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Introduction

The bl-dimensional effect of a nonlinear kick supplied by
one beam to the other in a storage and colliding device had

1 and J. LeDuff® in the

alreadj been investigated by E. Keil
strong beam-weak beam approximation. The strong beam had
elliptical cross-section and bi-gaussian distribution of the
charge. The nonlinear kick was multiple analyzed and a single
resonance was considered, but only the average term and the

lowest Fourier mede driving the resonance were taken into

account. More recently, A.G. Rugglero and L. Smith3 approached
the problem again, but with a different technique. They found

it possible to describe a single resonance for the case of a

round beam taking the exact analytical expression of the nonlinear
kick, which means considering the contributlcon of all multiples

of any order. Also it has been possible to take into account

the contribution ¢f a&ll the higher Fourler modes driving the

same resonance. Nevertheless, their calculation was limited to
the one-~dimensicnal case.

The purpose of this paper is to extend this kind of calcula-
ticn to the bi-dimensional case. We shall still assume a round
beam with bi-gausslan distribution. The nonlinear kick is taken
to occur over a gzero length interval, namely it is represented
by a delta-function. The kick is centered tc the equilibrium
orbit, x = o and y = 0.

The main appllcation is the calculation of the mcticn in

proximity of a single, isclated and weak resonance; the
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caleulation of the resonances width; and of the stochastlcity
limit.
Our result for the stochastic limit 1s higher than the

one obtained by Keill.
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Equations of Motion

We assume that the strong beam is round, has zero length
and that the equllibrium crbit of the test particle is centered
on the strong beam.

We shall consider both degrees of freedom. The equations

of motion are, then,

Ex 1 - e-u2 (1)
x" + k (s) x = -4m —§ P x 8yp¢(8)

By u

_Ex 1 - e_u‘2
y" o+ ky(s) y = 4w B* —"—;g—*“ N Gint(s) (2)

J

where ' = d/ds, and
2 2
Wt = X1y . (3)

The r.h. side of the above equations has been calculated
by taking a gaussian of standard deviation o for the particle
dlstribution. Both beams are considered ultrarelativistic; i.e.
vV ~ C. kx and ky are the two unperturbed linear focusing
functions. éint(s) 1s the periodic delta function which re-

presents a kick every revolution of circumference 2muR. Also,

it is

X

* ¥
§,/8, = £,/8, = £/8° = Nr_/imo?y (4)

=
]

number of particles in the strong bunch

H
1l

o classical radius of the test particle, to be taken as
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positive for charges of equal sign and negatilve for
charges of opposite sign
y = ratic of the total energy of the test particle to its

OWn rest energy.

8; and B; are constant and dencte the values of the beta-
functions at the crossing point. EX and gy are the usual linear
tune shifts per interaction (Amman's notaticn).

We assume we can solve the homogenecus equations assoclated
to (1) and (2). The solution of these equations is described

by the beta-functlions BX and By and by the numbers Vo and vy of

betatron osclllatilions per turn.

Transformation to Angle-Action Variables

The transformation to the two palrs of angle-action vari-

ables wx’ IX and wy’ Iy is accomplished by intrcducing the
following generator
2 r V.
= X _x ds
S(X,UJX,Y"PY) - B COtg(d’X - R s + B ) +
X - X
B - 2 ' AY B '_1
% g ! ¥ ds y .
+ + cotg(u,, - =X s + [ 2=+ | (5)
2 2 R 2
_ By L y By J

The details of the transformation are found in Appendix A.

We obtain the following first order differential equations

2
1 - e 4 .
T L e ©
2
.o 1 - e ¥ ,
L' = —Lq £, ™ L, sin 2y aint(e) (7)
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and similarly for wy and Iy replacing the index x by vy.
The angle 8 = s/R 1is now the independent variable and
prime denotes, from now cn, derivative with respect to &.

Aiso, it is

. + i
e = X X > y ¥ J . (8)

Fourier Expansions

The r.h. side of equations (6) and (7) and of the respec-
tive equations for wy and Iy are pericdic functions of the
angles wx’ wy and 8 with the same period of 2m. By performing

a triple Fourier expansion we obtain

v = i(ny, + mp, - 286)
Yto= vy 28y n%g from (Igs Iyie X y (9)
- _ ilnv, + my_ - £26)
L' 2g, I, n;R g, (Ix> Iyle x y (10)
vy, = vt 28 n%g fon (Tys Ie  7x y (11)
T = i(nw + my - 9'6) 12
I, 28, I, 22 Bn (Iys Iyde x y (12)
where
fom (IX, Iy) =
+r  +7 2
: -1 -in Y ~1im
L 1 - e .2 X g
) L - " sin- ¢, e © d¥y dwy (13)



-4 FN-258

1500
€nm (Ix’ Iy) =
+7  +m 2 . .
-1 -iny —imy
= L i-e = .4 X, Y oqu  4a 14
= 5 J J > sin 2y e e L wy (14)
e, u
-7 -7
and we used
5 (9) = L 1 128 (14a)
int r % : a

The Fourier transforms f and g are calculated in
nm nm

Appendix B.

A1l the summations extend from - « to + o,

Single Isolated Resonance

We now define a resonance by chooslng three integer numbers,

with no common divisor, such that the quantity,
X = pwx + qu - ra,

can be considered as slowly varying,and retain in the triple
sum only terms ¢f the form,

els(P¥y + av, - r8)

3

where s is any integer, positive, negative or zerc. Fquations

(9) through (i2) then become
wx' = v_ + U

% x Séo € fsp,sq (IX’ Iy) cos(sX) (15)
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. .

I Mlgx I, s£1 Bsp,sq (IX,Iy) sin(sX) (16)
s + U f 1
by vy Ey s;o s fsq,sp (Iy,IX) cos (sX) (17)
It = =41 I I,I sin(sX 18
. 18y, Iy I Baq,ep (TyoTg) o005 (18)

where €, = 1l except E, < 1/2, and we have used the relations
fn,m = f—n,—m v Bum T " Bon,-m ? Boo 0.
In particular, we also have
X' = pv, + qv. -~ 1 + 4 f I_,I
P vy SEO P&y Top 69 (Txoly)
+ ig gy fsq,sp (Iy, IX) CEg cos(sX) . (19)

From equations (B9) and (B1l1l) in appendix B and eguations
(16) and (18) above, it is easlly seen that one invariant of

the motion is

- = g

Wy = al, - pIy constant 2 (20)
The other invariant is the hamiltonian W2 which relates the
action variables IX and Iy to the new angle variables

r — pa

- e
¥ y q

with a an arbltrary real number.
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Cbserve that

and the equations of motlon now are

ax' = v, -at ng S;O fsp,sq (Ix’ Iy) £, COS s(puX + qay) (21)
Ix' = =41 g, I, szl Esp,sq (IX, Iy) sin s(pocX + qay) (22)
ay' = v, - Emé_Eé + ugy Szo fsq’sp (Iy, I,) e, cos s(pa, + qay) (23)
Iy' = — Ui gy Iy szl gsq,sp (Iy, Ix) sin s(paX + qay). (24)
Introducing the functlon g:p,sq (Ix’ Iy) which is defined by

equation (B10) of Appendix B and has the property (Bll), we

easily derive the hamiltonian W2 from (22) and (24) above

o S
_ r - pa |
Wy = (v = a) I+ (v - —~E—E—J I, + 1
 (25)
- 2102 (E ) ; £ g* (I I.) cos s(po_. + qo_).
2¥' 525 8 TsPisg x> Ty x vy’

1
P R . . . e

¥ ¥

g1 B I
T = X T :...X.__;z
e 2 3 v 2

20 20

that have been intrecduced in Appendix B tc short the wrlting.

As it is shown in Appendlx C, we can alsc write
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l —_
= - £ 2 -g—- -d—/'l
Wy = (v, p) I+ vy I, + 20 . -J c ll +
e
-t(T, + Ty) -© I
-~ e Qj(n Ion (tTX) quo (try) cos (QXO)l.

Where Pgys G and XO are defined in Appendix C.

An lmportaent result already emerges from equation (26).
In the case of a single, isclated and weak resonance the
motion 1g bounded, because for large Ty and Ty the dependence
of W2 on XO vanishes., This is connected to the form of the
beam~beam interaction we used in equations (1) and (2), which
has the property to decay rather fast as the particle moves
further and further away from the origin of the interaction.

The equations of motion are easily derived from eq. (26)

1
+oo
- 2 dt _~t(t_ + 1)
IX'- - upo o} (§¥)\J T e e y iij 3 Igp (th)'
2 = ©
quo(tTy) sin(ﬂXo)
1
+ce
- d E dt -t(T + 1t )
t= - e Pl
Iy Mq o} * _J : X v gj;m £ Iﬂpo(th)
0
I
qu(try) sin(QXO)
1 oo
_ r ~t{t_ + 1) [:I (bT.) +
a '= (v - 5) + EX‘J dt e X y gng tp 7t
o

- Igpo (trx}] ngo(try) cos(ﬁXo)

(26)

(27)

(28)

(29)
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1 e
1 ~t(t_ + T.)
t = | I t +
oy vyt Eyﬁj dt e x y gi&m -lqo( )
o
- Iﬂqo'(tTy)u Iﬁpo(th) cos(QXO) (30)

1 =
where In {x) = dIn(x)/dx.

In particular from the last two equaticns we derive

- T+ | B— +
X pax qay qu
1
-(t, + 1) **
dt e b:d y _ '
+ pE, J] im [Ilpo(t'rx) I’”’o (ttx)] .
0
i ( )
- -t{t, *t 1
I {tt. ) cos(&X ) + q&_ ! dt e X vy’ 7 [i {(cT_ )} +
fa, "y o y hmew b *Q Y
o}
- ng '(tTy)]IEp (trX) cos(P,XO) {31)
o} o}
where qu = PV, + qu - .

Fixed Lines

These are defined as the ensembles of points in the

four-dimensional phase space rotating with the rescnance, that are
unchanged under the action of the same rescnance.

The equation of a fixed line is cobtalned by setting
I.'"=1"'"=20 and X' = 0,

From equations (27) and (28), we notice that there are
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two fixed lines, namely for

X =0 and X = m.

From eg. {(31), then, the equations of the two fixed

lines are, respectively,

: t( + ) e -
pE dt e " x T Ty I (1 ) - I. '(t71.) I (tt ) +
1 £ . +ao _
- T T
+ d I £ - I, (%t
g, t e x y Rjgw | lqo( Ty) ra, ( Ty)
Q
Izpo(th) + €pq = © (32)
and
l -+ 00 .
-t({t, + 1) : _ ' - IRELEN
png av T T T Tpp (B0 - Ly t(er) T (ery) (1)
o]
1 t( + ) +oo —
+ qg at e \Tx T Ty I, (tt.) - I, '(tt)
y‘i gt LTRQ Y 2q,, ¥y
‘I (tTXM-:L)Jl + e = o. (33)

Rpo jaje]

The motion around the flxed lines can be investigated
by expanding the r.h. side of egs.{27), (28) and (31), re-
spectively around Xo = 0 and XO = 7. It is found that the

X, = ™ fixed line (eq. 33 above) is a stable line, in
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the sense that the motion in the proximlity is stable. At
the same time the X = 0 fixed line 1s an unstable line,
in the sense that a particle which happened to be in its
proximlity, leaves 1t without performing oscillations.
It has been proven that the condition for existence

of the fixed lines iz

€

« _pq__
PE, + at,

-1 < C (34)

except for g = o and pO = 1 in which c¢ase the condition 1s

pv, - I

X
“1<TEX"—‘<O. (3“’3)

Let us conslider the three-dimensicnal space with qu on the

I on the other two axis. Egs. (32) and (33)

abscissa and I,
x y

represent two surfaces in this space. For fixed Ix and Iy
we can go from one surface to another moving parallel teo

the qu—axis. The dlstance Aepq which separates the two
surfaces defines the "width" of the rescnance at amplitude
IX and Iy. This i1s obtained by simply subtracting (33) from
(32). We have

Ag =
ol
W r 1 .
: ~t(t, + t.) |
=41 F Jpg. . dt e X . T (tt_) - I Y(tTL) .
9,6dd | X 7P, X e, X’
_ @)
n B §
! —tlt_ + 1)
I £ + dt I t - I, I t
qu( T, ity e Xy qu( Ty) ra, (t1y)] gpo( T,)
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where y =a=1, 3, 5,
L ,0dd

To have a general idea of the motion let us observe, first
of all, that it is sufficlent to consider the case of positive
g > la|. The other case of p < |q| can be reduced to this by
exchanging the variables x and y in the equations of motion.
Let us consider then the plane of coordinates IX and Iy' We
found that (20) is an invariant, then the motion must occur
along straight lines as shown in Fig. la and 1b. Each strailght
line corresponds to one continuous get of initial conditions.

For assigned ¢ eqs. (32) and (33) represent two curves,

rq’
Cl and 02, which lie across the invariant straight lines.

The case we show in Flg. la and 1lb corresponds to IqO] > 1.

In this case the curves Cl and 02 cross each cther at Ix = 0
and I, = o. The other case with lg,| € 1 will be considered
later. Finally a third curve, W_, is shown® The (I, I,)
plane is divided in 3 regions. The first region is bounded

by the two axls and the curve Cl, and contains the origin 0O
which 1s always & stable fixed point. This region contains
all stable small amplitude oscillations with relatively small
amplitude and frequency perturbation, the amount of which
vanishes as the phase point is closer and cleoser to the origin
0. The second reglon i1s the region of "islands" of stable
oscillations around the stable fixed line (curve 02). The
boundary of this region is formed by the curves Cl and W

S
together.

¥We do not know really very much about this curve.
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Figure la

Figure 1D
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The third region, which is the remaining of the (Ix’ Iy)
plane, contalins stable large amplitude oscillations with
amplitude and frequency modulation, the amount of which
vanishes as the amplitude of the oscillation gets larger
and larger.

This is pretty much all what we can say, from a general
point of vlew, about a single rescnance.

Tc have a better insight of the motion one should have
a more compact expresgion for the summation

R= § I O(th) I (tTy) cos(RXo)

lqo

which we have been able to derive only for some special cases

such as (a) q = o and (b) p = |a|, or T, =0 (see ref. [3]).
In the fcllowing we shall describe these special cases

but first we shall lock at the so-called "first mode" approxi-

mation, where only the & = o and |&| = 1 terms are retained in

the Hamiltonlan (26).

First Mode Approximation

In the previcus paragraph we have calculated the width of
a resonance taking into account all the higher Fouriler modes.
We have found that even as well odd order resonances are pos-
sible. This is in contrast to what we get by using the "first
mode approximation" where only the average term £ = o and the
next & = |1| are retained. 1In this case, only even order

resonances are possible. On the other hand, in the more exact
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approach, a resonance 1s defined only when the three integer
numbers p, g and r do not have a common divisor. In ccn-
trast, in the "first mode approximation",the (p,q,r)-resonance
is considered independent of the (4p, &g, &r)-resonance, where
£ is any integer.

In the "first mode approximation'" the width of a rescnance 1s

1
) -t{t_ + 1) -
= : X ¥ - '
Aepq ={4p £y dt e [IgﬂtTX} IE (tTX)j Ig(tTy) +
© 2 2 2
]f Ty Ty I () | I (tT,) | (36)
+ 4qg gy ) it e [Iﬂ(tTy) ~ % ( Ty ] % Ty |
0 2

Numerical calculation of the ratic of the wildth as calculated
according to eqg. {(36) to the width calculated taking into

account all the Fourier modes, 1s made difficult by the

problem of accuracy. Nevertheless we found that this ratio is
substantially different from unity only for very low order of the

resonance and large Ty and Ty.

A resonance is described also by another parameter, the
nonlinear tune shift. This 1s the distance of the center of
the resonance from the linear tune. I is obtalned by taking
the arithmetic average of {32) and (33). In the "first mode

approximation” the tune shift is



Vi

T --t(rX + Ty)[' -
-~ H 4: \_*t f
2p &, | at e LIO( T Ll( TK)_jIO(th) +
ol
g “t(r, *+ T
+ 2q gy ) dt e LIO(UTy/ - Il(tty}JIo(th) (37)
o
which is independent of the order of the resonance. 3imilarly
to eq. (36), also eq. (37) is accurate enough if T, and T, are
nct very large.
One-Dimension Resonances
These are defined by setting q = o. From eqg. (C7)
of Appendix C we have the following Hamiltonian
r
W. = - =y I + I +
5 (vy p) v, I,
b 1 X = 2rs
2 o -t{t, + T, - 1, COS —————)
r2Z (& 3 '%t—[l-lo(tr)e x oy X Po ]
Po 37 821~ v
Q
But the

In this case, Iy is an invariant of the motion.

vertical tune is not a constant; it is modulated by the motilon

on the horizontal plane.

Reminding that it is

Xo = 2po “x
the phase equation is
D
o X - 21rs
= (pv, - r) + L. g, 7 (1 - cos )
Fo 5=1 Pg

l J{O - 2TTS

—t(’rx + Ty T Tk cos ———E;——-)

" dt Io(trv) e
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o] o
Yo X - 21s -(t, *+ 1., - 1. cos
= {pv, - ) + £ 3 (1 - cos ) e J X p
j& X Lo
o} 5=1 ol
J” _\I
i I.(t ) T
| 1y ¥ ‘
+ bt
Io(Ty) Ko - 278 (38)
+ - t
Ty Ty T, COS 5
o) _
The [ixed points are cbtained by setting X' = ¢ with XO = ¢
and XO = 7.

The analysis prcoceeds in the same way as ocutlined in ancther
paper3. Here we have an extra parameter, the invariant Iy, to
deal with. In the following we consider the following three

cases: (a) p =1, (b) p = 2, and (c) p = 4.

A Cagse: p = 1

This resonance does not exist in the "first mode approxi-
mation', but it is real and can be found only by taking into
account all the Fourier modes. In the (x, x')-plane there
iz one unstable fixed point, the origin, and two stable points,

diametrically oppesifte, with coordinate given by the eguation

— =

-{t. + 2t_)" I {t )T, |

— Y X ‘,' 1 y
r-v, =28 e ‘Io(Ty) + T (39)

y b

The fixed points exist only when
28
I S > 1 (40)
ro- v

X
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otherwise the motion is always stable, although violent
distortions can alsc be expected.

This rescnance can certainly be responsible for beam loss.
Particles injected in proximity of the origin can be spllled
out along the separatrix as shown in fig, 2. Alsc, if the
collision between two beams occurs in "adiabatic" way, the
two beams would be split and locked each inside their own
stable areas. In this case the separation of the two beams
would be of the order of 2TX, where Ty is the solution of (39).

B. Case: p = 2

The moticn 1s generally stable, except when the relation
(34a) is satisfled, in which case the flow diagram is still the
one shown in fig. 2. The origin is again the unstable filxed
point, and the other two points are stable and symmetric, their
coordinate being still obtained by solving eq. (39) with r re-
placed by r/2.

This alsc, of course, can cause a beam growth and then a
limitaticn on the luminosity achievable.

C. Case p = 4

The flow diagram is the cne shown in fig. 3. There are i

stable and 4 unstable fixed points which exist only when

otherwise the all mcticn is stable.
The locaticn Ty of the stable and unstable fixed polints are

obtained by solving the following respective equations
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-(t, + 1) T, L,(1,) =
(r - by, ) = 4 e x Y l_I (t_) +-4%:%%?§— j
-2t + 1) T, I, (1)
{(r - Mux) = MEX e £ L; (1..) + E%;—%—?i J

The motion is always bounded when p > 2 and the origin is
always & stable polnt. No catastrophic effect 1s then expected

from higher order resonances (p > 2).

Coupling Hesonances

For q # o, eq. (26) is a two-dimensional Hamiltonian.

Nevertheless, because of the exlistence of the first invariant
(20), it is possible to get a one-dimensional Hamiltonian with
a proper rotation of the (x, x', ¥y, y') four-dimensional
phase-space around the origin. The rotation is accomplished by

means ¢f the following generating functicn

3 = (paX + qay) Wt oo, Wy

which transforms the old varlables wx, I, and wy, Iy in the new

X
variables Xl, Wl and X, W through the relations

|
[}

pW + W

o
]

1 > pax + qay

I = qW , X, =a

We shall investigate here only the case

p = |a

From eq. (C7) of Appendix C we have
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W, = (v, - 2) I +v1+295(%;)p§'lg£”1+
2 X P YV Py gt skt
-t{t, + T_) // X_ - 2ms'
_ X Y 2 2 o}
e Io(t Ty + Ty + ETX Ty cos oy ) J

from which we derive the phase equation

88 88
N P, P&y FTot A5y Ty -(t, *+ 1) B
X' = 4 o ] - 3|1 V1 (/8 | +
b9 Po s=1
-{t, + 1) p
X vy 0 T T
e X 83 38
+ 75, S_Z__l [295:{ t 2qgy = (ot L T
e D (/—s')fé‘,
'LIO( S) ¥ S
where
X =~ 2ms
S =1 2 4 T 2 + 21, T. cos —=
X y X ¥ Pq

The flxed lines can be derived from

usual, by setting X' = o with either XO
Let us consider the lowest orders p
that = i ¥ s *

case at £ = Ey’ i.e. 8, = By

A, Difference Resonance, ¢ < ©

this equation as

il
Il

9] 1 me.
0 XO

2 and the

1]
It

1 and p
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We have the invariant

and the new variable

On the (X, %)-plane there are two fixed points. The
origin W = o is the unstable fixed point, and the stable

fixed point is obtained by sclving the following equation

~

E ~W - ~ ~
B9 . Yo+ W e 4
1+ g (epW + W) — e (L + Wy) I_(2pW + Wy) +
G o
- e (2pW + Wl) Il(2pw + wl) = 9

Observe that the locatlion of the unstable fixed point depends
on the invariant Wl. The picture of the motion on the (X, ﬁ)—

plane is thus similar to the one shown in fig. 2.

B. Sum Resonance, q > 0O

We have the invariant

and the new variable
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On the (X, ﬁ)—plane there are two fixed points. The stable

one has for coordinate the solution of

~(2pW + W.) . Wo T (W)
1 1 "1 1
+

€oq 2pEe 1, (W

2cW + Wl

and the unstable one has for ccordinate the solution of

opW + W.) + 2 1+
€og (2P 1) 13 [

-(2pW + wl)

- e IO (2pW + wl)]= o}

Also here, the locatlon of the fixed points depends on the
invariant ﬁl. The picture of the motion of the (X, ﬁ)-plane is

similar to the one shown in fig. 4.

Several Crossings per Turn

We assume that there are n, crossings per turn occurring
* *
at homologous locatlons, 1l.e. same Bx and the same By , and

equally spaced. In this case eq. (l4a) is replaced by

3

o ifn, 9
S1nsf0) = 3w L e
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A1l the analyses remaln unchanged except the folleowing

changes:

- EX Ex and

n, Ey'

- The only possible isolated rescnances are those with the

and Ey are now replaced respectively by n,

third integer number r that 1s an algebraic nmultiple of
n_.
C

Thus the strength of a resonance (if you want, the width)

increases by a factor n,s but fthe density of the resonances

decreases also by the same amount.

Several Revolutions Between Crcssings

In the case the particle receives the two-dlmensional,
nonlinear kick every n, revolution, Eq. (14a) 1s replaced by

-ix
I

1 r
(8) = I e
21mr 3

6int

The only changes are the following:
- Ex and Ey are now replaced respectively by Ex/nr and
iy/nr.
- A rescnance is defilned by the three numbers p g and r, where
p and g are algebraic integers (p>0), and r 1s any algebraic

multiple of 1/nr.
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Thus the strength of a resonance is now decreased by the
factor N but the density of the resonances increases also,

of the same amount.

The Stochastlclify Limit

According to Chirikovuthe stochasticity limit 1s reached
when many nonllnear resonances overlap. As done by Kell, we
take as criterion for resonance cverlapping that the area
covered by resonances in a square region in the (vx, vy) -
clane of unit area becomes unity.

The extension of a resonance in the (vx, vy) - plane is
given by the quantity As we have calculated above. This

raq
guantity gives the range of BV, + gv,_ - r which is locked to

y
the resonance. The extensicn of the same resonance along the
vx—axis is obvicusly given by Aqu/p, and the extension along
the vy—axis by Aapq/]ql;
The sum of the areas occupiled by resonances 1s obtained

by summing all Ae q/p for resonances p > |ql|, and ail Aepq/[q[.

P
for rescnances p < |g|, where, for obvious reasons, we assume

p > o.

We first observe that the width of a rescnance, Aepq,
does not depend on the number r, also in the "first mode
approximation". TFor assigned p and q there are exactly
p resonances all with the same width, in a square region
of the (vx, vy)—plane of unit area, if p > |q] and |q|
resonances if p < |qf.

Also, to calculate the sum of the area we should use
eq., (35) for the width Ac_ , and we should sum over any p

jole|
and g, because even and odd order resonances are possible.
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Nevertheless, one should take into account in the sum only
those triplets (p, @, r) that have no common divisor.

Encouraged by the fact that the "first mode" approximatlon
gives an accurate estimate of the resonance width, we shall use
eq. (36) instead cof eq. (35) in our summation. But in this way,
odd order resonances do not glve any contribution. To balance
this, we shall sum over all possible triplets (p, 4, )
including those that do have common divisors.

Denoting the sum by 5, we have

Y o B,
p=> |g| <D P p=o |ql>p Tal 7 "p

where p and g are all even integers, and Ep = 1 but €, = 1/2.

By inserting (36) in (41), we obtain the upper limit

|1
o e -t{t, + T.)
S |
T<lEl T le dt e * v [:IE (tt) +
pP=e g=-® |+ >
> 4o
- I ' (%t )] I (et )|+ el Y T e ldl
1
\ -5(T +T)r-
| dt % J - I ] .
j e l_IE (try) q (try) IR (trxy
o 2 2 |
%
By using the relations
+oo x
I (x) = e
nf-w T

and
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[ss]
= X
Z n I (x) =3 [IO(X) + Il(X)]
n=1
where, in bofth summations, n is any integer, odd or even, we

finally have

3¢ be, (T, +odg Try) (42)

where the function

o) = e (1,00 + 1,0 (43)

is plotted in fig. 5.

It is not difficult to see, by inspecting (41l), that all
the contributions to S come only from the cne-dimensional
resonances, namely the g = o resconances contribute to the flrst
term, in Ex’ and the p = o resoconances to the second term, in gy.
No explanation is offered, at the moment, why the bi-dimensional
resonances (p # o and ¢ ¥ ©) do not contribute to the sum S.

In the case one of BX* and Sy* is much smaller than the
other, the corresponding term at the r.h. side of {42) can be
neglected. The stochasticity limit (S=1) 1s then reached for
£ ~ 0.25. Conversely, 17 BX* = By*’ the stochasticity limit
is reached for £ ~ 0.125. 1In bofth cases, the 1limit occurs &t
X =y = o.

We cannot avoid to observe that most of the contributlion to
the function T(x), plotted in fig. 6, comes mostly from the
lowest order resonance p = 2 or ¢ = 2. Indeed if the contri-
bution of this resonance is ignored, T(x) is smaller and given

by the lower curve in fig. 5. In this case the stochastic limit
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%
is reached at Ty T Ty T 1.25, for £ ~ 0.8 1if, say B, >> B

*
and for £ ~ 0.4 if BX ~ B

Ng 3
*

i
This result is in disagreement with Keil's results. The

disagreement can be stated in the following way. We found

that the contributicn of the higher crder resonance 1s smaller
than the contribution of the few lcwest order resonances. Keil
Found just the oppcsite. The discrepancy can be due to (a) the
different definition of the resocnance width, and/cr (b) to the
Tact that Keil performs multiple expansion of the nonlinear kick
and stops the summation tc the crder 30.

If we are to believe our resuit, (which, we believe, is in
much better agreement with the experimental observatlons) we
infer that the experimental beam-beam limit 1s mainly caused by
few low-order resonances, and that it is rather belcw the
stochastic limit.

In the case cof one kick every I, revolutions or n, kicks
every revoluticn, we would still obtain the same result if the
summation of the rescnance widths is taken over a square of ares,
respectively, l/nr2 and ncz.

Clearly, what is more important, especlally in the second
case, 15 a local summaticn of the widths. Likely the stochastic
limit is a function a tune. To prove this, we limited curselves
to the one dimensional case (By* = o and ¥y = ¢), then we summed
the widths of those resonances that fall in a smalier interval
of tune, let us say, between 0.1 and 0.2, or 0.2 and 0.3, and so
on. The results are shown in the next table where the maximum
tune shift Emax allowable is reported versus the tune. The am-

plitude T is also shown in the table.
max
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Range of the tune 13 2T
(inel.) - {(execl.) max max

.0 - 0.1 0.050 0.0
0.1 - 0.2 0.984 4.9
.2 - 0.3 0.473 1.4
0.3 - 0.4 0.684 L.9
0.4 - 0.5 2.884 19.0
0.5 - 0.6 Q.050 0.0
0.6 - 0.7 0.984 4.9
0.7 - 0.8 0.473 1.4
0.8 - 0.9 0.984 4.9
0.9 - 1.0 2,884 13.0
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Appendix A

The action variables are related to the angles and to the

0ld variables through the operator (5) by means of the relations

a2

S 35
I, = - &=~ and I =-3—-
X S, y 3y

Similarly, the variables Py and py canonically conjugated,

respectively, to x and y,are glven by

= 95 = 98 |
Py © §x and Py =3
This yields
o V d
=if 3 - X as
% —L2IX BX sin (wx 5= s +.fBX) (A1)
/L, '~ v
/ X X s
p, =|/2 z= cos (p_ - == s +.[——) +
X V BX B X R Bx
BT v M
X . X ds ., |
O )

and similarly for y and py.

The equations of motion (1) and (2) are derived from the

Hamiltonian
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- 1 2 1 2 1 2 1 2
H_pr+2py+2kx<S)X+2ky(s)y+
+ U §¥ Sint (s) F (x,¥y)
where
g F 1 -
X T T (42)
u
i 1l -
Loty (43)
Y u
2 . .
u” being given by (3).
The new Hamiltonian derived by means of the generator (5)
is
= 93
Hy = B+ 535
v )
= % S £
T IX t o5 I+ Um =g gint (s) F (x,y) (A4)

Y 8

where, now, x and y are functions, respectively, of wx,

I and wy, I

< and of the independent variable s, as shown,

y)
for instance by (Al).

To obtain (Al), we have made use of the known relationship

Observe that the function F(x, y) at the r.h. side of (A4) is

multiplied by a delta-function. It is, then, possible To replace
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the explicit dependence on s with the value of F(x, y) at
the location of the kicks. With a prcper choice of the origin

we have at every kick

v
ﬁﬁ s _‘[%E = L 5 . %ﬁ = o
X ¥
By taking 8 = s/R as independent varisble instead ©f s, which

is accomplished by multiplying the Hamiltonlan by R, we have

finally the new Hamiltonian

o —

i TR
+ o Bp s (6) F(/2I_ B sin v, s /ély s; sin )

3 int

where we have used the fact that Bx and By are both periodic
functions of & with period 2w.
The equations (6) and (7) (and the similar for wy and Iy)

are obtained from

. 8H oH

v, = 310 and I = - gﬁg
X

ol
X

and by using (A2) and (A3).
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Appendlx B

Let us make the following expansion
1l - e ot iwu2 2
l-e = . J F(w)e du (B1)

where

Flw) wx dx

Ll
=
o\M——s8

}.—l
!
=
44
Q
O
[}

= L
= 5~ log (B2)

and let us insert {(Bl) with (B2) in equations (13) and (14)

+co 2 +m 47 >
£ _ = - .J dw(log 9~—%~;) J J eiwu 5in° b

W
- - =T

~-iny ~imy
< e e J ay, dv (B3)

+ea +m o+

2 .

+ .

8 = _£§ -J dw( log 9__§ﬂl) J .J et gin 2wx
gn w

—0 =T =T

-iny —-1imy
e X e y dy, av (B4)

where u2 is given by equation (8}.
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Let us introduce the quantities
8t 1 8r 1
T, = X 2X and T, = —1—51 . (BS)
20 J 2q
We can write
\ 2 . \ ,
iwu iw(t, + ) =-iwt_, cos2 y -iwt, cos 2y
e = e x Ve * e Y y
iw(r, + T.) o
= e x LA i_(—i)k+h Jolut ) Jy (wfy)
k,n |
_\f e

H

21 (kyy + Dy

, (B6)
-

e

where the double summation is Ifrom -« to +« and JK {x) 1s the
Bessel function of first kind and x-th order.

In deriving (B6) we have made use of the following relaticn

(x)ein .

: o +o
olx cos ¥ _ A

0

K

By inserting (B6) in (B3) and (B4), by expanding

21y, -21y
sin 2y, = £ —_£
X 21
2iy -21y
sin2 v = 2 - e £ _ e X
X 4
and by making use of the relations
Joo(x) +d - (%) =23 (x)
n-1 n+l X n
- = 1
Jn—l (x) Jn+l (x) 2 Jn (x)
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where prime denctes derivation with respect tc the argument

we finally obtain
+oo 2 mtn
| o dw(T, + Ty } 2
£ T e X (log ¥ )( i) E.(MTy)
- m
—0 2
J £ g ) ya
n (wa) - i g (mt w
2 2
+oo 2 m+n
_ 1 lw(T + T, ) W 1y, . 2
gnm T :jm (log w2 , (-1)
ndw
JQ (wa) Jm (wTy) a:;;
2 2
otherwise

for n and m hoth even numbers,

In particular equation (B8) can alsc ke written as

ng
g (I, I) = g (I, I )
nm X v QSX*IX nm X vy
where
+oo 2 m+n
¥ 1 iw(r + Ty ) 2
Eom = o ) e (log = " w * Ly(-1)

) J (wTX} Jm (wry)

2

rofs

(B7)

(B8)

(B9)

(B10)
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This function has clearly the property
* I %
Bom (Lyo y) = 8., (Iy, ) . (B11)
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Appendix C

The Hamiltonian W2 is given by eq. (25). Observe that
as sald in Appendix B, g:p,sq is not identically zero only
when sp and sg are both, at the same time, even integer
numbers. Thus, if p and q are both even, the summation at
the r.h. side of (25) is over all s > o. 0On the other side,
if at least one of p and q is odd, the summation i1s carried

only cver the even values of s, including s = o.

Inserting eq. (B10) of Appendlx B in eq. (25) gives,

with r = pa and p > <,

= _ =
W, = (vx p) I, + Vg Iy +
02 = fwl(t_ 4+ 1) 1+ w2 du
- 21 —*-(5;) J e Y log Glw) = (Cl)
b 2 w
B ©
where
(w) v ()S(po+q°) (wt,) (wT) (sX_) (C2)
Glw) = £ -1 J wt_)Jd WT ccs (sX c2
s;o S spo X sqo y o)
X, = 2(poaX + qoay) (C3)
and
p = Epo, g = 2qo, if both p and q are even,
P = Pys @ = dgs 1f at least one of p and g is odd.

By using the integral representation of the Bessel functilon
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_ +7
_ 1 1x cosé
Jn(x) = 5 J & cos(ng) de
-
we have
. 1 +r * iw(TX cos6' + 1 cose")_
Glw) = —= | e Y G(a', 8",X ) 46! as" (ch)
Y J J ©
-T =T

P t i oy S(po ¥ qo) 1 t
G(8',6 ,XO) = Séo (-1) £ cos(spoe ) cos(sqoe ) cos(on)

+c0
% S [bo(e' t 1)+ g (0" + ow) + X+ 2w?] +

+ 3§ [pc(e' + 7)) - qo(e” + 7)) + X+ 2ﬂn] +

+ 6 [Po(e' + m) - qo(e" + 1) - XO 27rr1} +

+ 6 [p (0" +m) + a (8" + 1) - X_ - gng] . (c5)

Let us insert (C5) in (Cl4) and shift the integral variables

0' and é" by ©m. We obtain

+o 2T 2T ~iw(t, cose' + Ty cos9")

G(w) = IE%E" ) J J ds' de" e

0 N=em
©c o
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q. 6" + X_ + 2mn q 68" - X - 2mn
s(ot + Q 0 ) + &§(8' - 0 0 +
Py Py
g 8" + X + 2mn q. 8" - X_ - 2mn
+os(em - -° 2 ) + 6 + =2 = )
Py Py
We perform first the integration over 6'. At this purpose

we observe that the number of delta-functions falling in the
interval between o and 2m is independent of the angles 6" and
Xo' This number is obviously Py Thus we have

qoe + Xo ~ 278

1 Pg 2m -ilwt, cossé —iMTX cOs
Glw) = T 7 \J de e Y e Ly +
Po s=1
fe)
q.8 - X + Z2rms
-iwt. cos 2 &
+ e X P, . (Cé)

We insert now (C6) in (Cl) and we remind that, dencting

with R a constant,

o 1
2 -tR
1 iwR w” + 1 dw _ ., l - e
TWJe 1Og—2“"?-lj—t—dt-
0 w o
We have
27 1
2 po -tH ~-tH
_ r a g o - S
W, = (v. = =) I + + d e - e
2= Wy - p) Ity I 21p, (B*>-s§lj eJ’ - at
[s) (0]

where
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- x 5 Yo+ T, (1 - cose).

Let us perform first the integration over 8

1
Wy = (v, ~ %) Iyt vy I, 4 207 (Eg) h} %? [l - P8 - P_(t)] (c7)
O

where

qQ, 8 = XO + 278

“tlry, t Ty) p e tT, cos tt. cosB
J e Pa e v de
S

e

Pt(t) = Urp

t~1 0O

o] ]
Let us remind the expansion

+
ex cos 6§ - Z

k=—=co

IK(X) elme

where IK(X) is the modified Bessel function of first kind and
the k-th order. It should not be confused with the action
variables IX and I

g
Using the fact that

Pq orie S Ps for « = ., » & integer
Pg
Loe =
s=1
o , otherwise
we have
2m
e't(Tx T ) e £i4X, | tT, cos 8 ifq_e
Pi(t) = T E_Zm IQp (trx)e j e e de.
= o

C
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But it 1is
21 .
LT cosé 1fg ©
I _ 1 y o}
Rqo(tTy) = 57 ‘J e e an
o]
then we have
-t{1. + 1.) 4= +i8X
= l. X N o]
Pi(t) 5 e ng Ilpo(th) ngo(tTy) e

and

-t(T. + T_) 4
X y ) Iipo(tTX) Iﬂqo(tTy) cos(RXO) (c8)

=

PL(t) + P_(t) = e

Inserting (C8) in (C7) yields eq.(26). We believe there
is no way to get a more simplified, general form for the

Hamiltonian Wg.
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