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Measurements of the magnetic form factor of the proton for
timelike momentum transfers
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Abstract

Fermilab experiment E835 has measured the cross section for the reaction pp — eTe™ at s = 11.63, 12.43, 14.40 and
18.22 GeV?2, From the analysis of the 66 observed events new high-precision measurements of the proton magnetic form factor
are obtained.

PACS: 13.40.Gp; 13.75.Cs; 14.20.Dh

Keywords: Nucleon; Form factors

The electromagnetic properties of the proton are factors Gg(g?) and Gu(g?) as a function of the
studied by measuring the electric and magnetic form four-momentum transfer g2. In the spacelike region
(g% < 0) the electric and magnetic form factors of the

proton have been measured in elastic electron—proton

E-mail address: diego.bettoni@fe.infn.it (D. Bettoni). scattering up to [¢%| = 10 (GeV/c)? and |¢?| = 31



(GeV/c)?, respectively. Experimental results for G
in the timelike region (g2 > 0) exist for 4mi <s <
14.4 GeVZ2.

In this Letter we present results from new measure-
ments of the cross section for the reaction pp — ete™
in the interval 11.63 GeV? < s < 18.22 GeV2. The
differential cross section for this process can be ex-
pressed in terms of the proton form factors as follows
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where 6* is the scattering angle of the electron in
the center of mass (c.m.) system and B, is the
velocity of the proton (or antiproton) in the c.m.: 8, =

1—4mi/s.

Fermilab experiment E835 is dedicated to the study
of charmonium by resonant formation in p p annihila-
tions. It is a fixed target experiment, in which the p
beam circulating in the accumulator intersects a hy-
drogen gas jet target. The form factor results for the
data taken in the October 1996 through September
1997 run of E835 were reported in our earlier publica-
tion [2]. In this Letter we report on the results obtained
from the data taken during the January 2000 through
November 2000 run of E835.

The E835 apparatus [3] is optimized for the de-
tection of electromagnetic final states. It is a non-
magnetic spectrometer with full azimuthal (¢) cover-
age and polar angle (8) acceptance ranging from 2°
to 70° in the lab frame. The central detector (11° <
6 < 70°) has cylindrical symmetry around the beam
axis. Its main components are: the central tracking sys-
tem (consisting of 3 scintillator hodoscopes, 2 straw
chambers and 2 scintillating fiber trackers), a thresh-
old Cerenkov counter for e /m discrimination and a
central electromagnetic calorimeter (CCAL) made of
1280 leadglass blocks pointing to the interaction re-
gion. All CCAL channels are equipped with both time
and pulse-height readout. The time measurements al-
low the rejection of signals from out-of-time events
(accidental pileup).

The first level trigger for the e*e™ final state re-
quires two “electron” signals, each defined as the co-

incidence of the appropriate elements of the scintil-
lator hodoscopes and the corresponding cells of the
Cerenkov. Independently, the first level trigger re-
quires two high-energy showers in CCAL with an az-
imuthal opening angle greater than 90°.

Events which satisfy the first level trigger are
processed by the on-line filter, which selects events in
which the two highest-energy clusters in CCAL have
an invariant mass greater than 2.2 GeV /c2.

Events are reconstructed off-line using all informa-
tion from the central tracking detectors, the Cerenkov
counter and the central calorimeter. The two electron
candidates are identified as the tracks with the highest
invariant mass. The selection of pp — e™e™ proceeds
in four steps:

(a) Electron identification. For each candidate elec-
tron track a variable is constructed, called Electron
Weight (EW), using the pulse heights in the scintil-
lator hodoscopes and Cerenkov counter, second mo-
ments of the transverse shower distribution in CCAL
and the fractional shower energy in 3 x 3 block region
of CCAL [2]. EW is a likelihood ratio for the elec-
tron hypothesis versus background hypothesis. Since
we search events with two electrons we use the prod-
uct of the two electron weights. The distribution of
logg(ewl % ew?2) in a clean sample is shown in Fig. 1.
In order to reduce the data sample size a pre-selection

160 |
140 |
120 |
100 |

80

T

60

40

20 f

0 | 1 1 1 1 1
-10 -8 -6 -4 -2 O 2 4 6 8

l0g(ewTxew?2)

Fig. 1. Distribution of logjg(ewl * ew2) for a sample of
¥’ — ete™ events.



Table 1

Summary of the results of the form factor analysis. For each energy region the integrated luminosity L, the selected number of events N, the
cross section ogec = N/ (e - L) are reported. | cos 8% |max is the maximum value of | cos 6*| where 8* is the scattering angle in c.m.; (a) |G p|
calculated in the hypothesis |G g| = |G pl; (b) |G pz| calculated in the approximation of negligible electric contribution

s L N Gacc | cos 0* | max 102 x |Gyl
(Gev?) (b~ (¥b) @) ()

+0.3440.17 +0.18+0.11 +0.2040.12

11.63 +£0.17 32.86 32 1617567010 0.575 L7470 16007 1947057 00k
+0.2340.12 +0.15+0.08 +0.1740.09

12.43£0.01 50.50 34 L1ty 0.601 1480 13 008 163701040 0s

14.40+0.19 5.17 0 < 0.80 0.603 < 1.38 < 1.51

18.22 +0.01 2.10 0 < 1.98 0.512 <2.77 <2.99

is applied requiring log;g(ewl * ew2) > —1 and an
invariant mass of the two candidate electrons greater
than 2.2 GeV/c?. Only events which pass this pre-
selection undergo the subsequent analysis. In the final
selection we require log;g(ew1 x ew2) > 0;

(b) Fiducial volume. To ensure homogeneity in
the response of the detector we accept only events
in which the two electrons have polar angles in the
interval 15° < 8 < 60°. This region is well covered
by central calorimeter, Cerenkov counter and central
tracking detectors;

(c) CCAL multiplicity. To avoid rejecting events
in which the electron or positron radiates a Brems-
strahlung photon which forms a distinct cluster in the
CCAL, we do not impose a strict cut demanding only
two on-time clusters. Events with more than two on-
time clusters are kept provided that the extra clusters,
when paired with either electron candidate, give an
invariant mass less than 100 MeV/c2. In addition
any number of out-of-time or undetermined clusters
is allowed;

(d) Kinematical fit. The goodness of the et¢™ final
state is finally tested by means of a four-constraint
kinematical fit. Since the energy range considered
is near to charmonium resonances which decay into
J /¥ X we use also a kinematical fit to test the J /¢ X
final state, then we compare the fit probability for
eTe™ (Prb(ete™)) with that for J /¢ X (Prb(J /¥ X)).
The event is accepted if Prb(e™e™) > Prb(J /¥ X) and
Prb(ete™) > 1%.

The number N of events selected with these crite-
ria is shown in Table 1. The overall efficiency of the
analysis is the product of the three efficiencies corre-
sponding to the first level trigger, the off-line prese-
lection and the final selection. The efficiency of the

restriction on the fiducial volume is taken into account
in the integration of the differential cross section (1).

The trigger efficiency eyig has been calculated from
special trigger runs at the v’ energy, which required
only one electron. The trigger efficiency is determined
to be:

€rig = 0.90£0.02. 2)

The efficiency of the preliminary selection has been
calculated using clean ¥’ — eTe™ events selected re-
quiring only two on-time CCAL clusters and apply-
ing tight topological cuts relative to the two body final
state. The value of the efficiency obtained with this
method is:

€pres = 0.950 £ 0.012(stat) T 013 (syst). 3)

The efficiency of the final selection was also cal-
culated by means of clean ¥’ — e*e™ events. Fig. 2
shows ete™ invariant mass distributions for candi-
date events after preliminary selection (a) and after fi-
nal selection (b) at the v’ formation energy and off-
resonance at /s = 3.7 GeV. The cross-hatched areas
in both histograms correspond to the background con-
tamination in these samples, extracted applying the
same analysis to the data taken off resonance at /s =
3.7 GeV. Horizontal lines correspond to the decay
¥ — J/YX selected requiring Prb(J/¥X) > 1%
and Prb(ete™) < 10%. It can be seen that the back-
ground contamination from J/v-inclusive decay is
very small.

The efficiency of the final selection is defined as
the fraction of events in the preliminary sample (Fig.
2(a) white) that survive all cuts (Fig. 2(b) white), once
background (including J/¥ X events) is subtracted.
We consider only events with invariant mass greater
than 3.4 GeV/c2. The efficiency of the final selection
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Fig. 2. Invariant mass distribution for e*e™ candidate events, (a) after preliminary selection and (b) after final selection. Events at ¥’ energy are
shown as white histograms and those at i/s = 3.7 GeV are shown as cross-hatched histograms. Horizontal lines correspond to J /v -inclusive
subsample at ¥ energy. The number of events at /s = 3.7 GeV has been rescaled by integrated luminosity.

is:

€sel = 0.706 =+ 0.009(stat) T 355 (syst). (4)
The overall analysis efficiency is thus:
€ana = 0.604 = 0.017(stat) "0 033 (syst), Q)

where the systematic error takes into account the vari-
ation of efficiency with time and the effect of the
background subtraction procedure. The main possi-
ble sources of background for the ete™ final state
are: photon conversions and 7% Dalitz decays, two
body hadronic final states (mainly 7 ¥7~) and J /¢ X
events. These background processes have been studied
in detail and their contributions have been estimated to
be as follows [2]:

(1) Photon conversions from pp decays to yy,
7% and %70 and Dalitz decays. We estimate these
processes to contribute backgrounds of < 3.1 x
1073 pband < 1.7 x 1073 pb at s = 11.63 GeV? and
12.43 GeV?, respectively.

(2) Misidentification of the m+7~ final state as
e*e~. We estimate this process to contribute < 4.3 x
1073 pb and < 2.9 x 1073 pb at s = 11.63 GeV? and
12.43 GeV?, respectively;

(3) Inclusive final state J/¥X — ete™, with X
not detected. The contribution of this process is

estimated to be 1.6 x 10~2 pb and 1.0 x 102 pb at
s = 11.63 GeV? and 12.43 GeV?, respectively.

Comparing the estimated upper limits with the values
of cross section reported in Table 1 we see that all
background sources give a negligible contamination,
therefore no subtraction from the number of candidate
events is performed.

From the number N of selected events with an in-
tegrated luminosity L and an efficiency €y, the differ-
ential cross section integrated in the ¢.m. acceptance
region can be calculated as follows:

N
= —, 6
Oacc P ©)

Oacc 18 a function of the magnetic and electric form
factors Gy and Gg:
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Fig. 3. All existing values of the magnetic form factor in timelike region obtained with the hypothesis |G 3| = |G g|. For the earlier experiments

see Ref. [2] and references therein.

where A and B are:

+| €08 0™ [max

A=2 / (14 cos?6*) d(cos 6*), (8)
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Since the small number of events and the limited
cosf* range do not allow us to measure the angu-
lar distribution, two alternative hypotheses have been
made: (a) |GE| = |G p|, as at the threshold of the time-
like region (s = 4m§c4); (b) the “electric” contribution
is assumed to be negligible. Under these two hypothe-

ses the expressions of |G | are, respectively:

28,50, 2
@ IGM|=|:—p—'Ef:2—} , (10)
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Table 1 shows the results for the magnetic form fac-
tor of the proton calculated under the two hypotheses.
An upper limit at the 90% confidence level is reported
where there are no observed events. The errors shown
are respectively statistical and systematic. The system-
atic uncertainty is due to the errors on efficiency and
luminosity. The values of |G| obtained under hy-
pothesis (a) are plotted in Fig. 3, where they are com-
pared with earlier measurements. It can be seen that
the new data are in excellent agreement with the pre-
vious E760 and E835 results.



Quantum chromodynamics predicts an asymptotic
behavior for the magnetic form factor of the proton in
the timelike region at high energy of the form:

o s\ 72
Gu(Q?) = s—2<ln ﬁ) , (12)
where A =0.3 GeV is the QCD scale parameter and
C is a free parameter. This functional form comes
from the prediction that for large momentum transfers
q*|G yr} should be nearly proportional to the square of
the running coupling constant for strong interactions
ozsz(qz) [4,5]. The dashed line in Fig. 3 shows a fit to
the data according to Eq. (12). As can be seen, the fit
agrees well with the data over the ¢2 range explored
so far.

In summary, we have presented new, high-precision
measurements of the proton magnetic form factor in
the timelike region at large g2. The results are in
excellent agreement with previous measurements and
with the semi-quantitative predictions of QCD.

Acknowledgements

The authors wish to acknowledge the technical
support from their respective institutions and the
contribution of the Fermilab Beams Division. This
research was supported by the US Department of
Energy and the Italian Istituto Nazionale di Fisica
Nucleare.

References

[1] A. Zichichi, et al., Nuovo Cimento XXIV (1962) 170.
[2] M. Ambrogiani, et al., Phys. Rev. D 60 (1999) 032002.
[3] S. Bagnasco, et al., Phys. Lett. B 533 (2002) 237.

[4] G. Lepage, S. Brodsky, Phys. Rev. Lett. 43 (1979) 545.
[5] G. Lepage, S. Brodsky, Phys. Rev. D 22 (1980) 2157.



