a few meters in length. In fact, unless the penetration ‘points’ 
at the beam loss or close to it, the entrance component may be small or 
even negligible. There is also a strong anisotropy to the radiation favoring 
the beam- and radially outward directions. One thus expects a significant 
dependence of the exit dose on the orientation of the penetration within the 
shield, which is absent in the usual labyrinth treatment. Note also that the 
latter appears completely inapplicable to the culvert case. 

In the following section the algorithm is briefly described. In sec. 3 
results are compared with measurements of dose outside penetrations due 
to deliberately induced beam loss. Concluding remarks are in sec. 4. 
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Figure 1: Three prototypes of penetrations encountered in accelerator shield- 
ing. Penetrations need not be perpendicular to the beam. 

2 Algorithm 

Fig. 1 shows three types of straight penetrations, referred to as duct, culvert, 
and well. Fig. 1 may be interpreted as a projection, i.e., the penetrations 
need not be at a fixed I (beam direction). Here only straight penetrations 
of uniform cross section are treated. Extensions to multi-legged ones should 
be easy to incorporate and are briefly discussed in sec. 4. It is basic to 
the algorithm that the penetration is narrow, i.e., that it does not greatly 
affect the cascade development and that its radius (or equivalent) is small 
compared with the tunnel radius. Less basic, but important from statistical 
considerations, is that one approximates the rest of the geometry with as 
much (cylindrical) symmetry as possible. The algorithm is described here 
in terms of the duct case. Culverts and wells require only minor changes 
which are not elaborated upon. 

2.1 CASIM Calculation 

The calculation proceeds in two stages. Fist a CASIM run is performed in 
a target-in-a-tunnel geometry with a solid tunnel wall. The target could be, 
e.g., a magnet on which beam is lost. Radial dimensions of target and tunnel 
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are approximated by the actual distance along the beam-to-penetration di- 
rection at closest approach or averaged thereabouts over some finite angular 
range. CASIM then calculates star density as a function of location within 
the tunnel wall. In addition, the restricted star density is accumulated dur- 
ing the MC, where restricted refers to the direction of the particle creating 
the star witi respect its radius vector. It is required to lie within some small 
solid angle of the direction made by the penetration with respect to the 
radius vector at the same radial distance. The restricted star density is thus 
expressed as a number of stars per unit volume and per unit solid angle. 
Note that the restriction-direction depends on T, unless the penetration lies 
along a radius vector. Note also that when full cylindrical symmetry applies 
the restricted star density calculation makes use of the entire (2~) azimuthal 
range. Where this is not possible a compromise is made between adherence 
to the actual geometry and maximieing the azimuthal range for statistical 
gain. 

2.2 Penetration 

In the second stage, following the MC, the penetration is introduced explic- 
itly. The basic geometry assumed now is that of a cylindrical penetmtion 
in a slab representing the shield. Using simple geometric arguments along 
with the star densities (plain and restricted) from the first stage, the dose 
at the exit of the penetration is estimated by summing: (1) the dose due 
to particles above 0.3 GeV/c, derived from the restricted star density, (2) a 
component-for ducts only-which enters directly from the tunnel, (3) a low 
energy neutron component which assumes that the (unrestricted) stars emit 
some low energy neutrons isotropically, and (4) for relatively thin shields 
the dose at the exit point in the absence of a penetration. Computation of 
this second stage is very fast and readily repeated at each z-location of the 
CASIM binning array. If the problem has translation symmetry along the 
beam direction, a single MC run can thus predict exit dose as a function of 
distance from beam loss and its maximum represents the worst case dose. 

To start, consider, as in fig.2, a duct which is only partially evacuated: 
from the top down to some height, T, above the tunnel ceiling, and consider 
a slice AT of shielding material at the boundary. A particle producing a 
restricted star within the slice would have continued unimpeded if AT were 
part of the penetration instead of the shield. The total contribution to the 
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Figure 2: Dose increment from removing top slice AT of partially evacuated 
duct. 

dose on top of the duct from AT is easily evaluated: 

D(T) = ~+Tp?(T)dT)cm 
(W - T)a 

where vP is the radius of the penetration, p? is the restricted star density, 
g(T) is a geometric factor which corrects for the presence of the penetration 
below AT, c+ converts flux to dose [4], and W is the total shield thickness. 
To get the total dose eq. (1) is integrated over T from 0 to W (after the 
usual AT ---t dT). 

Using a simple geometric model g(T) assigns to the particles from AT, 
assumed to reach the top within the penetration as per eq. 1, a probability 
which reflects their place of origin, i.e., the star of the previous generation 
where they are produced. If all trajectories are straight and ignoring-for 
the moment-entrance from the tunnel, these particles must have originated 
somewhere in the truncated conical region beneath AT, as indicated in fig. 3. 
The location of this earlier interaction determines the contribution of the 
(restricted) star to the dose, viz., it must be (1) completely excluded ifinside 
the penetration and (2) reduced by a ‘shadow factor’ elsewhere. Note that, 
for clarity, figs. 2 and 3 are not drawn in the strict spirit of the narrow 
penetration assumption. 
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Figure 3: Dose at exit of fully evacuated duct from slice AT due to particles 
originating between t and t + At. 

2.3 Shadow Factor 

For a particle originating at depth 2 and lateral position T’, the shadow factor, 
S,,, can be defined as the fraction of the penetration lying within the shadow 
cast by AT in the exit plane by a source at t and r’ (see fig. 3). For the 
purpose of deriving the shadow factor, it is convenient to set r,, the radius of 
the penetration, equal to unity and to locate the source point, (t, C), on the 
z-axis. According to the narrow-penetration-assumption, r < t, for typical 
distances around the penetration and the shadow of AT in the exit plane 
which is centered at z,-the projection of the center of AT-will be close 
to circular in shape, with a radius Q = (W - t)/(T - t) times that of the 
penetration, which is independent of ?. The overlap of the two circles in the 
exit plane is then the sum of two contiguous circular segments (see fig. 4) 
with an area readily obtained by integration: 

A = COJ%~ + a’d~ - zcG (2) 

where zb is measured from the center of the penetration to the common 
boundary of the two segments. In t- of this area, A, the average shadow 
factor for given t, is then 

s,(t) = J-F A2*rdr 
4(rij - 1) 
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Figure 4: Shadow factor for particles emitted off center. 

where TO = (cx + l)/(cx - l), beyond which contributions from depth, t, 
vanish. Eq. 3 integrates out to 

2.4 Shield Dose 

The exit dose due to particles produced in the shield which take signifkant 
advantage of the penetration (referred to here as the ‘shield dose’) can now 
be evaluated from the above ingredients. Based on the narrow penetration 
approximation, it is assumed that p,O is constant over the angular range of 
the particles arriving at AT from below and varies sufficiently slowly with 
e to (conveniently) use only the local ph. 0 The probability of origin of the 
restricted stars in AT at T can then be estimated using Bayes’ Theorem: [5] 

Pu-(T, t, 7) = 
p?(t) exp (- (T - t) /X) 27~ 

J Jp?(t) exp(- (T - t) /X) 2mdrdt’ (5) 

By applying to eq. 5 the exclusion rule (for r < 1) and the shadow factor 
(for T 1 1) and then integrating over all r and t, g(T) is obtained. The T 
integration is trivial and there remains: 

s(T) = I~34 =xp (- CT - t) /X)SA(~)T (4 - 1) dt 
J p?(t) exp (- (T - t) /X) xridt (6) 
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with the integrations performed numerically. As in a typical CASIM run, 
star densities (restricted and otherwise) are generated in volume bins over 
an equispaced (z, r) grid and the numericalintegration, eq. 6, is conveniently 
done in steps corresponding to this grid assuming a constant p?(t) within 
such a step. Note that At # Ah+, except for a radial penetration, and At 
involves the r-coordinate when the penetration is not perpendicular to the 
beam. The exit ‘shield dose’ is obtained by integrating eq. 1 over all T, 
again numerically and with steps corresponding to the CASIM bin bound- 
aries. [6] For wells a contribution from the bottom of the penetration must 
be included. 

2.5 Tunnel Dose 

For ducts, the contribution to the exit dose from particles entering directly 
from the tunnel and traversing the entire length, W, of the penetration is 
readily evaluated from the restricted star density in the radial bins adjacent 
to the tunnel: 

D(z) = p?(rl, z)xr;c,/W1. 

where rl refers to the lowermost r-bin and c, converts stars to dose. When 
Ar of the bin becomes comparable to X, p?(rl, z) may contain stars from 
particles produced in the shield. In that case it is a simple matter to keep 
track separately of the true tunnel entrance particles. 

The ‘tunnel dose’ is very sensitive to the beam loss- and penetration 
geometry, especially with respect to the area ‘viewed’ directly by the duct, 
which must therefore be modeled with some care. Obviously, a large tun- 
nel dose is expected outside of a penetration which points directly at the 
beamline. Where this is not the case, the distance from the beam loss to 
the wall opposite the penetration becomes a critical parameter. It may be 
advantageous, see sec. 3, to calculate this component in a separate MC run 
with a (cylindrical) geometry which better reflects the cascade trajectories 
contributing to the tunnel dose. 

When the tunnel dose is large one should, in principle, correct the re- 
stricted star density by removing stars due to particles entering from the 
tunnel. However, when one or the other dominates this will not affect the 
final answer greatly. Again, if need be, one can exclude restricted stars due 
to tunnel entrants. For relatively thin shields one should also evaluate the 
regular ‘CASIM dose’ at the exit point, i.e., the dose in the absence of the 
penetration. In the narrow-penetration- approximation this simply adds to 
the other components. 



2.6 Low Energy Dose 

Energetic particles which interact inelastically with a nucleus typically leave 
behind enough energy for the re maining nucleus to de-excite by emitting 
‘evaporation’ particles. The energy of evaporation neutrons is typically a few 
MeV. Charged particles have higher energy but will nonetheless stop very 
quickly and can therefore be neglected in the present context. In ordinary 
CASIM evaporation neutrons are not followed explicitly but are included- 
on average-in the star density to dose conversion. This shortcut is justified 
in regions where a cascade equilibrium exists. These neutrons are included 
here explicitly because: (1) a penetration, especially one connected to the 
accelerator enclosure, tends to sample more of the earlier generations of the 
shower-away from the equilibrium condition, and (2) the isotropic emission 
of the neutrons differs strongly f&n the production of CASIM particles. 

The low energy neutron algorithm again uses the geometry of an evacu- 
ated cylinder in a slab and relies on the (unrestricted) star densities calcu- 
lated in the first stage. This contribution is evaluated as the integral: 

W II m pJT)n exp (-t/A) 2m dr dT 

0 ‘I La 

where p. is the unrestricted star density, n is the average number of evapo- 
ration neutrons emitted from a struck nucleus (for concrete or soil n = 0.8 
is assumed based on systematics [7] and on Monte Carlo results [S]), ! = 
Z(r - rp)/~ is the distance traversed through material by the neutron with 
L=J( W - T 2 + ~2 being the total length to the exit of the penetration, 
and A = s&In2 where sIlz is the ‘half-value thickness’ for neutrons in 
the material (taken as 5cm for concrete [9]). In all cases studied so far this 
component has been neglible compared to the rest of the dose. 

3 Comparisons with Measurement 

Comparisons of CASIM-plus-algorithm with three measurements of delib- 
erately induced 8GeV proton beam loss are presented. Two are of a duct- 
type geometry and the third is for a culvert. These measurements belong 
to a series intended to provide some empirical grounds for worst case beam 
losses around the Fermilab accelerator complex. While perhaps better re- 
producible than a typical radiation ‘field measurement’, they should not be 
considered as rigorously controlled experiments. 
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Figure 5: Elevation view of ER penetration. 

3.1 ER Penetration 

This compares calculated and observed exit dose for a duct which runs from 
the ER enclosure to the Fermilab Main Accelerator tunnel in the vicinity 
of station E4. Fig. 5 shows a design (elevation) drawing in the plane of 
the penetration. Beam losses are induced-and the dose at ER is then 
maximized-by varying magnet strengths in that vicinity. The long straight 
section whichruns by the penetrationis only sparsely equipped withmagnets 
and other apparatus. Such an arrangement is expected to be quite sensitive 
to detail of beam loss and may be capable of producing close to a worst case 
dose, expected when cascade development and self-shielding are in optimal 
balance. Since a reliable description of the beam loss is lacking, and in view 
of the empirical dose maximization, it appears reasonable to replace the 
complicated geometry of the straight section with an equivalent ‘worst case 
iron cylinder’. [lo] 

The shield dose is calculated for a cylindrically symmetric r = 7cm 
iron target in a r = 190cm tunnel with a wall of standard (Fermilab) soil 
(p = 2.24g/cm3). The duct is in a plane perpendicular to the beam and 
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Figure 6: Simplified geometry to calculate tunnel dose of ER penetration. 
Distances are in em. 

is oriented at an angle of 0.3 radians with respect to the radius vector at 
its entrance to the tunnel. The solid angle limits imposed on the restricted 
star density are: -0.1 < d, < 0.1 where d, is the direction cosine of the 
particle creating the star with respect to the beam and -0.1 < 4 - & < 0.1 
where 4 is the angle between particle direction and radius vector and &, 
is the angle between penetration and radius vector at the point where the 
star is created. For convenience the tunnel dose is calculated separately 
with a somewhat different geometry. The cascade trajectories contributing 
to this dose must enter the wall opposite the penetration, re-emerge, cross 
the tunnel and strike the wall at the correct angle with respect to beam and 
radius vector. The full 2rr azimuthal range can be exploited by the artifice 
of makiig the geometry dependent upon the history of a cascade trajectory. 
Thus the first time a tunnel wall is encountered by such a trajectory is 
at 71 = 107cm; if it re-emerges then for any subsequent encounter(s) the 
tunnel wall is placed at 72 = 192cm. From fig. 5 TV = 107cm represents the 
distance from the beam to a spot on the floor directly underneath the duct. 
Since the floor-to-ceiling distance is 274.3~1 (9ft) it follows (fig. 6) that rs 
must be 192cm. The solid angle limits are the same as above. Finally the 
plain CASIM dose, without penetration, obtained from the unrestricted star 
density, is added to the above components. For wide penetrations this will 
tend to overestimate the dose, but here (for F = 15cm) this bias is probably 
not significant. 
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Figure 7: Exit dose at ER as a function of distance from point of beam loss. 

Fig. 7 shows the results of the calculation with the different components 
of the exit dose plotted as a function of I. As can be seen the maximum 
dose equivalent predicted is about 2.5. lo-“, as compared with a measured 
value of 1.55.10-‘erem per proton lost. The overestimate is likely the result 
of representing the straight section by an r = 7cm iron cylinder. As noted 
above this is done for expediency, and no attempt has been made to evaluate 
the closeness of this approximation. In any case, one expects a worst case 
target to overestimate the dose and a factor of 1.6 is not unreasonable. 

3.2 Booster Transfer Line 

This comparison deals also with ducts but differs considerably from the 
previous case. In contrast with the ER penetration the beamloss is relatively 
well defined. There are two ducts which are both much longer and more 
radially oriented compared with the ER case. Fig. 8 shows a plan view of 
the accelerator layout in this vicinity. Beam is bent up by 50mrad starting 
at magnet VBl and as a result strikes magnet QDC5 some 5cm below the 
top. A 4in. diameter beampipe-O.OEOin. thick-is present. Radiation dose 
is measured at the top of the shielding penetrations which are elevated about 
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Figure 8: Plan view of accelerator layout in vicinity of station F47. 

15ft above the beam. Only the ducts marked B:RADTBA and M:RADTZA 
at the exit are of interest here. 

The calculation proceeds much like for the above case. The bending 
magnet does not intercept the beam and can be omitted. The beam strikes 
the beampipe en route to QDC5 where its height is lowered by 29cm. This 
allows QDCS to be reduced to a cylindrical iron target of r = Ilcm, which 
represents an estimated distance through the magnet along the beam-duct 
direction. Elsewhere the bare beampipe is present. As seen from fig. 8 
the ducts are not quite perpendicular to the beam and a direction cosine 
of -0.1 with respect to the beam is assumed. The angle of the duct with 
the radius vector in the (z,y)-plane is assumed to be 0.1 radian at the 
tunnel radius. The ducts vary in length and in cross-sectional area with 
f = 1280cm and c = 565cm’ for ‘ZA’ and f = 1220cm, c = 1130cmz 
for ‘81’. It should be noted that the duct cross sections are rectangular in 
shape: roughly 7in. x 12.5in. and 7in. x 25in. for ZA and 81, respectively. 
They are partitioned, by 0.5in. concrete dividing walls which run parallel 
to the 7th. side, into two and four compartments, respectively. For the 
shield dose the tunnel is assumed to have a 340cm radius which corresponds 
to the (average) distance from beam to penetration. The shield is again 
assumed to be of standard Fermilab soil. For the tunnel dose the same type 
of trajectory-dependent geometry is assumed as for ER with the two walls 
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Figure 9: Exit dose for penetration with cross section area of l130cm2 as a 
function of distance along the beam (measured at exit). Actual penetration 
is marked at about 300cm. 

placed at 60cm and 340~7~ respectively. The f0.1 limit on d, is retained 
but-because the duct is nearly radial-the angle between particle direction 
and radius vector is required to be within ho.05 radians. The CASIM dose 
without penetration is negligible here. 

Results are shown again as a dose versus distance plot in fig. 9 for the 
81 duct. Distance is measured along the outside of the shield from the point 
corresponding to where beam is bent upward, which puts the center of 81 at 
z = 300~7~ The total estimated dose at this point is 5.5.10-‘* as compared 
with an observed 1.67. lo-‘%em per proton lost. Fig. 10 is a comparable 
plot for the 2A duct, which is at 900cm from the bend center. The total dose 
calculated at this point is 7.8.10-‘* via-a-vis an observed 5.1.10-%em per 
proton lost. The calculation comes much closer at 900cm than at 300~77~. 
Possible reasons for this discrepancy may be the representation of the 7in. x 
25in. penetration as circular and ignoring the presence of the dividing walls. 
This could also affect the 900cm result but to a lesser extent. This is in line 
with the magnitudes of the respective discrepancies. Aside from this one 
could also improve on modeling the geometry. 

14 



ldQo j j 1 4 1 I t 1 I I ,b, I 
200 400 -300 

Distance alonq Beam. cm 
800 H:R?.OTZA 'WQ 

Figure 10: Exit dose for penetration with cross section area of 565~~” as a 
function of distance along the beam (measured at exit). Actual penetration 
is marked at about 900cm. 

3.3 cso Culvert 

The final comparison presented here is between calculated and observed 
dose outside a culvert which crosses the berm in the proximity of station 
C39. Fig. 11 shows a cross section of the geometry. The culvert has a 
large, rectangular cross section which measures 2ft x 12.67ft overall and 
is divided in half by a vertical lft thick wall. These dimensions certainly 
exceed the bounds of the narrow penetration assumption. The geometry 
is readily symmetrized with only the off-center position of the beam in the 
‘horseshoe’ to be rectified. The shortest distance from beam to culvert is 
about 374cm of which 154~711 is inside the tunnel (dose to the 151.5cm actual 
horseshoe radius). This suggests taking a circular tunnel of 154cm with 
beam runnLng along the center and with the culvert 37407~ away at closest 
approach. The distance along the culvert from this last point to where 
dose is measured is about 900cm. The culvert is represented by a circular 
tunnel with area equal to (both sections of) the culvert. As in the ER case, 
beam loss is maximized with respect to the dose measurement. Since the 
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Figure 11: Geometry of culvert at C39. 

accelerator components nearby are those of the standard arc lattice, beam 
loss is simulated by letting the beam strike a Main Ring dipole at an angle 
of 2.4mrad as estimated from the magnet settings. There is no tunnel dose 
and the dose without penetration is negligible. 

Fig. 12 shows the dose as a function of distance along the beam direction. 
At its maximum this can be seen to equal about 3.0.10-1* as compared with 
an observed 3.8. lo-l8 rem per proton lost. The agreement to within 20% 
is quite gratifying. 

4 Concluding Remarks 

As shown in the preceding section results of the algorithm compare reason- 
ably well with measurements. Given the additional uncertainties associated 
with modeling a duct or culvert, agreement is in line with that of plain 
CASIM for shields of comparable radial extent. Some of the (over-) sym- 
metrizing in modeling the geometry and beam loss corresponding to the 
measurements may tend to devalue the comparisons somewhat. This is less 
of a problem for estimating worst case dose rates which preferably should 
not be strongly dependent on geometry or phase space distibution of the lost 
beam. One therefore reverts, almost ofnecessity, to a ‘worst case’ cylindrical 
target. [lo] 
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Figure 12: Exit dose at C39 culvert as a function of distance along the beam 
from point of beam loss. 

So far the present algorithm has been applied only to single straight 
labyrinths. One can easily envision its extension to straight multi-legged 
ones. In addition to the exit dose, the analysis then should include possible 
‘soft spots’ in the shielding, i.e., points where the axis of a (buried) labyrinth 
leg crosses the shielding berm. For sufficiently long multi-legged labyrinths 
where one is sure on a priori grounds that only the low energy neutron 
ezil dose is significant, the present treatment can be combined with the 
ususal labyrinth roles [3]. The above algorithm may be used to calculate 
the dose at the ‘corners’ of the penetration up to a point where dose entering 
through the walls is negligible, and the labyrinth rules can then be invoked 
to attenuate the dose from each corner through the rest of the labyrinth. 

Statistics could be improved significantly by calculating for each star the 
number of particles traveling in the ‘right’ direction with respect to z and 
r-instead of merely noting whether it does or not. This has the further 
advantage that the step of calculating the particles contributing to the dose 
could be uncoupled from the cascades program. One could try different 
production models, especially those most reliable at lower energy. Even a 
minimal implementation of this would require much more extra effort com- 
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pared with the present CASIM ‘patch’. However, given the encouragement 
derived from comparisons of the latter with measurements these improve- 
ments are worth considering. With this approach one may also afford to 
relax-at least in part-the sometimes awkward imposition of cylindrical 
symmetry on the problem. 

My thanks to C. Crawford, D. Finley, K. Koepke, S. Pruss, and their coworkers for 
making the results of the measurements available and for helping me interpret the 
associated geometries. Thanks also to C. Ankenbrandt for his comments on the 
manuscript. 
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