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PURPOSE 

To determine the characteristics of nonlinear betatron 

motion for an ideal magnetic confining field possessing 
median plane symmetry. Application is made to the properties 

of the booster using third order effects in the hamiltonian. 

Fourth order effects are estimated. 
HAMILTONIAN 

The hamiltonian in which the generalized momenta, TI* 

and m are expressed in units of the particle momentum is 1 
Y' 

H = -(l+;) l- ( "x->x) 2- (*y->y) '-; (I+;) AsI (emu) (1) 

where the curvilinear coordinates (x,y,s) are taken to be 

the orthogonal set in which s measures the distance along 

a curve in the median plane, y is normal to the median plane, 

and x is in the direction of the outward normal to the curve. 

POTENTIALS 

A scalar potential @ such that-s = 00 may be written as2 

Am(s) ’ ‘m&O nL0 m’n’ xm Y” r . . (2) 

where, in order to satisfy Laplace's equation, 

A m+2 , n+(3m+l)kAm+1 n+m(3m-l)k2Amn+m(m-l)2k3Am-l n I 

+Am n+2+3AAm-l n+2+3m(m-l)k2Am-2 n+2 , I 

+m(m-l)(m-2)k3Ams3 n+2-mk'A'm-l n+A&+mkAA-l n = 0 (3) I , 
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Here k = l/p. 

The vector potential is gauge dependent. Choose 

the gauge for which xAx + yA' = 0. Then2 Y 
1 A' mn+l 1 

Ax= - l+kx' m?;n+l) Zx y 
C' D 

+ - m xm+I: (;yl) !n!X l+kx'm: 
m-l n y (4) 

A =C Dnln m n-l 
Y m:(n-1): x y (5) 

Amn m-lyn+l 'rn m-l D' 
A =C S (m-1) ! (n+l)!x -c (m-l):x + likxC myE! XrnY"# (6) -- 

where 

Ao2 = -AZ0 +kAlO-AzO (7) 

A12 = -A30 
2 -kA20+k A10+k'Ai)O-A;O+2kA~0 (8) 

Ao3 = -A21-kA11-A;1 (9) 

cO = Cl = 0 (10) 

c2 = A01 (11) 

c3 = All-kAO1 (12) 

c4 = A21 
2 -kAll+3k Aol-Ail (13) 

D00 = D1O = D20 = Do1 = Do2 = Do3 = 0 

D30 = -A& 

D40 = -Ail+k'Aol+4kA;)1 

Dll = i Aio 

D21 = 3 ' Aio- alto 

D12 = 3 
1 A' 

01 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 
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APPROXIMATE HAMILTON-IAN 

Expanding the hamiltonian of Eq. (1) in powers of 

TX' 71 , Y x, and y, one finds (dropping the -1) 

H = -kx+++kx) (TX 
2 2 2 2-2;~xAx+'2Ax2+n;-2;nynyf' A ) 

P P2 y 
- ;(l+kx)As + . . . . , (20) 

where a suitably restricted number of terms is to be in- 

cluded in the vector potential expansions to give say a 

third order expansion for the hamiltonian. Thus 

(l+kX)Ax= - ~A~oy -(~Aio+ ~kA;,o)Xy - ~A;11y2 + . . . (21) 

(l+kx)A = Y +AAOx + (1,' 3 1o+ $cA;~~)x~+ $AA1xy + . . . . (22) 

(l+kx)As= -AOIX + A1,,y- ;(All+kA01)x2+~(2A20+2kA10+A;)O)xy 

12 
+ ZAllY - ;(A21+2kA11)x3+ $(A30+2kA 20+$A;O-~k'A;0 

-$A;o)x2y +~(A21+kA11+~A;l)~y2-~(A30+kA20-k2A 10 

-k'A;o+A~o-2kA;o)y3+ . . . . (23) 

2 1,22 (l+kx)Ax= jAooy +A' oo(JjAio- skA;)O)Xy2+fA;)oA;)ly3 + - . . (24) 

(l+kx)A:= ~A;)~x~+A' 06(JjAio-&kA;)O)X3+?jA~OA;)lX2y + . - . (25) 

If the hamiltonian is arranged according to orders of 

the expansion variables3 

H = H(l)+ H(2)+ H(3) + . . . , (26) 

then 

H(l) = (??A p 01-k)x - ploy . (27) 
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I.3(2) = 1 2 (nx2+Tr 2 
Y )+ 

+ z' E (All+ 

i e A’ 
2 p 00 %i- xny) 

j& +Le ‘2 01 4 pAOo)x 2- $ ~(2A20+2kA10+A~O)xy 

- - ; ; (A (28) 

R(3) = 1 Zkx(1TX2+71 y2)+ 
c 

1 (Alo+ ZkAbo)X+AilY 
1 

(YTx-XTy) 

,Ae 6p A21+2kA 
c 

+eA' 
11 P oo(Aio- $A601 X3 

-As 3A 
6~ C 

30+6kA20+2A~O-2k'A~O-2kA~o- ; 

,le 
6~ P 

3AZ1+3kAll+A;l - 3iO(AiO- 

+IS L 2 
6~ 

A30+kA20-k A10-k'A~o+A~0-2~;O+ p;lOA;l y3* 
(29) 

MEDIAN PLANE SYMMETRY 

For the ideal guide field one invokes median plane 

symmetry. In this case the coefficients in the expansion of 

the scalar potential Q, have the property 

Amn(s) = 0 (even n) . 

Equations (27-29) reduce to 
&) = $Aol-k) x 

Hw = ;(nx2+ry2) + $ ;(All+kAol)x2- 1 S 
2 p Ally 

2 

H(3) = +kx(Tx2+7i A~ly(y~x-Xny) 

+ ; ; (Azl+ 2kA11)x3 

(30) 

(31) 

(32) 

-le 6 fj (3A21+ 3kA11+A;l)Xy2 (33) 
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EQUILIBRIUM ORBIT 

The reference curve of the curvilinear coordinate 

system along which distance is measured by the coordinate s 

is to be chosen such that H (1) = 0 in Eq.(31). Thus 

ZA p 01= k. 

ACTION ANGLE VARIABLES 

(34) 

A contact transformation is made from the variables 

lx, -iT xf Yf ry) to (OxI P,r 4 I 

x2 y 

py) using the generator4 

Fl(x,4xt~,$yid= 28 
X 

(cot l/Jx+ $P)+ &cot +y+ $).(35) 
Y 

The new hamiltonian K = H + 8F z becomes 

K(2) vx =- R 'x (36) 

K(3) 2 

+ ; ;(A21+2kA11)23'2,3x3'2p,3/2sin3$ 
X 

X 
1'2Bypx1'2pysin$xsin2$ 

Y I 

(37) 

where 

$,=$,- &-$)ds J ; $, = Gy - +-)ds . (38) 
X Y 

Note that the s-dependence of the hamiltonian, K, is only in 

the third and higher orders. 
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Expanding K (3) one has 

cosj.Jxsin2+ Y 

+ P,~‘~P~- $ c A~~(ZB 
X 
j112p 

X 
1/2p]sin+ 

Y X’ 

12 

+ ik(213x)1’2$ pxl"py + $ ;A;,(&&[$) 
l/2 

Y X 
-8;(2Bxj*l'2 

p1/2p -3s 
X Y 6 p(3A21+3kAll+A;l)23'2B 

X 
"'B Y 

P 1'2P X Y 1 
sinGxsin2@ Y 

r ;k($) 
m 

+ Q2px3'2+ 2 ; 3/2p 3/2 c. 

X 
(A21+2kA11) (ZB,) X 1 

sin3jlx (39) 

Aftet eypanding the trignometric forms in. K(3) the resulting 

expression may be rearranged according to coefficients of the 

independent trigonometric forms. Thus 

Coefficient of sin$x: 

‘& (2) 10 (1+2&+ 1 e -4 6 4x 8 
X 

p (A21+2kAll) (26,) 3’2 1 Px3’2 

$ (2gx)1’2 * u+-,a; 1 2 i + 

pY 
I+ & ; A+Q3y ($J 

w 
-B;; f&,3 I?2 !. 

\ *' 

- ; ; (3AZ1+ 3kAll+A~l)(2f3x)1'2@y 1 px1'2py (40) 
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Coefficient of cosQx: 

&-& 
w 

a;, p 3’2 + + ; A’ 
2 l/2 

X 
X 01 B;; 4y Px1’2Py 

Coefficient of sin 3JIx: 

[;k($'1'2'1 - ;@G2) - & ;(A21+2kAll) (20 )3'2 ,II 3'2 (42) 
x ', X 1 X 

Coefficient of cos 3Qx: 

- ;ki'$ 
,1/2 

x 
(43) 

Coefficient of sin(2$y+$x): 

le 7 
+ m p(3A21+3kAll+A;1) (28,) 

1/2B ip 1/2py 
YJ x (44) 

Coefficient of COS(~IJJ~+$~): 

r1 g/2 
- jk(2Bx)1'2 2 + &; A&-$ .(B -B i--!p u2 x y,x pY (45) - Y \ x ~, i 

Coefficient of sin(2$y-$x): 

C 
. (I- LBt2)+ 

4Y 

- & ;(3A21+3kAll+A;1) (2B,) (46) 

Coefficient of cos (2qy-JIx): 

-1 
I 

$(26,) 'I22 - m.i % 
Y 

12 p py (47) 
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FURTHER APPROXIMATIONS 

At this stage several cases will be discussed. For 

each case one seeks a transformation to a rotating co- 

ordinate system for which the new hamiltonian becomes 

stationary5~6~7~8. Consider first the terms in K (3) that vary 

as sin$x and cos$x. A generator 

F+x,Jx;s) = ($x- mN;) Jx (48) 

transforms a hamiltonian containing K (2) and the restricted 

d3) to 

.W = 

(49) 

in the variables (yx Jx,$ ,J ;s). 
Y Y Since the coefficients 

A, B, etc. are periodic with a 

and sincejr$ - i)ds has zero 

of s will arise from the cross 

period of the circumference/N, 

average value, terms independent 

combination of the terms in the 

Fourier expansion of the coefficients with the Fourier ex- 

pansion of the phase modulated trigonometric terms. The lowest 

order stationary terms will arise from setting m = 1. All 

other terms will oscillate rapidly with respect to s and may 

be considered to have zero average. Thus resonance effects 

are expected for vx = N. Since this condition has been avoided 

in the booster design, all effects from the terms that vary 

as sinqx and cosq 
X 

will be small. Hence these terms will be 

dropped from the hamiltonian. 
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EFFECT OF TERMS IN sin 34b, and cos 3$, 

In this case let the coefficients be (O=s/R): 

A(e)=[$(j+)1/2(1 - $3:)- & ;(A21+2kAll)(2~x)3/~R3/2 

(50) 

and 

B(B)= - ik 6; R3'2 . (51) 

The hamiltonian is now taken to be 

K' = vxpx +v p +rA(@)Sin 31j~~+B(e) COS 3Qx]px 312 
YY L I 

where p, and p Y are measured in units of R. 

Transform to a rotating coordinate system 

using the generator 

F2($x,Jx,#y,Jy;@ = (0, - !$e)Jx+ @yJy 

(yx,Jx; 

(52) 

vy'Jy) 

(53) 

and consider only the lowest order (m = 1). 

K = (vx- j)Jx+ vyJy+LA(9)sin 3JIx+ B(B)cos 34~~ Jx3'2, 
7 

(54) 

where, for convenience 

$, = y, + ;c3 -J(% - 2 
) 

ds . (55) 
X 

Fourier analyse A(8), B(8), and remembering 

that the average value of the integral is zero. Thus, let 

A(8) = A0 + Al cos NB + A2sin N8 + . . . (56) 

B(8) = B. + Bl cos N8 + B2sin NB + . . . (57) 
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v 
X 1 --m 
R Bx > 

ds = PlsinN6 + (sine series only by 

choice of origin) (58) 

By retaining only the lowest order terms, the hamiltonian 

becomes 

c 
(Ao+AlcosN~+A2sinN6)sin(3yx+N6-3PlsinNe) 

+(Bo+Blc~~N~+B2sinN~)COS(3~x+N~-3Pl 

sinN8) x 3 
J3/2 (59) 

Expand out to the two lowest orders in the phase flutter Pl, 

cross multiply and retain only the stationary terms. Then, 

if 

A2 = ~oJl(3~l)+~(Al-B2)Jo(3Pl)+~ (Al+B2)J2(3pl) 3 
2 

J2(3pl) 1 
2 

(60) 

and a corresponding phase a are constructed where J 
Of J1' 

and J2 are Bessel functions, the hamiltonian becomes 

K = (vx- y)JxfvyJy - AJ 
X 

3'2sin(3Yx+u) 

Since the hamiltonian does not contain y 
Y' 

the conjugate 

variable J Y is a constant of the motion. Hence, let 

W=K-VJ 
YY' Then 

X 
3'2sin(3yx+a) 

(61) 

(62) 

Since vx z 6.75 and N = 24 for the booster, the interest 

in the above hamiltonian is not in resonant growth of amplitude 

but rather in determining the amplitude variation of the 

betatron frequency. 
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To this end one further contact transformation is of value. 

If the hamiltonian can be made to contain only the action 

variables then the betatron frequencies are readily obtain- 

able. Consider a transformation6 from (y,,J,) to (y,, Jx) 
-- 

using the generator 

F2(yxrJx) = yxJx -t J;'2 cos(3yx+cx) 
- - - 

Then, if the term in t is considered small one has 

3 t J 'I2 Y, = Y, + 2 X 
cos(3yx+cx) + . . . 

- - - 

JX 
= Jx+ 3t J 

X 
3'2sin(3yx+a)+ 2 t2Jx2cos2(3yx+") + . . . 

- - - - - 
(65) 

Let 
N & CL, -- 

X X 3 

and,to eliminate the term in J 312 
X 

,choose 

(66) 

t -JL = 3EX (6’) 

Then 
3A2 J 2 + W=E~J~--~E x . . . (68) - X- 

Of course the coefficient of J x2 will be changed by the 

presence of terms of this order in the original hamiltonian. 

This effect is estimated later. Thus an estimate 

of the variation of the betatron frequency with amplitude is 

3A2 *vx=2$=E -- 
X 2EX Jx (69) 

X - 
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Note that Jx may be found from the beam emittance 
- 

Ex = 
ss 

dTxdx = R dJxWx = 27~R Jx . 
-- - (70) 

EFFECT OF TERMS IN sin(2$ y + qx) 24.m cos(2$ y + $x) 
As in the previous case let the coefficients be 

(2Bx) 1’2 1 
A(B) = 

c 
$k B ' (1 - ) 

Y 

R3'2, (71) 

B(8) = 112 
- +k(2B,)1'2 3 +& ; J&[$j . @,-By) 

Y \“/ I R3'2. (72) 

The hamiltonian is now taken to be 

(73) 
where again p, and p 

Y have been made dimensionless by 

measuring in units of R. 

Transform to a rotating coordinate system (yx,Jx;yyJy) 

using the generator 

F2(~xrJx~~y,Jy;B)'(~x-aNB)Jx+(~y-bNe)J . 
Y (74) 

Then 

K = (vx -aN)Jx+(vy-bN)J y +[&I sin(2$y+$x) 

+B(B)cos(2$y+~x)]Jx1'2Jy, (75) 

where, for convenience 

+,= y,+aw j(+$s ; $y=yy+bN& ,j(" - <jds l ('6) 
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In order to make stationary terms possible in the cross 

combination of the Fourier analyzed A(B) and B(B) with 

the trignometric terms 

(77) a + 2b = p (an integer) . 

Consider only the lowest order term (p=l): As before 

Fourier analyze 

A(B) = A0 + A cosN8 + A2sinNB + . . . 1 (78) 

B(B) = B. + B cosNe + B2sinNB + . . . 1 (79) 

,V 2- I\, 
‘\ R Bids = PlsinNB + . . . 

Xl 

5 2 - --l-!ds = -QlsinNB + 
RY/ 

. . . 

(80) 

The average value of each integral is zero and, in addition, 

the lattice is assumed to have the symmetry implied by the 

series expansion. 

By retaining only the lowest order terms, the hamiltonian 

becomes 

K = (vx-aN)Jx+(vy-bN)J Y 

+ j (Ao+AlcosNB+A2sinN8)sin~~y+~x+NB-(P1-2Q1)sinNB 
- 

(82) 
i - : 
+(Bo+BlcosNB+B2sinN6)cosL2~y+~x+NB-(P1-2Ql)sinN~ ?Jx r l'2J 

Y 

Expand out to the two lowest orders in the phase flutters 

Pl and Q1, cross multiply and retain only the stationary terms. 

Then, if 
A2 = T- 

-2 
-AoJl(P1-2Ql)+; (Al-B2)Jo(Pl-2Ql)++(Al+B2)J2(Pl-2Ql) 

+;B,J,(Pl-2Ql)+;(A2+Bl)Jo(Pl-2Ql)- ~(A2-Bl)J2(Pl-2Ql)7 
2 

(83) 
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and the corresponding phase a are formed, the hamiltonian 

becomes 

K = (vx-aN)Jx+(vy-bN)J Y - A Jx1'2Jysin(2yy+y,+u) (84) 

Another constant of the motion may be constructed by 

noticing that in the variables (<,J 5' .n,Jn) the generator 

F2(~xrJS;~yJ,,) = (~Y~+Y,) Js + (2yy - y,) J,, (85) 

transforms the hamiltonian tc 

K = (vx-aN)(Jg-J~)+2(~y-bN) (Jg+Jn)-2A(Ji-Jn)1'2(Jg+Jn)sin(S+a) 
(86) 

Sincethis hamiltonian is independent of n, the corresponding 

conjugate variable J rl is a constant of the motion. Hence 

J Y - 2Jx = 4Jn = constant (87) 

Then, remembering that a+2b = 1 

K= 72vy-vx- (2b-a)NI Jn+ (2vy+vx-N) Js - 

- 2A(J<-Jrl) 1'2(Jg+~q)sin(~+a) . (88) 

In order to determine the amplitude variation of the 

betatron tunes, transform to the variables using the 

generator 

F2(c,J \/= 52 -t(Jg-J? 1'2(Jg+Jn_~~~(~+~) 
-9 ,i \- (89) 

which is used to eliminate the 5 variable in the transformed - 

hamiltonian to the order of accuracy being considered. The 

new hamiltonian becomes 

K =>Vy-vx-(2b-a)Ny Jq+EJ A2 
i - ,(355-J,,) (Jg+Jn) (l-co+(~+a$ , 

(90) 
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where 

E =2v +vX-N, 
Y (91) 

and the parameter t was chosen so that 

Et = 2A (92) 

One further transformation would be necessary to remove 

the term in cos[2(&+c)] . However, since this term is 

already of higher order its average value is a sufficient 

approximation. Thus 

K = [2vy -vx-(2b-a)NlJn+ EJ 
r 

- $ (2J -J ) (J +J ) 
1 n r n 

Since only the action variables are contained in the 

hamiltonian the betatron tunes are: 
2 

= E - 2 '+3J +J ) = 2Av 
1 n Y + Avx 

(93) 

(94) 

2 
2vy-vx-(2b-a)N-2 '$(J -J ) = 2Av 

5 Q Y - Avx (95) 

or rewriting such that the original linear tunes are (v x0' uyo) 

then 
2 

V = ” 
X x0 -2AY(J +Jn) 

I 
2 

vy = vyo -2ArJ 
I ' (97) 

where now 

E = 2v yo + vxo - N (98) 
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Note that a Poincare' invariant yields 

E 
X 

+E = 
Y ss 

dTxdx + SS d~ydy=R~~JzdL+RjjdJ,ldrl=2aR(JlfJn) 

and that the previous invariant 

4Jn = J -2Jx = 
Y 

Thus 

V = v A2 
X x0 - T&R - (Ex + EY) 

Tf; (1E + 5E ) vY = l)yo - - ZX -4y 

(99) 

(100) 

(101) 

(102) 

EFFECT OF TERMS IN sin(2Qy-ex) AND COS(~I/J~-$~) 

The effectiveness of these terms depends on the magnitude 

of e = 2v - vx 
Y 

- N which for the booster amounts to -16.9. 

This value is too large to produce much amplitude shift and, 

therefore, this case will not be considered. 

NUMERICAL RESULTS FOR BOOSTER 

Numerical input comes from the linear orbit program 

SYNCH which in ,turn utilizes the basic booster parameters. 

This input is tabulated in Tables (1 - 3). 

Harmonic analysis of vx - R/Bx and v 
Y - R/B, was carried 

out using the betatron functions graphically interpolated to 

values at regular intervals. The program HANAC then yielded 

Pl = .2212 and Ql = .2020. 
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Secondly, the values of the coefficients A and B 

in Equations (50 - 51) and Equations (71 - 72) were 

obtained at the longitudinal locations indicated in 

Table 3. To do this the hard edge effects were omitted 

with the intention of handling them separately. The pro- 

gram COEF evaluated these functions using the ingut from 

Tables (1 - 3). 

The hard edge effects arose from the terms containing 

Ail, Azl; and from AlI, A21 when finite edge angles were 

employed to yield parallel end faces of the magnets. The 

terms in Ai1 have a delta function contribution at the 

magnet ends. Similarly the term in AGl has a delta function 

derivative contribution at the magnet ends. To obtain the 

hard edge effects due to finite edge angles one replaces 

Al1 in Eq. (50) and (71) by 

A11 + Al1 S - Aoltana6(NB). i, (103) 

where S(i.Nti - Xtana) is a Step fUnctiOn. For A 21 the 
replacement is 

A21 
N2 + A21S - 2iAnlltancr6(N8) + Aol+zan2cr6'(NB). (104) 
R 

Notice that the longitudinal variable used is IV8 which 

increases 2n/Sector. The edge angle is different for the 
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F and D magnets because of the different magnetic radii 

and is of opposite sign on each side of the magnet. The 

program COEF gives the contributions to the A and B co- 

efficients that are proportional to the 6-function and to 

the S'-function. 

The program HANAB provides a fourier analysis of the 

discontinuous functions A and B in which the 6-function and 

S'-function contributions have been removed. Since the 

COEF program provides the strengths of the A-function and 

5'-function contributions at each end of the four magnets 

in a sector, it is a relatively simple matter to find the 

harmonic coefficients of the sum of these contributions. 

In this manner the net harmonic coefficients as defined 

in Zgs. (56 - 57) and Egs. (78 - 79) are determined. 

Having determined the harmonic coefficients of lowest 

order, ? 1' Ql, Ao, Al, A2, Bo, Bl, B2, the amplitudes A in 

Eg. (60) and in Eg. (83) may be found. These amplitudes 

together with the measure of the distance from the reso- 

nance E and the beam emittances give the tune shifts. 

Table 4 gives the harmonic coefficients as outlined and 

Table 5 gives the tune shift results. Table 5 presents 

the third order tune shift due to the proximity of the 

operating point to the 3vx = 24 resonance and the \jx + 2v = 24 
Y 

resonance. 
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NONRESONANT FOURTH ORDER TUNE SHIFT 

As is already evident from the third order effects, 

it would be a rather tedious exercise to evaluate the 

fourth order effects with the same degree of detail as the 

third order. The dominant terms in the fourth order hamil- 

tonian are 

fit4) - ’ $ (x4 - (5x2y2 -- 24 p 31 + Y4L 

After the action-angle transformation of Eg. (34), this 

becomes 

K(4) kk3 22.4 = --g--(5,p,s~n $x - 65,5ypx~y~i~2~x~i~2~y 

+ B:p:sin4$y)I 

where Eg. (38) gives the expressions for $, and $y. 

(105) 

(106) 

The fourth order hamiltonian has a nonresonant 

contribution given principally by the following average 
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K(4) - 1 - x<kk3B;R2),, J; - ; {kk3k&,R2~ ‘xJy . AV. 

Letting 

c =-+ @k3BxByfi2) 

the nonresonant tune shift becomes 

6V 
X 

= 2BJx + CJ 
Y 

6V 
Y 

= + CJx + 2DJ Y 

(107) 

(108) 

(109) 

(110) 

(111) 

(112) 

The program COEF evaluates the hamiltonian coeffi- 

cients in Eq. (106) and the program HANAB produces the 

azimuthal average. Using 

EX 
= 2rRJx 

EY 
= 2nRJ 

Y (113) 

to evaluate Jx and J 
Y 

from the horizontal and vertical beam 
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emittances, one may evaluate the tune shifts. Table 6 

gives these results. As may be seen the fourth order non- 

resonant effects are larger than the third order resonant 

effects transformed to fourth order. 
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TABLE 1. GENERAL BOOSTER PARAMETERS 

Average Radius (m) 
Number of Sectors 
Radial Emittance of Beam (mm-mrad) 
Vertical Emittance of Beam (mm-mrad) 
Radial Betatron Oscillations 

per Revolution 
Vertical Betatron Oscillations 

per Revolution 

75.4717 
24 
5oll 
2oll 

6.7 

6.8 

TABLE 2. BOOSTER MAGNET PARAMETERS 

F D 
Magnetic Radius (m) 40.8469 48.0341 
Magnet Length (m) 
Normalized Gradient (m -3 

2.8896 2.8896 
2.2147 -2.7719 

Normalized Second Gradient (m -2) .6079 -1.2560 
Normalized Third Gradient (m -3 ) -21.63 6.45 
Magnet Location (radians, 2r/sector) 

Entrance (first magnet) 
Exit (first magnet) 
Entrance (second magnet) 
Exit (second magnet) 

Edge Angles (radians) 

1908 1.2687 
1:1097 2.1876 
5.1735 4.0957 
6.0924 5.0146 

Entrance (first magnet) 
Exit (first magnet) 
Entrance (second magnet) 
Exit (second magnet) 

03536 03007 
-:03536 -:03007 

.03536 03007 
-.03536 -:03007 
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TABLE 3. ORBIT FUNCTIONS FROM SYNCH 

Longitudinal Position (radians, 2n/sector) 

0000 
:6502 

1.2687 
2.1876 
4.0957 
5.0146 
5.4032 
6.1878 

.0954 
8800 

1:2687 
2.1876 
4.0957 
5.0146 
5.6329 
6.2832 

1908 
1:1097 
1.4984 
2.6646 
4.3253 
5.0940 
5.8627 

.1908 
1.1097 
1.7281 
3.1416 
4.5550 
5.1735 
6.0924 

BETAX (m) 

33.6626 
30.1501 
17.3038 

7.5917 
7.5917 

17.3038 
26.0209 
33.6653 

ALPHAX 

.oooo -.0089 
2.3918 3.2696 
3.3965 3.3857 

4948 
-:4901 

4901 
-:4948 

-3.3857 -3.3965 
-3.2696 -2.3918 

.0089 .oooo 

33.6653 
26.0209 
17.3038 

7.5917 
7.5917 

17.3038 
30.1501 
33.6626 

4205 
111892 
1.9579 
3.6186 
4.7848 
5.1735 
6.0924 

33.6733 33.6733 32.8011 
20.8814 20.8814 19.0473 
13.2161 10.4388 8.6365 

6.4890 6.1214 6.4890 
8.6365 10.4388 13.2161 

19.0473 20.8814 20.8814 
32.8011 33.6733 33.6733 

-.0178 
3.7768 
2.3291 

2450 
-19660 

-3.5776 
-1.2428 

-.0470 
3.7588 
1.5537 

-1:Z% 
-3.7588 

.0470 

1.2428 
3.5776 

9660 
-:2450 

-2.3291 
-3.7768 

.0178 
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TABLE 3. ORBIT FUNCTIONS FROM SYNCH (Cont.1 

BETAY (m) 

5.2734 5.2905 5.3417 5.3417 5.7548 
6.7198 8.3470 10.8223 10.8223 11.8806 

12.9992 12.9992 16.1015 18.5549 20.0667 
20.4567 20.4567 20.1193 20.0068 20.1193 
20.4567 20.4567 20.0667 18.5549 16.1015 
12.9992 12.9992 11.8806 10.8223 10.8223 

8.3470 6.7198 5.7548 5.3417 5.3417 
5.2905 5.2734 

ALPHAY 

.oooo 
-.8804 

-2.2976 
1371 

-:1500 
2.2895 
1.3933 

.0569 

-.0569 -.1138 -.1092 -.4680 
-1.3933 -2.0655 -2.0561 -2.1768 
-2.2895 -1.9618 -1.4002 -.6716 

1500 
-:1371 

.0750 0000 -.0750 
-.6716 1:4002 1.9618 

2.2976 2.1768 2.0561 2.0655 
8804 .4680 .1092 .1138 

:oooo 

TABLE 4. HARMONIC COEFFICIENTS OF A(B) and B(8) 

Resonance 
Radial Phase Flutter (Pl) 

(3v, = 24) 
.2212 

Vertical Phase Flutter (Ql) .2020 
Average Coefficient (Ao) -47.44 
Coefficient of cosN0 (Al) - ,119.41 
Coefficient of sinNO (A21 .oo 
Average Coefficient (Bo) .oo 
Coefficient of cosNe (Bl) .oo 
Coefficient of sinNo (B2) 4.65 

(wx + 2vy = 24) 
.2212 
.2020 

59.25 
-94.18 

.oo 

.oo 

.oo 
-3.19 
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TABLE 5. THIRD ORDER RESONANT TUNE SHIFT 

(3ux = 24) (vx + 2v 
Y 

= 24) 
Amplitude (A) 70.80 50.70 
Distance from Resonance(~) -1.3 -3.7 
Radial Tune Shift -00113 .00100 
Vertical Tune Shift .00071 

TABLE 6. FOURTH ORDER NONRESONANT TUNE SHIFT 

Amplitude (B) -46139 
Amplitude (C) 33866 
Amplitude (D) 1726 
Radial Tune Shift -0.0261 
Vertical Tune Shift 0.0117 


