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1. Introduction

In this note I will describe briefly two programs that have been written
for tracking studiesh2 as part of the Tevatron design effort and illustrate
their application with a few examples. These programs are fundamentally
similar, differing primarily in details related to application. Except where
stated, this note is based on the one I have written.

Central to both these programs is an attempt to forsee praoblems that may
be caused by the non-Tinear multipole components in the Tevatron magnets.
(The mechanical complexity of four miles of cryostat in our ring of super-
conducting magnets makes it unpleasant to contemplate corrections requiring
substantial movements of magnets or the addition ad hoc of new correction
elements.) We address these questions by including in the programs rather
detailed descriptions of the multipole content of the fields of the dipole
and quadrupole magnets. Normal and skew terms through 30-pole are incluaed
for the dipoles and through 12-pole for the quadrupoles. Multipole coefficients
through 12-pole are assigned independently for each magnet. Above 12-pole,
only the average values are used.

The program takes ~60 ms of Cyber 175 cpu time to calculate one particle
through one turn. Consequently, its use has been restricted to questions

encountered on time scales of at most a few hundred turns.



2.  Program Description

The approach used in these programs is straight forward. Each particle
is projected through the Tattice elements sequentially. Non-Tinear terms in
the guide fields are approximated as impuises added at the middle of each
linear element {(dipoles and guadrupoles). Correction elements are included
as thin lenses.

The program has been coded to emphasize speed of execution. To this end
we exploit the high degree of regularity in the Tevatron: all 774 dipoles
are identical and excited to a common field; the few varieties of quadrupoles
differ only in their effective lengths. The dipoles are described as sector

magnets3

with all circular functions approximated to lowest order in the bend
angle, The quadrupoles are described by the standard 2 x2 matrices. Fringe
fields are neglected.

The inclusion of such a large number of multipoles in each dipole and
quadrupole dominates the computation time for the program, VYery efficient
code for evaluating these terms is based on the standard nested factorization
algorithm for evaluating polynomial functionsa. If we write the multipole

expansion
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In practice, the particle motion is studied with respect to a closed
orbit. With the inclusion of the non-linear multipole terms in the guide
field, it is necessary to solve for the cliosed orbit by iteration. A solution
by Newton's method4 is easily formulated as follows. At some point in the
lattice, let the lattice define a mapping that carries the (transverse) phase

space co-ordinates after n turns, Z(n), into those after n+1 turns, x{n+1):

;(n~+1) = ?(;(n})

The closed orbit satisfies

x;(n+1) = £ (x(n+1)) = x;(n) - £;(x(n))
af
+ 157K, (xJ(n+1) - xj(n)) Hroee
J1%(n)

setting the lTeft hand side to zero, and retaining only the Tinear terms,

-

k(1) = xg(m) = (1-9(FXN)75 () - F5(K(m)
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defines an iteration scheme which gives the closed orbit co-ordinates.

The Jacobian matrix obeys a chain rule and can be built up from the
explicity calculable Jacobian matrices for each element in the lattice,

As an immediate consequence of the closed orbit calculations, the Jacobian
matrix evaluated on the closed orbit is the one turn transfer matrix for the
(coupled) small amplitude betatron oscillations about the closed orb1t5.

The implementation of Newton's method is found to converge very rapidly,
ustally taking a few iterations to yield a numerically stable solution for
the closed orbit.

Coupling of the horizontal and vertical betatron oscillations is included
naturally in this calculation. The tunes of the normal modes are given by
the eigenvalues of the transfer matrix, but the correct description of the
betatron functions is a more complex problem. Simply as a working hypothsis,
I have assumed that the normal modes are "close" to horizontal and vertical
and that the betatron functions can be approximated by the same elements of
the transfer matrix as in the uncoupled case and the correct tunes, so long
as the coupling is relatively small.

3. Results

To see the effects of the multipole components in the fields of the
dipole magnets, four sets of multipole coefficients for the 774 dipoles were
seiected from normal distributions based on measured magnet data and the
machines so defined, studied. MNo significant differences between the four
cases were found. The representative results presented here are based on one
set only. Some recent multipole data for 526 dipoles are given in Table 1.

The layout cf the Tevatron ring is shown in Figure 1. The six long
straight sections in the ring are centered at the "@" locations. The high-8
insertions at the A and D sector long straight sections are needed for

extraction. The electric and magnetic extraction septa are located at high-g
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points just upstream of DP and A, respectively. Except as noted, resuits that
depend on azimuth are calculated at the middle of the CP long straight section.

Substantial non-linear multipole terms are inherent in the design of the
Fermilab superconducting dipoles (Table 2). The momentum aperture of a ring
of such magnets is therefore the best one can hope for. Figure 2a shows tune
versus ¢ép/p, the fractional deviation from the nominal beam momentum, for this
case. The natural chromaticity has been set to zero, using the trim sextupoles.
The useful momentum aperture is about =0.35%.

The same calculation was made using the generated multipole distributions.
For this example, the correction circuits were tuned to maximize the useful
momentum aperture. The tunes, Figure 3a, are found to be sensibly constant
for dp/p in the range of #0.1%. For comparison, the momentum spread of the
beam to be injected into the Tevatron from the Fermilab Main Ring is expected
to be #0.025%. The limits implied by the tune vs &p/p curves are echoed by
the plots of beta versus &p/p, Figures 2b and 3b,

To examine the magnetic aperture of the lattice one can track a particle
started with given displacement from the closed orbit through some number of
turns. The maximum amplitude for which the particle displacement remains
bounded (no apertures other than the magnetic fields being imposed) defines
the magnetic admittance. Figure 4 shows the case of a particle initially
displaced by 250 ur in x' from the closed orbit and tracked through 128 turns.
The x admittance is estimated from Figure 4a to be 4.6w um.r. The area of
yy' phase space shown in Figure 4b (~1.4 um-r) is the region explored because
of x-y coupling. The y admittance estimated by giving the test particle an
initial displacement in the y direction is ~4w pm-r. For comparison, the
transverse emittances of the beam to be injected are estimated to be 0.157 um-r

at 150 GeV,
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The probiem of controlling coupling of the betatron oscillations is of
considerable concern to the Tevatron. Figure 5a shows the boundary in x
phase space corresponding to £, = 0.2m pm-r. Figure 5b shows the area
explored in y phase space (~0.002r um-r) when the correction circuits are
tuned to minimize coupling. (Note that the scales in the x and y phase space
plots are different.) For Figure 6, the coupling correction was reduced by
40%. The dramatically stronger coupling is shown by the distortion of the
ellipse boundary in Figure 6a and by the 27-fold increase in area explored

in y-phase space (~0.0547 um-r), Figure 6b,

The preceding examples have looked at behavior near a stable operating
point (vx = 19.435, vy = 19.405). To look near the half-integer extraction
resonance, vy is moved into the stopband at v, = 19.5 and the 39th harmonic
quadrupole and octupole elements are tuned to drive a growing x amplitude.
Figure 7a shows the separatrix that develops from an initial particle dis-
placement of 8x' = 1 ur. Note especially that, except for the few points at
greatest x amplitude (|x|>1 cm), the y amplitude, Figure 7b, remains less
than 0.5 mm. The extraction magnetic septum is Tocated near AQ, where
Bx = 245 m. The data shown in this example was recorded at CP, where Bx = 73im.
An oscillation amplitude of 11 mm at the septum corresponds to an amplitude of
6 mm (= 0.24"} at Cf. This limit is indicated in Figure 7a.

Harrison1 has used very similar code in his Monte Carlo study of fast
resonant extraction from the Tevatron. His model adds to the regular lattice
the electrostatic and magnetic septa located at the high-beta points upstream
of D@ and AP respectively, and fast pulsed quadrupoles. The beam is brought
near the extraction resonance by adjusting the slow elements (39th harmonic
guadrupole and octupole circuits, for extraction at vy, = 19.5) and then driven
into the stopband by the fast pulsed quadrupoles. The height of the 3 ms half

sine wave pulse is adjusted to give a 1msspill.
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The initial particie distributions were generated at FP and assume

ey = 0.15 um-r (95%) and |&p/p|<0.25%. These distributions are shown

in Figures 8a and 9a. Evolution of the phase space of the beam at the

upstream end of the magnetic septum is shown in Figures &b - 8g and 9b - 9d.

To construct these plots, the co-ordinates of the particies were recorded

at each pass past the location of the magnetic septum for 4 or 5 turns

preceding the time shown. The resuits of this simulation confirm that

coupling and other effects of the nonlinear multipole terms can be adequately

controlled during extraction.

References
1. M. Harrison, Fermilab internal report UPC-115; and, private communication
2. A.D. Russell, Fermilab internal reports UPC-124, UPC-141 and UPC-142
3. K.G. Steffen, High Energy Beam Optics, Interscience, New York, 1965
4. B. Carnahan, H.A. Luther, J.0. Wilkes, Applied Numerical Methods,
John Wiley, New York, 1969
5. E.D. Courant, H.S. Snyder, Ann. Phys, 3, 1 {1958)



Mulitipole n bnxlo4 aanO4
4 1 0.10 £0,63 0.21 £0.73
6 2 1.40+3.71 0.50£1.36
8 3 -0.27 +0.87 -0.05£1.78

10 4 -0.86 £1.65 -0.04 +0.54
12 5 -0.05 £0.37 -0.10+0.71
14 6 7.34+£0.71 0.1920.43
16 7 0.00:0.38 0.20+0.48
18 8 -17.16 £+ 0.80 -0.76 £0.99
20 9 -0.01 £0.36 0.61=0.42
22 10 5.25 £0.49 0.31:0.44
24 11 0.01+0.28 -0.44 £0.33
26 12 ~-1.12 £0.31 -0.06 £0.31
28 13 -0.03=20.24 0.11+0.24
30 14 -0.12+0.33 ~0.04 +0.25

Table 1. Means and standard deviations of multipole coefficients
from measurements on 526 Tevatron dipole magnets. Units
are (inch)-n.



Multipole n b, x 10*
6 2 0.04
10 4 1.0
14 6 4.44
18 8 -12.09
22 10 3.63
26 12 -0.82
30 14 0.07
34 16 0.03
38 18 -0.04

Table 2. Design multipole structure of Tevatron
superconducting dipoles. Units of (inch)-D,
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Figure 1 Layout of the Tevatron showing use of the six Tong
straight sections.
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resgnant extraction.

(a) Initial distribution at F@.
At upstream end of magnetic septum, as function of time.

(b) - (q)
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