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PURPOSE

To datermine the characteristics of nonlinear kbetatron

motion for an ideal magnetic confining field possessing
median plane symmetry. Appliéation is made to the properties
of the booster using third order effects in the hamiltonian.
Fourth order effects are estimated.

HAMILTONIAN

The hamiltonian in which the generalized momenta, L

and Wy, are expressed in units of the particle momentum isl
= - X - - 2_ - Z_e P
H = (l+p)J/i (nx pr) (wy pAy) p(l+p)As' (emu) (1)

where the curvilinear cocordinates (x,v,s) are taken to be

the orthogonal set in which s measures the distance along

a curve in the median plane, y is normal to the median plane,
and X 1s in the direction of the outward normal to the curve.
POTENTIALS

V¢ may ke written a32

A scalar potential ¢ such that B

Amn(s) m _n

i Xy, (2)

=m§0 nEO min!

where, in order to satisfy Laplace's equation,

2.3

2
A n+(3m+l)kAm+ n+m(31‘n—l)k Amn+m(m~1) k Am

m+2, 1, -1,n

+A 3mk +3m(m-1) k%A

m,n+2+ Am—l,n+2 m=-2,n+2

3 ] n n —
Hm(m-1) (m=2)k Ay 5 o o-mk'A' ) AN FMKAT )= 0 (3)



Here

k 1/p.

The vector potential is gauge dependent.

the gauge for which xAx + yA? = 0. Then2
sz - likx i??n+l)!xmyn+l+ T%EQEE%_ x4E
A = 7 ey XY
Ag = 2 (zTi):cn+1):Xm_l s TEQIT:Xm~l+
where

Bgp = ~Byp ThR147Bgg

Apy = AyqkRygtk R kAL -AT +2KAY,

Bg3z = "Ap17kA 7Ry

c, =C, =0

€2 = &1

C3 = Ryy7kRyg

C, = Ay -KA +3k°Ag AT,

Poo = P10 = P2g = Pg1 = Pgp = D3 = O

D3g = ~Bg1

D40 = —Ai1+k'A01+4kA61

D1y = 3 Ag0

Dyy = § Ajg~ SKBY,

D1y = 3 A
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APPROXIMATE HAMILTONIAN
Expanding the hamiltoniar of Eg. (1} in powers of
Tt Wy’ %, and y, one finds (dropping the -1)

2 5 9 e? 2
wA+A+n—29nA+—A)
p X% p2 Y PYY p2

- §(1+kx)As ..., (20)

= —lwad 2_
H = kX+2(1+kX)(WX 2=

where a suitably restricted number of terms is to be in-
cluded in the vector potential expansions to give say a

third order expansion for the hamiltonian. Thus

(1+kx)A = - a2y - (3A] + fkas dxy - Ialyt e L L. (21
(1+kx) 3, = SAgex + (3a 1o¥ SkAL )X+ ALY F .. . . (22)
(L+kx)A_= -A( % + A y- 5(A11+kAOl)x2+%(2A ot 2KAL (+A! ) xy
+ 1Ally2 - %(A21+2kAll)x3+ %(A 0+2kA20+2A10_§} Aéo
Zxay ) xPy +1 3(a, +ka, +1at ) xy?- 2 (B +ka, k%A
“k'Ap RS -2KAT O yRE L oL L 23
(1+kx) a2= %A6§y2+A60(%AiO~ TokAY JryoHal ALy v L L L (20)
(l+kx)A§= %A6§x2+A60(%Aio——%kAoo)x3+lA60 O (25)

If the hamiltonian is arranged according to orders of

the expansion variables3

g=pgMy gy 43 , (26)

then

(L) _ E

p 0l (27)

o
-k)x - Sag 0y
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ﬁ(Z) - %(ﬂx2+ﬂy2)+ % g 60(yﬂx— xwy)

* % g (Ayq? kAOl+%'§AO§)X - % S(ZA ot2kA g +AL L) Xy

- 3 S @ g ;Aég) v?. (28)
H(3) = %kx(ﬂxz+ 2 % % [}A + kA'O)x+AOly:](yﬂ -

= :521+2kA11+ b 90 Aio- 4kA60{] X

- 3 5 i} 30%6KR 2R =2k "Ag~2kAg - £ Ag, oi] x%y

- % : | 38,1+3KA +Ag) - SAdo (Blo- kA' i] xy”

+ 1 ela, sxa, —k®a. —k'A! +ar -2ka & Sa .tly3.

p | 230720 10 00"%107%R00" $PooP01 (29)

MEDIAN PLANE SYMMETRY
For the ideal guide field one invokes median plane
symmetry. In this case the coefficients in the expansion of
the scalar potential ¢ have the property
A n(s) =0 (even n) . (30)

Equations (27-29) reduce to
g (1) 2 (Sa

= Ol—k) X (31)
(2) _ 1, 2, 2 ; e 2 1le 2
H =5(m 4,5 + 5 Sy vk x5 S Ay (32)
(3) _ 1 2 2 l e .
H = 2kX(ﬂx +wy )+ 3p A lY(Yﬂ y)
l e
+ -6- 5 (A21+ ZkAll)X
-de (32,,+ 3KA, +A%.) xy> (33)
6 p 21 11701/ XY
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EQUILIBRIUM ORBIT
The reference curve of the curvilinear coordinate

system along which distance is measured by the coordinate s

(1)

is to be chosen such that H = 0 in Eqg.(31). Thus

p Ol k . (34)

ACTION ANGLE VARIABLES

A contact transformation is made from the variables

4

(x, Ter Yo Wy) to (¢, o o, py) using the generator

x' Ty
%2
Fl(x,¢x,y,¢y;5)= T (cot bt B')+ —y—(cot w + -B ) . (35)

X

X
The new hamiltonian K = H + %g pecomes
(2) _ x Yy
(3) Py By B
K =k VZBXstinwx E—(cosw +—= 51n¢ ) + —X(cosw + —X51nw )
X Y
B, B0 B
+ % §A61¢28ypyslnw —%;§—X 51nw (cosw + —551nw )

B

B PP B
X XY 51nw (cosw + —131nw )}
y

le 3/2, 3/2_3/2_..3
+ g p(A21+2kAll)2 BX Py sin wx
_1e " /2 /2 1/2 . . 2
g p(3A l+3kAll+A l)2 Bypx pyslan51n wy ,
(37)
where
v V
1 y 1
Y, = ¢ -j(—x - 9ds ; Y. = ¢ —j(—— ~L)ds . (38)
X X R Bx v y R By

Note that the s-dependence of the hamiltonian, XK, is only in

the third and higher orders.
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Expanding K(B) one has
(3) o 1/2 3/2 2 (28,) /2 1/2 2
K = k(E;) Py sinwxcos wx+k By Py pysinwxcos wy
1/2 1/2
2 . 3/2 . 2 1 en, (2 1/2
+ k(Bx) B' Py cosz81n wx+§‘§AOl(BX) Bypx Dy~
syP_si 2
co wx n wy
128y 172 1e ., 172 1/2 .
+ [%(ZBX) BY Py DY 35 AOl(ZBx) Py pé151nwx.
51nwyco§wy
' 2 ' 1/2
1 1/27y 1/2 le,, f (2 o > 1/2
+ @k(zsx) B x| Pyt g p RonlExEplg) By (28y)
pxl/zpy - & §(3A21+3kA11+A51)23/25xl/28y

1/2 . .2
Py py] 51nwxs1n wy
1/2

L2 2, 3/2, 1
+ r k(B ) BX Py + z

e 3/2_3/2 .
Raltw S (ayp+2KA);) (28,07 % ]

X
sin’y (39)
X
After expanding the trignometric forms in- K(3) the resulting
expfession may be rearranged according to coefficients of the

independent trigonometric forms. Thus

Coefficient of sinwx:

T, 2.2 3 a1 e 3/271  3/2
;Zk(gg) (l+ZBX )+ 3 §(A21+2kAll)(2Bx) :}px
_ 1/2
(28,) | / . 1/2 \
1 X . 1..2 le . {,, 2 vran (172
+ L?k By (1+4sy )+ 5 5'A01{8x8y(§;’ —BY{ZBX) )
- .]_' g " " 1/2 1/2
6 p (ORapt 3KAp1FRG) (28,) By:}px Py (40)



-7 - FN-190
0300

Coefficient of coswx

1/2
L., 2 ' le,, _2 1/2
4k{8x' BX Oy + b 21.01 g 8 p 0 (41)

Coefficient of sin 3y

2\ 1l e
;T 75 pB

3/27 3/2
L1 +2kA 1) (28 ) _] N (42)

e

Bl 0 (43)

Coefficient of sin(2¢y+wx):

1/2
(28) L \L/2
1 X 1,.2\_ e L : 2\ . 1/2\
[Ak ) «(\ 80 7 ¢ AOl(%Ysy(B L Ba28y)

Y / x’/ /
le ; /2, . 1/2
* 13 53R, +3KkA, +AL) (2B,) BYJDX Py (44)
Coefficient of cos(2y +wx):
— B! s 5 1/2
_ 1 1/2 7y . le ., ‘2N V112
B 4k(28 ) By t 15 D Agq B, (B —By\gp DY (45)
Coefficient of sin(2y w )
[ L (28 172 Y L. / 172 2
- ok — X v (1- _B' )+ _— = R! 1 B (28 )
4 By 4%y 24 l\x y\B X
- = S(3n,,+3kA +A8 1) (28, ) 1/25 (46)
12 211 3KRAy 7Ry Sy iPx py
Coefficient of cos (Zwy—wx):
e g! 1/2 T
1 /22y _ le ,, /27 ; Youoov/2

- Y \ x/



- 8 - FN-190
0300

FURTHER APPROXIMATIONS

At this stage several cases will be discussed. For
each case one seeks a transformation to a rotating co-
ordinate system for which the new hamiltonian becomes

stationary>®78  ciigider first the terms in x (3) that vary

as sinxpX and coswx. A generator

= - S
F2(¢X,JX,S) = (¢X mNR) Jo (48)
transforms a hamiltonian containing K(z) and the restricted
K(3) o
W= Lo+ (v -mn X +[a(s)3.3/24m(5)5 /25 ]
) pr X R X X py
v_—mN
. _ X _ 1 3/2 1/2 )
s:Ln<yX S(—-R Bx)ds) +E:(S)Jx +D(s)JX py]
vx—mN 1
cos(yx—\g( - B—-)ds) (49)
X
in the variables (Y4 JX,¢y,Jy;s). Since the coefficients

A, B, etc. are periodic with a period of the circumference/N,

8

of s will arise from the cross combination of the terms in the

v
and since\S(—% - l>ds has zero average value, terms independent

Fourier expansion of the coefficients with the Fourier ex-
pansion of the phase modulated trigonometric terms. The lowest
order stationary terms will arise from setting m = 1. All
other terms will oscillate rapidly with respect to s and may

be considered to have zero average. Thus resonance effects

are expected for-\)x = N. Since this condition has been avoided
in the booster design, all effects from the terms that vary

as sinwx and cosy,, will be small. Hence these terms will be

dropped from the hamiltonian.
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EFFECT OF TERMS IN sin 3wx and cos 3¢X

In this case let the coefficients be (6=s/R):

1/2 2
_1i./_2 N P R 3/21.,3/2
A(e)—[4k(8 ) <1 la, ) 57 (B, +2KA ) (26) ]R

X
(50)
and
B(O)= - —k<2\ 8, R/ . (51)
The hamiltonian is now taken to be
. . 3/2
K = VP +\)ypy +[é(6)51n 3wX+B(e) cos 3wxjpx ’ (52)
where Py and py are measured in units of R.
Transform to a rotating coordinate system (yx, x'Yy y)
using the generator
Fp(byrTyrdysd i0) = (4 - %NG)JX+'¢ny (53)
and consider only the lowest order (m = 1).
= - N : 3/2
K = (vx 3)JX+ vny+[§(6)51n wa+ B(6)cos 3w%]Jx , (54)
where, for convenience
v
- Ng - ({x . _1
b = Y + 30 _f( R x) ds . (55)
v
Fourier analyse A(6), B(9), andj(-ﬁg - §l>ds remembering
X
that the average value of the integral is zero. Thus, let
A(B) = A+ Al cos N6 + A,sin NO + . . . (56)

B(6)

BO + B1 cos N6 + B251n N6 + . . . (57)
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V
&‘( - _1> ds = P,sinN@ + (sine series only by
X

]

B 1
choice of origin) (58)

By retaining only the lowest order terms, the hamiltonian

becomes
N . . -
K —(vx— §)Jx+vny+‘3A0+AlcosN6+A251nN9)51n(3YX+N6-3P151nN6)
+(BO+BlcosN9+stJ.nNB)cos(3YX+N6—3Pl
sinNe)] Ji/z (59)

Expand out to the two lowest orders in the phase flutter Pl’
cross multiply and retain only the stationary terms. Then,
if

2
2 _ +l - +l + l
A A.Jl(3Pl) 2(Al B2)J (3Pl) 2(Al BZ)J2(3P1)

2
1 1
+[130:11<31>1>+5 (B,*+B1)T_(3P)) -3 (A, 31)32(31:1)] (60)
and a corresponding phase a are constructed where Jo' Jl’
and J2 are Bessel functions, the hamiltonian becomes

3/2

- - N - ;
K= (v, 3)JX+Vny AJ_ "/ "sin (37 +0) (61)

Since the hamiltonian does not contain Yy’ the conjugate

variable Jy is a constant of the motion. Hence, let

W=ZK - vny . Then

(o _N\: _ .o 3/2
W —(vx 3)JX AJX

Since Vg = 6.75 and N = 24 for the booster, the interest

sin(3yx+a) (62)

in the above hamiltonian is not in resonant growth of amplitude
but rather in determining the amplitude variation of the

betatron frequency.
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To this end one further contact transformation is of wvalue.
If the hamiltonian can be made to contain only the action

variables then the betatron frequencies are readily obtain-

able. Consider a transformation6 <

from (YX,JX) to (Yx' J.)

using the generator

= — 7372

cos(3yx+a) (63)

Then, if the term in t is considered small one has
3 1/2

Y = Iﬁ t 3t i§ cos(3z§fa) + .. . (64)
_ 3/2 . 27 .22 2
JX = EE% 3t iE 51n(31§fa)+ 5 t iﬁ cos (3Z§fu) + ...
(65)
Let
= _ N
€, = Vg 3 (66)
.. . 3/2
and ,to eliminate the term in J o , Choose
_ A
t = 3 - (67)
X
Then
3A2 2
W=€Xi§“ﬁi§ + . . . (68)

Qf course the coefficient of JX2 will be changed by the

presence of terms of this order in the original hamiltonian.

This effect is estimated later. Thus an estimate

of the variation of the betatron frequency with amplitude is

2
AW _ _ 3A
b, = 55— =€, =~ 52— J, (69)
X X —
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Note that Jx may be found from the beam emittance
= [far ax = R\S\S az,dy, = 2R I, . (70)

EFFECT OF TERMS IN sin(2wy + y,) AND cos(zwy +p)

As in the previous case let the coefficients be

1
1/2
(28.) 2 \2
1 X 1, 1e /2 !
A(e)=[—k—-——.(1-—s )—'——A" (B.8. ~B.B.)
4 By 4y J 24 p OM@X) X"y “yx
1e ; 1/2 3/2
+ 17 (38, +3ka, 4Ag,) (28,) sy] R> %, (71)

8! 1/2
1 _ 1 1/2 1 € as /2 3/2
B(6) = [ 3k (28,) —Y-By 13 & 1£B > (B, y)]R . (72)

The hamiltonian is now taken to be

4

K' = \)pr+\)ypy+ [A (6)sin (2¢y+wx) +B(8) cos (21,Dy+lbx):l pxl/2 py

(73)
where again Py and py have been made dimensionless by
measuring in units of R.

Transform to a rotating coordlnate system (Y ' J ,nyy)

using the generator

F2(¢X,Jxa¢y,Jy;9)=(¢x—aNe)Jx+(¢y—bN9)Jy. (74)

Then
K = (vmaN) 3+ (v -bN) I +[A(8) sin (29 +y,)
1/2
+B(e)cos(2wy+wx)]Jx Jd.,, (75)

where, for convenience

Vx T XX 1
b= Yx+able—j<—i;—§;>ds ;b= +bNe- S( X - B’;)ds . (76)



- 13 - FN-190
0300

In order to make stationary terms possible in the cross
combination of the Fourier analyzed A(8) and B(6) with
the trignometric terms

a+ 2b = p (an integer) . (77)
Consider only the lowest order term (p=l1). As before

Fourier analyze

A(g) = AO + AlcosNB + AzsinNe + . . . (78)

B(g) = BO + BlcosNS + stinNe + . .. {79)
JaY,

i X - —Bi\,ds = P sinNg + . . . (80)
\\ x/’

r/v

(X - N\gg = —g sinNe + . . . (81)

\J R BY/ 1

The average value of each integral is zero and, in addition,
the lattice is assumed to have the symmetry implied by the

series expansion.

By retaining only the lowest order terms, the hamiltconian

becomes

K = (vx-aN)JX+(vy~bN)JY

{ . , T .
+ ﬁ(A0+A1cosNe+A251nNe)51n;?yy+YX+N8—(P1—2Q1)51nN6 (82)

. s o 1/2
+(BO+BlcosN8+B251nN6)cos[2yy+YX+N6 (Pl 2Q1)51an;fJx Jy

Expand out to the two lowest orders in the phase flutters

Pl and Ql’ cross nmultiply and retain only the stationary terms.

Then, if
A’ = '*A I (P,=20.)+3(A,~B,)J_(P,=20,)+5 (A,+B,)J., (P, -2 )‘2
_BoY VTR FR A B T (B =20 ) H5 (A ¥B,) T (P m2Qy)
~ 2
; - 1 - _ Ll o - ‘
+;-BOJ1(P1 2Q4)+5(A,+B )T (P-2Q,) - 5(A,~B)J, (P EQl)_J
(83)
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and the correspoeonding phase o are formed, the hamiltonian

becomes

1/2

K = (\JX—aN)Jx+(vy~-bN)Jy - A Jx Jysln(2yy+yx+a) (84)

Another constant of the motion may be constructed by
noticing that in the wvariables (i,JE;n,Jn) the generator

F2(Y E Y J ) = (2YY+YX)JE + (ZYY - YX)Jn (85)

transforms the hamiltonian tc

K = (v, =aN) (3,7 )42 (v, ~bN) (J,+J ) -2A(J —Jn)l/z(J +3 ) sin(E+a) .

(86)
Since this hamiltonian is independent of 1, the corresponding

g g g 2

conjugate variable Jn is a constant of the motion. Hence

Jy - 2Jx = 4Jn = constant {(87)

Then, remembering that a+2b = 1

K = 2v_-v_-(2b-a)N J_+(2v +v_-
3 vy Vo (2b a)N_Jn (2\)y Vg N)JE

_ _2 172 .
2A(Jg Jn) (I +Jn)51n(£+a) . (88)

3
In order to determine the amplitude variation of the

/
betatron tunes, transform to the variables ké,ig)using the

generator

E)— £3, —t(JE—Jn)l/Z(J +J cos (£+a) (89)

which is used to eliminate the £ variable in the transformed
hamiltonian to the order of accuracy being considered. The

new hamiltonian becomes
K =:2 (2b-a)N J_+eJ A2(3 (F . +J ) (1 (2 (E+a)))
-;_vy Vo a)N | n €_§ = ié—Jn) Ig n)( cosL_ E uJ ‘

(90}
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where
£ = 2vy v, - N, {(91)
and the parameter t was chosen so that
et = 2A (92)

One further transformation would be necessary to remove
the term in cos[?(§+ai] . However, since this term is
already of higher order its average value is a sufficient
approximation. Thus

K = [2vy—vx—(2b-a)N_jJn+ eJ, - (23.-3 ) (I+3)) (93)

ml’P

Since only the action variables are contained in the

hamiltonian the betatron tunes are:

9K a2
AEQ = §3£ =g - 2 E—(3i§fJn) = 2Avy + Av (94)
pv = 2K o o -v_-(2b-a)N-2 éE(J -J_) = 2Av_ - Av (95)
’n aJn vy X £ £ n Yy X
or rewriting such that the original linear tunes are (vxo’ vyo
then
A2
\)szxo-—ZE—-—(J§+J) (96)
2
- -2 B
Ve = Vo 2 2 J§ , (97)
where now
e = 2v + v - N (98)
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Note that a Poincare’ invariant yields

By + B, = jgdnxdx +Sgdwydy=RSSdJ€d€+RﬁdJndn=2wR(J€+Jn)

(99)
and that the previous invariant
B E
4Jn Jy 2T R — (100)
Thus
A2
Ve = Vo T TER (EX + Ey) (101)
2
_ S 2
Yy T Yvo merR (3Bx * 4Ey) (102)

EFFECT OF TERMS IN Sln(Zwy-wx) AND cos(2¢y-wx)

The effectiveness of these terms depends on the magnitude
of € = 2vy - Ve~ N which for the booster amounts to -16.9.
This value is too large to produce much amplitude shift and,
therefore, this case will not be considered.
NUMERICAL RESULTS FOR BOOSTER

Numerical input comes from the linear orbit program
SYNCH which in .turn utilizes the basic booster parameters.

This input is tabulated in Tables (1 - 3).

Harmonic analysis of Ve ~ R/BX and vy - R/By was carried

out using the betatron functions graphically interpolated to
values at regular intervals. The program HANAC then yvielded

Pl = .2212 and Ql = .2020.
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Secondly, the values of the coefficients A and B
in Egquations (50 - 51) and Equations (71 - 72) were
obtained at the longitudinal locations indicated in
Table 3. To do this the hard edge effects were omitted
with the intention of handling them separately. The pro-
gram COEF evaluated these functions using the input from
Tables (1 - 3).

The hard edge effects arose from the terms containing

1 " - . .
AOl’ AOl’ and from All’ A2l when finite edge angles were

employed to yield parallel end faces of the magnets. The

terms in Al. have a delta function contribution at the

01l

magnet ends. Similarly the term in Aal has a delta function
derivative contribution at the magnet ends. To obtain the
hard edge effects due to finite edge angles one replaces

Ay in Egq. (50) and (71) by

A

~ A..S -~ A__ tanad (Ng). N (103)

11 11 0l ’

W

oL

where 5(%.Ne - Xtano) 1s a step function. For AZl the

replacement is

2
l—\]——tanzc:cé-'(1\78). (104)

RZ
Notice that the longitudinal variable used is N6 which

N
A2l + A_..5 - 2§Alltana5(N9)+ A

21 0l

increases 2n/sector. The edge angle is different for the
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F and D magnets because of the different magnetic radii
and is of cpposite sign on each side of the magnet., The
program CQOEF gives the contributions to the A and B co-
efficients that are proportional to the é-function and to
the 3'-function.

The program HANAB provides a fourier analysis of the
discontinuous functions A and B in which the §-function and
$'-function contributions have been removed. Since the
COEF program provides the strengths o¢f the §-functicn and
¢'-function contributions at each end of the four magnets
in a sector, it is a relatively simple matter to find the
harmonic coefficients of the sum of these contributions.
In this manner the net harmonic coefficients as defined
in Egs. (56 - 57) and Egs. (78 - 79) are determined.

Having determined the harmonic coefficients of lowest
order, Pl’ Ql, AO, Al, AZ' BO, Bl' BZ' the amplitudes & in
Eg. {60) and in Eg. (83) may be found. These amplitudes
together with the measure of the distance from the reso-
nance £ and the beam emittances give the tune shifts.
Table 4 gives the harmonic coefficients as cutlined and
Table 5 gives the tune shift results. Table 5 presents
the third order tune shift due to the proximity of the
operating point to the 3vx = 24 resonance and the Vo + 2v

resonance.

1
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NONRESONANT FOURTH ORDER TUNE SHIEFT
As is already evident from the third order effects,
it would be a rather tedious exercise to evaluate the
fourth crder effects with the same degree of detail as the
third order. The dominant terms in the fourth order hamil-

tonian are

(4) _ 1

3 A (x4 - 6x"y" + y4). (105)

1Y
M

W

—

After the ac¢tion-angle transformation of Eg. (34}, this

becomes

(4y Kk

_ _3 2_. 4. .2 .2
K = {B p,5in wx GBxBprpysln b sin wy

2
X

+ B7p sin4wy), (106}

LS N
N

where Eg. (38) gives the expressions for wx and wy'

The fourth order hamiltonian has a nonresonant

contribution given principally by the following average



(4) 1< 2 2 1 2
= —<{kk 2‘>J—_ k R J. J
: 16 36XR Av. ¥ 4 <¥ 3BXBY Zhh *Y

1 2 2
+ % <kk3BYR2 Jy

V.

Letting
1 \
T 16 <kk36>2<R2>
2
-k (5,0,

D = -:—Z’ <kk3612/_R> ,

w
|

O
|

_the nonresonant tune shift becomes

Sv 2BJx + CJy

Sv + CJ_ + 2DJ
v pid

Y

The program COEF evaluates the hamiltonian coeffi-

cients in Eqg. (106) and the program HANAB produces the

azimuthal average. Using

EX = 27TRJX Ey =

FN-190
0300

(107)

(108)

(109)

(110)

(111)

(112)

(113)

to evaluate JX and Jy from the horizontal and vertical beam
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emittances, one may evaluate the tune shifts. Table 6
gives these results. As may be seen the fourth order non-
resonant effects are larger than the third order resocnant

effects transformed to fourth order.
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TABLE 1. GENERAL BOOSTER PARAMETERS
Average Radius (m) 75.4717
Number of Sectors 24
Radial Emittance of Beam (mm-mrad) 50T
Vertical Emittance of Beam (mm-mrad) 201
Radial Betatron Oscillations
per Revolution 6.7
Vertical Betatron Oscillations
per Revolution 6.8
TABLE 2. BOOSTER MAGNET PARAMETERS
F D
Magnetic Radius (m) 40,8469 48.0341
Magnet Length (m) -1 2.889%¢ 2.8896
Normalized Gradient (m ) 2.2147 -2.7719
Normalized Second Gradient (m™2) .6079  ~1.2560
Normalized Third Gradient (m >) ~21.63 6.45
Magnet Location (radians, 2w/sector)
Entrance (first magnet) . 1908 1.2687
Exit (first magnet) 1.1097 2.1876
Entrance (second magnet) 5.1735 4.0957
Exit (second magnet) 6.0924 5.0146
Edge Angles (radians)
Entrance (first magnet) .03536 .03007
Exit (first magnet) -.03536 -.03007
Entrance (second magnet) .03536 .03007

Exit (second magnet) -.03536 ~.03007



TABLE 3.

Longitudinal Position

.0000

.6502
1.2687
2.1876
4.0957
5.0146
5.4032
6.1878

BETAX (m)

33.6626
30.1501
17.3038

7.5917

7.5917
17.3038
26.0209
33.6653

ALPHAYX

.0000
2.3918
3.3965

.4948
-.4901

-3.3857
-3.2696
.0089

.0954

. 8800
1.2687
2.1876
4.0957
5.0146
5.6329
6.2832

33.6653
26,0209
17.3038

7.5917

7.5917
17.3038
30.1501
33.6626

-.0089
3.2696
3.3857
.4901
~.4948
-3.,3965
-2.3918
.0000

ORBIT FUNCTIONS FROM SYNCH

(radians,

.1%08
1.1097
1.4984
2.6646
4.3253
5.0940
5.8627

33.6733
20.8814
13.2161

6.4890

B8.6365
19.0473
32.8011

-.0178
3.7768
2.3291
.2450
-.9660
-3.5776
~1.2428

2n/sector)

.1908
1.1097
1.7281
3.141e6
4.5550
5.1735
6.0924

33.6733
20.8814
10.4388

6.1214
10.4388
20.8814
33.6733

-.0470
3.7588
1.5537
.0000
-1.5537
-3.7588
.0470

FN-190
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.4205
1.1892
1.9579
3.6186
4.7848
5.1735
6.0924

32.8011
19.0473

8.6365

6.4890
13.2161
20.8814
33.6733

1.2428
3.5776
. 9660
-.2450
-2.3291
-3.7768
.0178



TABLE 3. ORBIT FUNCTIONS FROM SYNCH (cont.)
BETAY (m)
5.2734 5.2905 5.3417 5.3417
6.7198 8.3470 10.8223 10.8223
12.9992 12.9992 16.1015 18.5549
20.4567 20.4567 20.1193 20.0068
20.4567 20.4567 20.0647 18.5549
12.9992 12.9992 11.8806 10.8223
8.3470 6.7198 5.7548 5.3417
5.2905 5.2734
ALPHAY
.Q0QQ -.0569 -.1138 -.1092
-.8804 -1.3933 -2.0655 -2.0561
-2.2976 -2,2895 -1,.9618 -1.4002
.1371 . 1500 .0750 .0000
-.1500 -.1371 -.6716 1.4002
2.2895 2.2976 2.1768 2.0561
1.3933 . 8804 .4680 L1092
.0569 L0000
TABLE 4. HARMONIC COEFFICIENTS OF A(8) and B(8)
Resonance (3vx = 24)
Radial Phase Flutter (Pl) .2212
Vertical Phase Flutter (Ql) .2020
Average Coefficient (AO) -47.44
Coefficient of cosN@ (Al) ~-119.41
Coefficient of sinNGB (Az) .00
Average Coefficient (BO} .00
Coefficient of cosN{ (Bl) .00
Coefficient of sinN®8 (Bz) 4.65

FN-190
0300

5.7548
11.8806
20.0667
20.1193
16.1015
10.8223

5.3417

-.4680
-2.1768
-.671¢6
-.0750
1.9618
2.0655
.1138

-3.19



TABLE 5. THIRD ORDER RESONANT TUNE SHIFPT
(Bvx = 24)

Amplitude (A) 70.80
Distance from Resonance (c) -1.3
Radial Tune Shift .00113
Vertical Tune Shift

TABLE 6. FOQOURTH ORDER NONRESONANT TUNE SHIFT
Amplitude (B) -46139
Amplitude (C) 33866
Amplitude (D) 1726
Radial Tune Shift -0.0261

Vertical Tune Shift 0.0117

FN-120

03

(vx

00

50.70

~3.7
.00100
.00071

Il

24)



