FERMILAB-LU-182 _ R. GOODWIN

Accelerating Module Conditioning
Local application for new Linac
Sat, Jul 6, 1991
Introduction :

Conditioning the new Linac rf cavities will take hours or days for each
module. This local application is an implementation designed to automate the
procedure so that it can run unattended. The main idea is to slowly ramp the rf
peak forward power from the klystron toward a target value, as long as the
radiation remains below a threshold, taking care to watch the vacuum pressure
and the spark rate, reducing the forward power if either exceeds specified levels,
and resetting any rf system trips. Stating the main idea is easy. The full
implementation of the program takes more words and is the subject of this note.
The Parameter Page provides the user interface.

Hardware signals

Description Name Units

1. rf peak forward power A/D reading KAWG1P MW

2. rf peak forward power D/ A setting " MW

3. vacuum pressure A/D reading (2) KAV1, KAV2 \Y%

4. radiation monitor A/D reading SACVRD - R/H

5. spark digital status bit reading

5. rf"on" digital status bit reading

6. rf interlocks reset digital control bit pulse

7. rf system reset digital control bit pulse

Software parameters
Description - . Name Units -

1. enable status/control bit for this application

2. rf peak forward power target value KATRGP MW

3. rf peak forward power delta KADLTP MW

4. time interval delta KADLTT SEC

5. spark rate threshold KASPKT %

6. vacuum pressure threshold KAVACT \Y%

7. rf peak power back-off percent KAPPBK %

8. maximuin #resets of trips KAMAXT

9. spark rate output value KASPKR %
10. radiation threshold KARADT R/H
11. delay after back-off due to vacuum KAVACD SEC
12. maximum #sparks to compute spark rate KAMAXS



Klystron Conditioning Sat, Jul 6, 1991 : page 2

Local application support

As a local application, the code is called as a Pascal procedure by a special
entry in the Data Access Table of the local station. This entry causes each local
application residing in the system Local Application Table be called by name.
The 4-character name is used to search the CODES table of programs that have
been previously downloaded by name into non-volatile memory. The first
argument of the call is a byte whose value identifies the type of call:

0: Initialization call. Allocate and initialize static memory used during

the time the local application is enabled.

1: Termination call. Free static memory allocated by Initialization call. -

2: (not used)

3: Cycle call. Process with new data in data pool.

The second argument is a pointer to the 12-word parameter area of the Local
Application Table entry. The first longword of this area provides storage for the
pointer to the static memory allocated during the Initialization call. The next
word is the enable Bit#, and the remaining words are used for additional
parameters, usually specified as Channel#s and Bit#s. (See the layout for this
application in a later section.) When the enable bit is set, the application is
enabled. When it is clear, the application is disabled. The system notices changes
in the state of this enable bit and schedules Initialization and Termination calls
accordingly. When there is no change in the enable bit, and the bit is set, the

~ application receives a Cycle call. Special logic is included that provides for
automatic replacement to a new program version as soon as it is downloaded, if
the application is enabled. A local application is downloaded into non-volatile
memory but executes out of on-board ram. A checksum is kept for the
downloaded version that is verified each time an application’s enable bit changes
from a 0 to a 1 and its code is copied into allocated ram for execution.

State flow

Local applications of the closed loop style are typically implemented with
state logic. In this case, there are two states: 0 and 1. When the application is first
enabled, state 0 is asserted. While in state 0, the application looks for a valid set
of readings (both hardware and software) and also for the rf system to be “on”.
Constants in the program are used to assess whether the values of the hardware
and software parameters are within “reasonable” ranges. Once these conditions
are satisfied, the program switches to state 1.

In state 1, the time delta value is used as a period over which to determine a
maximum value of the rf peak forward power readings. At the end of the time



Klystron Conditioning Sat, Jul 6, 1991 page 3

interval, the maximum is compared with the target value to determine whether
an adjustment of the peak power delta can bring the power closer to the target
value. Independent of this time delta interval, the maximum #sparks parameter
is used to form a spark period interval over which the spark rate is calculated.
The spark rate is checked against the threshold value to decide whether to back
off. Vacuum is always checked against the vacuum threshold to decide whether
to back off. And the rf “on” status is always checked to detect rf system trips.

All software input parameters (except the maximum #trips) can be modified
during normal state 1 operation to take effect after the current time interval. Also,
the peak forward power can be changed manually during operation, as the
changes made by the algorithm are always app'lied incrementally from the
current setting.

A “state 0” status bit is provided as an output so that it can be monitored by the
alarm system to announce when the application is no longer regulating.

Logic details

The response to an rf system trip is to first back off the forward power, reset
the rf interlocks and subsequently to reset the rf system itself. Such resets of rf
trips are limited to repeat no more often than 10 seconds, a program constant.

There are two vacuum readings. The one with the worst reading is used in the
algorithm because only one vacuum pump may be required to be running, and
the reading of a pump which is off appears as “excellent” vacuum. The response
to poor vacuum compared to the vacuum threshold value is to back off the

- forward power and delay for the vacuum delay time before allowing another
back-off due to vacuum. This gives the vacuum system time to approach
equilibrium under operation at a reduced peak forward power level.

The spark rate is computed over the number of 15 Hz cycles required to
accumulate the number of sparks specified by the maximum #sparks parameter.
Expressed as a percentage, it is compared against the spark threshold.

When there have been more rf system trips than that given by the maximum
#trips parameter, the application reverts to state 0. Manual recovery of the rf
system will allow a return to state 1 processing with an additional maximum
#trips permitted—assuming nothing else is wrong.

The application was developed using MPW Pascal on the Macintosh to take



Klystron Conditioning Sat, Jul 6, 1991 page 4

advantage of its support for the floating point 68881 chip, as most of the logic in
the program is based upon engineering units values. Its current 400 lines of
source code run in less than 3K bytes.

Parameters layout -
The layout of the parameters area of the Local Application entry is as follows:

last enable count K R M P

pir to static memory enable Bit#] | spark Bit#

f ‘on' Bit# ilocks Bit# | | pPwr Ch# | |vacuum Ch#

rad Ch# reset Bit# — other Ch#

The first word retains the status byte that includes the enable Bit in the lo byte.
The enable bit itself is always the least significant bit (bit#0). The other 7 bits can
be used for additional outputs generated by a local application. This application
uses bit#1 of the byte for the “state 0” output bit.

The count word is merely a diagnostic count of the number of times the
application code is called. It mostly serves to show evidence of obvious activity
when viewing this entry on a memory page display.

The next 4 bytes are the name of the local application. The CODES table is
searched using the type name of LOOP that denotes local applications. (The other
type name in current use is PAGE for page applications.)

The ptr to the application’s static memory, established as a result of the standard
Pascal New procedure used for dynamic memory allocation, is stored during
Initialization call processing for use during subsequent Cycle call processing.

The enable Bit# is the next word. Setting the enable bit to a “1” enables calls to be
made to the application, beginning with the Initialization call. Setting it to a “0”
schedules a Termination call before releasing the program’s execution memory.

The last 9 words are used for hardware Chan and Bit#s. The final word is a base
Chan# of the sequence of Chan#s used for the software application parameters.



