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The transverse oscillations of a charged part icle in a 

circular accelerator have been studied extensively . This 

report gives a handy compilation of useful formulas derived 

by standard procedures. 

Reference Curve and Coordinate System 

We consider the motion of a particle with charge e and 

momentum p moving in a static magnetic field having an approxi- 

mate midplane. We choose as the reference curve a closed plane 

curve lying in the midplane and having radius of curvature 

p = p (z) where s is the coordinate along the curve in the 

direction of motion of a positively charged particle. The 

reference curve, or p (z), is so chosen that deviations of 

particle orbits from the reference curve are small. The x 

coordinate is along the outward normal and in the plane of the 

reference curve, and the y coordinate is perpendicular to the 

plane of the reference curve and in the direction of the main 

magnetic field, thus, forming a righthanded coordinate system. 

The circumference of the reference curve is written as 2nR. 

Magnetic Field 

The scalar potential of the static magnetic field expanded 

about the reference curve has the form 
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Where 0 o is small so that the y = 0 plane (plane of the 

reference curve) is the approximate magnetic midplane. The 

magnetic field components are 

(1) 

(2) 
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1 d where k = k(z)- p(z) and prime means z. The coefficients 

c's and d's are related to the a's and b's by the Laplace 

equation 

V2@ = A + &{$&l+kx) gj+ k [& $-])= 0 
aY2 

(3) 

and are 

c2 = -a; -kal-a2 
, 

c3 = 2ka" + k'a' 0 0 -ai + k2al -ka2 -a3 

c4 = ,.... 

d3 = -b; -kb2 -b3 

d4 = . . . . . 

. . . . . 

In terms of the field on the reference curve (x=y=O) the co- 

efficients a's and b's are 

f a0 =/Bsdz, (aA = Br : a) 

a1 = Bx 
aB 

z-5 a2 ax 

a2r5 
ax 

a3 ax2 

a2B 
-+ = sextupole 
ax 

B V = dipole field 

quadrupole field 

field 

(4) 

(5) 

Since only a; (=Ba on reference curve) and never a0 will appear 

in orbit equations we will substitute the letter a for a;. 
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Orbit Hamiltonian 

The orbit Hamiltonian in x, p,, and y, p with z as the 
Y 

independent variable is 

H (x, P, , Yr Py: 2) 

= - (l+kx) /1 - (px-~Axj2- (Py-~Ay;' + 'AZ 
I 

e where E : pc, c = velocity of light in vacuum, and Ax, Ay, AZ 

are components'of the vector potential of the field and can be 

expressed in terms of the scalar potential 0. When expanded in 

powers of x, p,, and y, py we get 

H = H(O) + H(l) + Ht2) + Ht3) + . . . . (7) 

with 
H(o) = -1 (irrelevant) 
H(1) = (Eb 1 -klx - Ealy 

,(Z) 1 = 2 (px2+ P,"j + 3 [YPx- xpy: 

+ 5 (kbl+ b2 + %2)~2- 5 (2kal+ 2a2+a')Xy + 5 (-b2+ 3' 

Ht3) = $ kx (p,z+ py2,)+ f ki + %)X + biY] (YP,- xPy) (8) 

+ g 2kb2+ b3 + Ea 
il 

(ai - %)] X3 

- E 4 Za” 1 + 6ka2 + 3a3 - 2ka' - 2k'a - Eabi 1 X2y 

- -E 
6 C ka bi + 3kb2+ 3b3 - Ea ai - 7 ( )I Xy2 

+-E 6 [ 
ai - k2al + ka2+ a3 - 2ka' - k'a + Eabi 1 y3 

H(4) = . . . . . . . 
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Remembering that both k and sB have the dimension of 

(length)-l we see that p,, p Y , 
and H are all dimensionless. 

We can further express all length in units of the equivalent 

radius R of the reference curve, and redefine 

_ eR 
E=pc and k 5 E (9) 

The variables x and y are, then, dimensionless, and in units 

of R the independent variable z is the angle 8 along the 

reference curve advancing ~II for each circuit around the curve. 

Transformations and Approximations 

Generally the desired magnetic field is one for which the 

only non-vanishing coefficients are bl and b2 and these have 

sector periodicity. However, because of design and construction 

imperfections all coefficients are present as small errors. Write 
- 

bl = b10 + bl and b2 = b28 + b2 (10) 

where b10 and b20 have exact sector periodicity and bl and x2 

are small errors. The reference curve is so chosen that k = Eb10 

and, hence, also has exact sector periodicity. 

The effects of the exactly periodic terms in H (2) have been 

studied extensively and were shown to lead to linear transverse 

oscillations (betatron oscillations) of the orbits about the 

reference curve which can be transformed (Floquet transformation) 

to harmonic oscillations with wave numbers vx and v . 
Y We can, 

therefore, replace the exact sector-periodic terms in H 12) by . 

harmonic oscillator terms. The Hamiltonian, now, becomes 
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H(1) = Esjlx - Ealy 

H(2) = 1 ( > ( 2 21 2 px2 + Py2 + z' 22 vx x + vy y / + T (ypx- WY) 

,a212 E I-- + ; .(q z2i --$ /" - 2 \Lhal+ 2a2; a'\ -- _ 
i "I - 

( 2 
+$ -L2+ 7 y2 

) 
(11) H(3) = unchanged 

H(4) = ..A... 

Where we have kept the same letters x, y and p,, p Y 
to denote 

the transformed coordinate and conjugate variables. The first 

two terms in H (2) give the linear (now, harmonic) oscillations. 

Far away from resonances the effects of all other terms are 

small non-secular modifications of the linear oscillations. 

Close to a resonance certain of these terms produce large 

resonant (secular) modifications. For each resonance we can 

pick out the relevant terms (excitation terms) and transform 

the Hamiltonian under the adiabatic approximation to a form 

explicitly independent of the independent variable 6 

For values of vx and v Y 
such that 

9.v,+ mv = Y 
n+6- 

i 

6 small 
II, m, n integers, n 30 1 (12) 

the transformed canonically conjugate variables 

4Y1 
Jy are related to the original variables x, 

I 

4x = 4, + vxe - k6 8 r Jx = vxAx 2 

'1' + m2 

4Y 
-ia =$ly+vye- B,J = "Y"Y 

2 

J&z + m2 
Y 

4 X’ JX’ and 

pxr and Ye py by 

(13) 
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where 

Axe iQx- px :xii;r AyeliYYi y ' +iJ 
x , vY 

The motion is then given by the transformed Hamiltonian 

K (ax, Jxn +,P Jy) through the canonical equations 

Y 

(14) 

(15) 

Transformed Adiabatic Hamiltonians 

The transformed adiabatic Hamilton K (@x, Jx, @y, Jy) 

could be written in a general form for the resonance Ilv + X 
mV 

Y 
= n + 6JL2 + m2 , but such a form is rather complex and 

difficult to use. Since in most cases one is interested in 

resonances of low orders and since we have the explicit expanded 

form of H only up to Ht3) we shall list here the transformed 

Hamiltonians separately for each resonance up to the third order. 

(A) Resonances excited by H (1) - Only first order resonances 

are excited by H(l) 

(1) vx =n+6 
2c 

K=-” 

"vx 
where 

m 
c c ei (ne+a,), 

n=-m n 
sb 

1 

(16) 

(17) 
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(2) vy =n+6 

2c 
KG-2 

J”r 
JJycos 

( 
qy+an J - 6Jy 

where 

m 
c c ei(ne+an), -Ea (19) 

n=-cc 

(B) Reso&ancIs excited by H'2) - Only second order 

resonances are excited by H (2) 

(1) 2wx = n + 26 

‘n K = - 7 Jx ~0s 
X 

(Wx + an) - 6Jx (20) 

where 

co c c ei n8+a i 5 i n=-m n 
nj= 2 

(2) 2vy = n + 26 

K= 'n - -"I; Jy cos (20y+ah) - 6Jy 

where 

m 
Z Cneitne+anj= $ (- 75, + 2’) 

n=-m 

(3) vx + vy = n + d2 6 

(21) 

(22) 

(23) 

C 
Kc- --ii.- VT& cos (mx+ $J~+ an) - > (fx+ Jy) . 

Jv 
XY (24) 
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where 

co c c ei 
n=-m n 

i nO+cc~ n)= - 5 2a2+ a 3 + ia (vx-vy)j 
i 

(25) 

(4) fVxT v =n+fi 6 Y 

K=- 'n 
Jv 

XY 

- s (iJxTJy) 

\ (26) 

where 

co 
z cne i!ne+a. ' 1 n=-F 

n=-m 12 c( 
2kal+2a2+ajk ia(vx+vy,,Jt27) 

(C) Resonances excited by Hc3) - First and third order 

resonances are excited by H13' 

(1' 3v x =n+36 

K=- ‘n J 3'2cos 2v 312 x 3ex+an)- 6Jx 
X 

where 

m 
c c ei(n8+an)= f 

n n=--m 6 b3+ Ea (ai - %]- %2 

(29’ 

(2) 3vy =n+36 

K=- 'n 
2v 312 Jo 3'2 cos (3my+ an) - 6Jy (30) 

Y 
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where 

m 
c c ei(ne+an)= g 

n ai-k2al+ka2+a3-2ka'-k'aicabi 
n=-m 

(31) 
(3) 2vx + vy = n + ~36 

KG- 'n 
2vx$ 

Jxq cos (2$x+(yfaJ- k (2Jx+ Jy) 

\ (32) 

where 

y cnei( ne+%l) = - t (2a; + 6ka2+ 
n=-co 

-i $(fi + %)(Vx-Vyj (33) 

(4) f2VxiV =n+ AS Y 

K=- cn 
2vx$ 

J& cos k2$,T@y+an) -i (*2JxrJy) 

(34) 

where 

y Cnei(ni+anj= - 5 ( 2ai + 6ka2+ 3a3-2ka'-Zk'a-Eabi 
n=-m 

T i 5 (ai + %)(Vx+Vy) (35) 

(5) 2vy + vx = n + 66 

K=- 'n 
2vy$ 

Jy *'Jx cos (2$y+$x+an) -i (2Jy+ Jx) . 

(36) 
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(8) “r =n+& 
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K=- cn 
2v 312 Jo 

312 cos $y+"n) 
( 

Y 

Dn Jxay cos 0 +Bn i 
2vxJ3E; \Y 

where 

(42) 

[nCi2nei(na"n)= Sk; - k2al+ ka2+ a3- 2ka'-k'a +Eab;) 

(43) 

y Dnei(n8'Bn)= - @ai + 6ka2+ 3a3- 2ka'-2k'a-cabi) 
n=--03 

+ i Cj(ai + 9) Vy 

For ease of reference we list here, again, the definitions 

of the magnetic field coefficients 

a B = 2 = field along reference curve 

al = Bx 

aBx 
a2 = Bx 

--- / 

Midplane error field 
as, 

a3 + ---$ 

a4 = . . . . . /J 

bl = By = guide field (dipole component) = b10 +%l 

= exact sector-periodic guide field 

= guide field error 

E!Y 

a 

b2 = ax 
= guide field gradient (quadrupole component) = b20f62 
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b20 = exact sector-periodic guide field gradient 

L. I’2 
5 g*~i& f&l< gradie=At fiioi 

a2B 
= 2 = guide field sextupole component 

b4 = . ..I... 

all evaluated on the reference curve (x=y=o). In addition we 

recall 

E :eR 
PC 

and k 5 f = sb 10 

Example of Application 

Take as an example the excitation of the 2nd order resonance 

V +v = n+fi6 (44) X Y 

by the rotational misalignment of the quadrupoles in the main 

ring of the NAL accelerator. When an ideal quadrupole with field 

gradient G (in real units) is rotated along its axis by a small 
aB 

angle w a midplane error field gradient a2 = $ = -RG sin2w = 

- 2wRG is introduced and the guide field gradient is reduced to 
aB 

b2 = ax -y = RG cos2w~RG. Since we assume no other errors we have 

a=a = 
1 o and the transformed adiabatic Hamiltonian is given by 

(24), namely 

*=- 'n 
Jv 

JJxJy cos ($x+$y+an)- g Jx+ Jy 
XY 

where 
m 
~ c ei 

n ( 
n9+a ) n=-sa 2 = ~wERG 

n=-CQ 

(45) 

(46) 
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The width of the resonance band can be obtained from (45) 

directly. Since the cosine function has to lie between -1 and +1 

for an orbit to exist we must have 

% 'z 
< K +!?A( 

,5 ' 13, 

Jv i 
XY JJXJY a\ Jy -“+“< <m 

I’ XY 
(47) 

As Jx and Jy go to m, the K term goes to zero and the coefficient 

of %- has a minimum value of 2 when Jx = Jy. Thus, in order 
Jz 

for orbits with infinite Jx and Jy to,exist we must have 

'n =c 6 -c 'n (48) 
J2v' XY 

Jzvxvy 

This, then, gives the width of the resonance. 

The canonical equations are 

d$ x ax _ 'n =--- \I 
3 

de 3Jx 2% =x 
cos $x+$y+an - 2 

> (49) 

dJX % -= -- 
de z, = - Jv JJXJY sin(@x + ey + an 

i 

gY+ =- (50) 
Y 

In:@ cos (@x + $y + an) - 2 
XY 

'n 
I/v 

JJ,Jy sin $x + $y + an 
> 

XY 

Taking the difference of the g equations we get immediately 

Jx- J =vA 2 - v A2 = constant 
Y XX YY (51) 

As a matter of fact since the phase variables $x and ey appear 

in K only in the combination ?.$I~ + may we always have as part 
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of the solution 

wX -LJ = constant 
Y (52) 

for non-zero 9. and m. This leads directly to the conclusion 

that sum resonances where II. and m have the same sign are un- 

stable, namely both Jx and Jy can go to ~0 ; and difference 

resonances where P. and m have different signs are stable and 

represent only\a coupling between x and y oscillations. 

Further manipulations of (49) and (50) for 6 = 0 give the 

equation 

with the solution 

Jx + J f 'n 
= v A2 xx+~A2=e e 

Y YY K XY 

(53) 

(54) 

This, then, gives the on-resonance growth rate. 

If the rotational misalignment is assumed to be uniform 

within each quadrupole and uncorrelated between quadrupoles we 

have, 

0 ‘n = E ERG(w&~~, 
rms a 

independent of n up to the 
cutoff value of n = 

i 
(55) 

where Q is the total number of quadrupoles in the ring and F is 

the fraction of the ring circumference occupied by quadrupoles. 

For the main ring of the NAL accelerator the parameters are 
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(using the new lattice with two quadrupole lengths): 

I 

R = 1000 m Vx~V Y Z20.25 

Q = 240 

1 

F = 0.075 
2 

ERG = $ G = 1.87 x lo4 

For a large misalignment error of (w)~~~= 1 mrad. This gives 

'n = 0.18 and ' 
/ 

: 

Half width of resonance band = 'n = 0.009 
VT-i- XY 

A-T- 
On-resonance growth rate = 2* = 17.7 rev/e-fold 

n 


