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1 Introduction

Despite its tremendous phenomenological success, the standard model is almost cer-
tainly not a fundamental theory of nature. Quantum instabilities of the Higgs po-
tential strongly suggest that it must be replaced by some other theory at energies
not much higher than the electroweak scale. Such a theory, for example, can be a
supersymmetric theory [1], a strongly coupled gauge theory [2], or a theory of quan-
tum gravity [3]. In these theories the quadratic divergence of the Higgs squared-mass
parameter is cut o� either by embedding the Higgs boson into some larger multiplet
or by giving it an internal structure. A physical scale then exists, �NP, at which
many new particles appear revealing the underlying symmetry or dynamics.

In this paper we consider a class of theories where the standard-model Higgs boson
arises as a composite particle of some strongly coupled dynamics. The dynamical scale
�NP then must be parametrically larger than the scale of the Higgs mass in order to
avoid strong constraints coming from direct and indirect searches of new particles at
colliders. This suggests that the Higgs mass must be protected by some (approximate)
symmetry even below the scale �NP. A natural candidate for such a symmetry is an
internal global symmetry under which the Higgs boson transforms non-linearly: the
Higgs is a pseudo-Goldstone boson (PGB) of the broken global symmetry. This
situation is somewhat similar to that of the pion in QCD, although for the Higgs
there are additional requirements. It must have a sizable quartic self-coupling and
appropriate Yukawa couplings to the quarks and leptons. In this paper we aim to
build theories of this kind, which are well under control as e�ective �eld theories,
and in which some quantities are even calculable despite the strongly interacting
dynamics.

The basic observation is the following. Suppose we have a strongly coupled gauge
theory that produces the Higgs boson as a composite state. In general, it is quite
diÆcult to obtain quantitative low-energy predictions in such a theory because of
non-perturbative e�ects; one can at best derive estimates by using certain scaling
arguments. This is indeed the case if the gauge interaction is asymptotically free, as
in QCD. However, it is not necessarily true if the theory remains strongly coupled in
the UV and approaches a non-trivial conformal �xed point. In this case it is possible
that the theory, in the limit of large number of \colors", has an equivalent description
in terms of a weakly coupled 5D theory de�ned on the truncated anti de-Sitter (AdS)
space [4, 5]. This allows us to construct theories where the Higgs boson is interpreted
as a composite state of a strong dynamics and yet some physical quantities such as
the Higgs potential can be computed using perturbation theory.

The actual implementation of the above idea is quite simple, as far as gauge and
Yukawa interactions are concerned. These interactions explicitly break the global
symmetry, but, as we will see, they do not induce quadratic divergences for the Higgs
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mass at any loop order. The global symmetry protects the Higgs mass parameter
at high energies and predicts it to be a one-loop factor smaller than the mass of the
lightest resonance � �NP. This property makes this class of theories quite interesting.

To make the model fully realistic, however, we must generate a sizable Higgs
quartic coupling. This is crucial not only to obtain a large enough physical Higgs
mass, but also to obtain the needed mas gap between the electroweak scale and �NP

(as suggested by experiments). We will propose a mechanism that allows to generate
a Higgs quartic coupling at tree level. This mechanism needs speci�c assumptions
on the form of the explicit breaking of the global symmetry. However, these are
assumptions on the underlying physics around the Planck scale, and not on the TeV-
scale physics which yields the Higgs boson as a composite particle. Therefore, once
the particular pattern of breaking is assumed (which is not quite unnatural from the
viewpoint of the 4D picture), we can compute the Higgs potential generated at loop
level through the explicit symmetry-breaking e�ects.

Since the cuto� of our theory is around the Planck scale, there is no obstacle
in extending the theory beyond �NP, up to very high energies. In this respect, our
framework may be viewed as a way to provide a UV completion for \little Higgs" the-
ories [6] in which realistic models of the PGB Higgs have been constructed. It might
be interesting to construct a UV completion of the existing little Higgs models [7]
using a warped spacetime as outlined in the present paper.

In the next section we start by de�ning the framework in more detail. We describe
the basic structure of our theories in terms of both 4D and 5D pictures. An explicit
model is given in section 3, in which the Higgs boson is identi�ed with a PGB arising
from a scalar �eld located on the infrared brane. We present a possible mechanism to
obtain a sizable Higgs quartic coupling and discuss the size of quantum corrections
to the Higgs potential, which trigger electroweak symmetry breaking. In section 4 we
consider theories where the Higgs boson arises from the extra-dimensional component
of a gauge �eld in a warped 5D spacetime. We point out that also in this case the
Higgs is interpreted as a composite PGB in the 4D picture, and we present several
realistic models. Conclusions are given in section 6.

2 Higgs as a Composite Pseudo-Goldstone Boson

In this section we describe a class of theories where the standard-model Higgs arises
as a composite PGB of a strong interaction, and in which the presence of a weakly
coupled dual description allows the computation of certain quantities. We begin with
the 4D description of our theory, which we also refer to as the holographic theory. In
this picture the theory consists of two sectors. One is a sector of elementary particles
that correspond to the standard-model gauge bosons and (some of the) quarks and
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leptons. The other is a strongly coupled conformal �eld theory (CFT) sector, where
the conformal symmetry is broken at low energies 1=L1 �MPl. This sector produces
CFT bound states due to the strong dynamics at the scale 1=L1. The Higgs will be
one of these bound states.

To have a little hierarchy between 1=L1 and the Higgs mass, we require the Higgs
to be a Goldstone boson of the CFT sector. For this purpose, we assume that the
CFT has a global symmetry larger than the standard-model electroweak gauge group
SU(2)L�U(1)Y . We �nd that it must be at least SU(3). If a global SU(3)L symmetry
is spontaneously broken to SU(2)L by the CFT strong dynamics, then 5 Goldstone
bosons appear, a doublet and a singlet under SU(2)L. The doublet will be associated
with the Higgs boson. The SU(3)L is not a symmetry of the standard-model gauge
and matter �elds which belong to the elementary sector, so that the couplings of
these �elds with the CFT explicitly break the global SU(3)L invariance. A mass for
the Higgs boson is generated at loop level, which, if negative, will trigger electroweak
symmetry breaking. The loop factor appearing in the Higgs mass can give a rationale
for the little hierarchy between the electroweak scale and the compositeness scale
1=L1, although to perform quantitative computations we must go to the weakly
coupled dual description of the theory.

The AdS/CFT correspondence [4], as applied to a spontaneously broken CFT
with a UV cuto� [5], allows us to relate the above scenario to a theory in a slice
of 5D AdS. In this AdS picture the theory is weakly coupled and we can perform
explicit calculations. The metric of the spacetime is given by [8]

ds2 =
1

(kz)2
�
��� dx

�dx� � dz2
� � gMN dx

MdxN : (1)

The 5D coordinates are labeled by capital Latin letters, M = (�; 5) where � =
0; : : : ; 3; z = x5 represents the coordinate for the �fth dimension and 1=k is the AdS
curvature radius. This spacetime has two boundaries at z = L0 � 1=k � 1=MPl

(Planck brane) and z = L1 � 1=TeV (TeV brane): the theory is de�ned on the line
segment L0 � z � L1.

The global symmetry of the 4D CFT is realized as a bulk gauge symmetry in
the 5D picture. In the case of a 4D theory where the CFT sector has a global
SU(3)L invariance, the dual theory is a 5D SU(3)L gauge theory. This SU(3)L is
spontaneously broken by two scalars. One living on the Planck brane and the other
on the TeV brane. Being separated in space, these scalars do not \see" each other
at the classical level, so that the theory contains, in the gaugeless limit, an en-
larged global SU(3)�SU(3) symmetry. By giving vacuum expectation values (VEVs)
to the two scalars, the global symmetry is spontaneously broken, SU(3)�SU(3)
! SU(2)�SU(2), delivering two sets of 5 Goldstone bosons. When we gauge the
SU(3)L subgroup of SU(3)�SU(3), the Goldstone bosons which parametrize the
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SU(3)L=SU(2)L space are true Goldstone bosons and are eaten to form massive gauge
vectors. The remaining ones are PGBs, since gauge interactions do not respect the
full global SU(3)�SU(3). In a slice of warped space the scalar living on the Planck
brane corresponds, to a very good approximation, to the true Goldstone boson. This
is because its VEV will be naturally of order MPl, much larger than the VEV of the
scalar on the TeV brane. Therefore, the scalar on the TeV brane corresponds to the
PGB, which we identify as the standard-model Higgs boson.

The holographic dual of this 5D setup is thus the 4D theory we described before:
the Higgs corresponds to the composite Goldstone boson of a CFT sector whose
global SU(3)L invariance is spontaneously broken down to SU(2)L by the strong
dynamics. An explicit breaking of the global CFT invariance is communicated by
the interactions with the elementary sector, and a mass for the Goldstone bosons
is generated at one loop. The spontaneous symmetry breaking of the CFT sector
corresponds to the TeV-brane breaking of the 5D theory, while the explicit breaking
given by the elementary sector is associated with the Planck-brane dynamics. This
means that any process of the holographic theory where the explicit breaking is
communicated from the elementary sector to the CFT, will correspond in the AdS
picture to some kind of transmission from the Planck brane to the TeV brane. The
mass of the PGB is an important example: non-locality in the 5D theory implies that
it is a calculable and �nite e�ect. This is a crucial ingredient of our class of theories,
which gives a rationale for explaining the little hierarchy. We will come back to this
point in the next section, where we compute the Higgs mass at one loop.

The scalar on the Planck brane can be replaced by boundary conditions that
break SU(3)L to SU(2)L on the Planck brane. The breaking on the TeV brane can
also be realized by boundary conditions. In this case, the PGB corresponds to the
�fth component of the gauge boson as we will see in section 4.

A realistic theory must have Yukawa couplings between the Higgs and quarks and
leptons. It is simple to incorporate this feature in our theories. The fermions must
be put in the bulk (at least one of their chiralities) in representations of SU(3)L and
be coupled to the Higgs on the TeV brane. After the SU(3)L breaking on the Planck
brane, we can obtain the standard-model quarks and leptons as the only massless
fermions (before electroweak symmetry breaking). Large enough Yukawa couplings
are obtained if the bulk fermionmasses are in a certain range such that they probe the
SU(3)L breaking e�ect on the Planck brane. These Yukawa couplings then induce a
negative one-loop contribution to the Higgs mass term, which can trigger electroweak
symmetry breaking.

Models with the Higgs as a PGB face, however, a signi�cant phenomenological
challenge. The Higgs quartic coupling �H is induced only at one-loop level, giving
a physical Higgs mass, m2

h = 2�H hHi2, below the experimental bound of mh >�
114 GeV. This is one of the major obstacles for the realization of the Higgs as a
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PGB. A realistic model has to induce �H at tree level. The challenge is to induce
this coupling without generating a tree-level mass term; otherwise the little hierarchy
between the electroweak scale and the compositeness scale is lost. Below we present
a possible mechanism, although, as we will explain, it requires further assumptions
about the symmetry breaking physics at high energies to keep the PGB massless at
tree level.

3 A Model

In this section we present an explicit model that leads to the standard model with the
Higgs boson as a PGB. This represents a concrete example for the general theories
introduced in the previous section. We discuss an alternative possibility in the next
section, where the Higgs is identi�ed with the extra-dimensional component of the
gauge boson, A5.

We consider a 5D theory in a slice of AdS with a gauge symmetry SU(3)L�U(1)X,
which contains the electroweak SU(2)L�U(1)Y as a subgroup. The extra U(1)X is
introduced to give the correct hypercharges to the fermions. All the gauge bosons
are assumed to have Neumann boundary conditions at both branes (we will work in
the unitary gauge A5 = 0). The matter content of the model is the following (we
only consider the third-generation quark sector for simplicity, but the extension to
the full standard model is straightforward). We introduce two bulk fermions Q and
D which transform as 3�

1=3 and 30 under SU(3)L�U(1)X. Since the bulk fermions 	
are in the Dirac representation, they are decomposed into the left-handed, 	L, and
right-handed, 	R, components in terms of the 4D irreducible representation (Weyl
fermion): Q = QL+QR and D = DL+DR. The boundary conditions for these �elds
are chosen such that QL and DR (QR and DL) obey Neumann (Dirichlet) boundary
conditions at the Planck and TeV branes. This implies that only QL and DR have
massless zero modes. We also introduce the boundary fermion UR on the TeV brane,
which transforms as 12=3 under SU(3)L�U(1)X.

We assume that SU(3)L�U(1)X is broken on the Planck brane to the standard-
model group SU(2)L�U(1)Y , with Y = T8=

p
3 +X. This breaking can be caused,

for example, by a scalar S on the Planck brane with quantum numbers 31=3 under
SU(3)L�U(1)X. The bulk fermion �elds are decomposed under the standard-model
group as

Q(3�
1=3) = Q

(D)
L (2�

1=6) +Q
(S)
L (12=3) +Q

(D)
R (2�

1=6) +Q
(S)
R (12=3);

D(30) = D
(D)
L (21=6) +D

(S)
L (1�1=3) +D

(D)
R (21=6) +D

(S)
R (1�1=3):

We assume that the symmetry breaking dynamics at the Planck brane is such that
only Q

(D)
L and D

(S)
R are left as 4D massless �elds, and we identify these �elds with
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the standard-model doublet quark qL and singlet bottom quark bR.1 The standard-
model singlet top quark, tR, is identi�ed with the brane �eld UR. When the Yukawa
couplings on the TeV brane are included, however, qL will be a mixture of Q(D)

L

and D
(D)
L states, while tR will be a mixture of UR and Q

(S)
R states, as we will see

below. The color SU(3)C can be introduced in a straightforward way: Q, D and U
all transform as 3 of SU(3)C.

What about the Higgs �eld? To have the Higgs as a PGB, we introduce a scalar
�eld � on the TeV brane transforming as 31=3 under SU(3)L�U(1)X. We assume
that � gets a VEV, say by the potential L = Æ(z�L1)

p�gind(�y�� ~v2)2 where gind
is the induced metric on the brane. We can then parametrize the scalar �eld � as

�(31=3) = eiT
aGa

0
@ 0

0
~v + '

1
A ; T aGa =

1

~v

�
0 H
Hy �

�
; (2)

where the �elds H and � are PGBs that transform respectively as doublet and singlet
of SU(2)L, and ' is a real scalar �eld; ~v is the VEV of � in terms of the 5D metric.
We also de�ne, for later convenience, the VEV in terms of the 4D metric v � ~vL0=L1,
which takes a value of the order of the local cuto� on the TeV brane, �IR � TeV.
The unbroken group under the � VEV can naturally be aligned with that under the
S VEV, due to possible radiative e�ects relating them. We then �nd that the PGB
�eld H has the appropriate SU(2)L�U(1)Y quantum numbers, 21=2, to be identi�ed
as the standard-model Higgs boson.

We now proceed to the interaction terms of the theory. The 5D theory has mass
terms for the bulk fermions:

L =
p
g
�Lkin �MQ

�QLQR �MD
�DLDR

�
; (3)

where Lkin are the kinetic terms (see Eq. (37) for the explicit expression). These
mass terms control the shape of the wavefunctions of the QL and DR zero modes,
and hence the size of the various low-energy 4D couplings. In addition, we introduce
the Yukawa couplings for the matter �elds on the TeV brane:

L = Æ(z � L1)
p�gind

�
�U �

y �QLUR + �D �i �Qj
LD

k
R�

ijk + h:c:
�
; (4)

where i; j; k represent the SU(3)L index. After integrating out the Kaluza-Klein (KK)
states, we obtain the following e�ective Lagrangian:

L4D =ZH jD�Hj2 + iZQ �qL 6@ qL + i�bR 6@ bR + iZU �tR 6@ tR
� i�UfQHy�qLtR + i�DfQfDH�qLbR + h:c:

(5)

1This situation can be realized, for example, by adding the following couplings on the Planck
brane: Sy �QLU

0
R +M �DRD

0
L + S �D0

LD
00
R, where U

0
R(12=3), D

0
L(30) and D

00
R(1�1=3) are extra quarks

that marry with the unwanted SU(3)L partners of the zero modes of Q(D)
L and D

(S)
R . This symmetry

breaking pattern can be more easily obtained if we choose to break SU(3)L through boundary
conditions. The details of this breaking, however, are not relevant for physics at the TeV scale.
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Here, fQ (fD) denotes the value of the zero-mode wavefunction of Q(D)
L (D(S)

R ) at the
TeV brane; one has

fi =
1

N0

�
L1

L0

�(1=2�ci)

; N2
0 =

L0

(1� 2ci)

"�
L1

L0

�(1�2ci)

� 1

#
; (6)

where the � sign holds for the zero mode of a left (right) handed �eld and ci =Mi=k
for i = Q;D. The factors ZH , ZQ and ZU arise respectively due to the mixing of

H with the heavy KK gauge bosons, the mixing of the zero mode of Q(D)
L with the

KK states of D(D)
R , and the mixing of UR with the KK states of Q(S)

L . These mixings
appear when � gets a VEV, and we �nd

Z�1
H = 1 +

(g5~v)2

4k
; ZQ = 1 + jfQ�D ~vj2G

D
(D)
R

; ZU = 1 + j�U ~vj2G
Q
(S)
L

: (7)

Here,G
Q
(S)
L

(G
D
(D)
R

) is the 5D propagator ofQ(S)
L (D(D)

R ) evaluated on the TeV brane at

zero 4D momentum: G
Q
(S)
L

= Ĝ
(�;+)
L (L1; L1; 0) and GD

(D)
R

= Ĝ
(�;+)
R (L1; L1; 0), where

the propagators Ĝ
(�;+)
L;R (z; z0; p) can be found in the Appendix. After canonically

normalizing the �elds we obtain the top and bottom Yukawa couplings

ht = � i�UfQp
ZHZQZU

; hb =
i�DfQfDp
ZHZQ

: (8)

The Yukawa couplings strongly depend onMQ andMD. For example, the dependence
of the top Yukawa coupling on MQ is given by

ht �

8>><
>>:
(L0=L1)

jcQj�1=2 for jcQj > 1=2;

[log(L1=L0)]�1=2 for jcQj = 1=2;

O(1) for jcQj < 1=2;

(9)

and therefore the theory can be realistic only if jMQj <� k=2. It can also be shown
that jMDj <� k=2 is also needed to obtain realistic Yukawa couplings.

The holographic picture o�ers a simple explanation for the behavior of Eq. (9).
For cQ > 1=2 the holographic theory consists of a CFT sector coupled to a left-handed
dynamical \source" �L which transforms as a doublet of SU(2)L [9]:

L = LCFT + i��L 6@ �L + � k1=2�cQ ��L � OR + h:c:+ � � � : (10)

Here, � is a dimensionless coupling, and the ellipses stand for higher order operators
(MPl-suppressed), and gauge and bottom interactions. The coupling ��L �OR induces
a tree-level mixing between the elementary source and the CFT bound states; its
strength is determined by the AdS/CFT correspondence, which relates the dimension
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of OR with the value of cQ: dim[OR] = 3=2+ jcQ+1=2j. For cQ > 1=2 the coupling is
always irrelevant, so that the physical massless eigenstate qL, to be identi�ed with the
standard-model quark doublet, is almost the elementary state �L. The quark singlet
tR appears in the theory as a composite CFT state. For cQ < �1=2 the holographic
picture is very di�erent. We �nd that the 4D theory must contain a right-handed
dynamical source �R which is a singlet of SU(2)L [9]:

L = LCFT + i��R 6@ �R + � k1=2+cQ ��R � OL + h:c:+ � � � : (11)

The AdS/CFT correspondence requires dim[OL] = 3=2+ jcQ�1=2j, and the coupling
between the elementary source and the CFT is again irrelevant for cQ < �1=2. The
physical qL appears now as a composite CFT state, while tR is almost the elementary
state �R.

How does the Yukawa coupling between the composite Higgs H and the physical
quarks qL and tR arise? As is clear from Eqs. (10) and (11), the global SU(3)L
invariance of the CFT is not a symmetry of the elementary sector, and the explicit
breaking is communicated to the conformal sector through its coupling with the
source �L or �R. The Yukawa coupling is then generated only through the insertion
of the composite operators OL;R, since the process must involve the elementary source.
This implies that the top Yukawa coupling must be proportional to � k1=2�jcQj, and
therefore ht � � (L1=L0)1=2�jcQj as obtained in the 5D picture, Eq. (9).

For �1=2 � cQ � 1=2 either of the two descriptions, Eq. (10) or Eq. (11), is valid.
In this case the coupling of the CFT to the elementary sector is relevant (marginal
for cQ = �1=2). This implies that the both physical quarks qL and tR are almost
composite states. The only way to generate the top Yukawa is then through the
virtual exchange of the source. The source has now a relevant coupling with the
CFT, so that the CFT correction to the elementary propagator becomes important.
By resumming the in�nite series of CFT insertions, one can express this correction
as a renormalization of the coupling �; for example, in the holographic picture of
Eq. (10), the conformal invariance gives

�2(�) � �2(k)

1 + �2(k) (�2=k2)cQ�1=2
: (12)

Therefore, for jcQj < 1=2 and � � k, one has �(�) � (�=k)1=2�jcQj, so that the top
Yukawa coupling, proportional to � k1=2�jcQj, is always of order one. The particular
case jcQj = 1=2 gives a logarithmic suppression ht / [ln(L1=L0)]�1=2.

Summarizing, we have obtained an SU(3)C�SU(2)L�U(1)Y gauge theory with
a massless Higgs boson, H, a massless quark doublet, qL, and two massless singlet
quarks, tR and bR, which have the Yukawa couplings of Eq. (8).2 The fermion content

2In the model presented here, there is also an extra singlet PGB �, which obtains a mass at
one-loop level.
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H H

A�

(a)

H H

�

(b)

Figure 1: One-loop corrections to the PGB mass in the holographic theory from the
gauge �eld (a) and an elementary fermion (b). If the coupling of the source � with
the conformal sector is relevant, then the fermion propagator in the diagram (b) must
be intended as corrected by an in�nite series of CFT insertions.

thus reproduces the third generation quark sector of the standard model. To complete
the standard-model structure, however, we have to discuss the Higgs potential. We
address this remaining issue in the next two subsections.

3.1 One-loop contribution to the Higgs potential

At tree level, the Higgs potential vanishes due to the SU(3)L symmetry on the TeV
brane. At one-loop level, however, an e�ective potential for H will be induced. In
the holographic picture this comes from the interactions between the CFT and the
elementary �elds, which explicitly break the global SU(3)L symmetry. At one loop the
relevant diagrams for the Higgs mass term are those sketched in Fig. 1. The situation
is quite similar to QCD, where the charged pion gets a mass at one loop due to the
fact that the coupling to the photon explicitly breaks the global chiral symmetry. In
the 5D picture the e�ect comes from loops of bulk �elds that propagate from the TeV
brane, where H lives, to the Planck brane, where we have the breaking of SU(3)L.
This is a non-local e�ect and therefore is �nite. The one-loop e�ective potential is
similar to that calculated in Ref. [10].

The gauge contribution to the Higgs potential arises from loops of SU(3)L gauge
bosons. This is given by (the U(1)X contribution can be obtained in a similar way)

p�gind Vgauge(�) =3

2

1X
n=1

Tr

Z 1

0

dp

8�2
p3
(�1)n+1

n

h
G �M2(�)

in

=
3

2
Tr

Z 1

0

dp

8�2
p3 ln

h
1 + G �M2(�)

i
:

(13)

Here, M2 is the boundary squared-mass matrix of the gauge boson �elds in the
background �:

M2
ab(�) = 2g25 �

yTaTb �; (14)

and G is a matrix propagator Gab = Ga(p)Æab, where Ga(p) are the propagators of the
SU(3)L gauge boson (a = 1; � � � ; 8) evaluated on the TeV brane with 4D momentum
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p: Ga(p) = Ĝ(L1; L1; p) where Ĝ(z; z0; p) is the rescaled gauge boson propagator
given in the Appendix with m1 = 0 and m0 � MPl (m0 = 0) for the gauge bosons
of the broken (unbroken) generators on the Planck brane. The e�ective potential of
Eq. (13) has the Coleman-Weinberg potential form, with the only di�erence that 4D
propagators have been replaced by 5D propagators. Plugging Eq. (2) into Eq. (13),
we can obtain the gauge contribution to the e�ective potential of H. In particular,
the mass of H for vL1 � 1 is given by

m2
H =

9g25
4

�
L1

L0

�2 Z 1

0

dp

8�2
p3
h
GIII(p)� 2

3
GII(p)� 1

3
GI(p)

i
; (15)

where GIII;II;I(p) are the SU(2)L triplet, doublet and singlet components of the SU(3)L
gauge boson propagators. The integrand in Eq. (15) reaches its maximumat p � 1=L1

and is exponentially suppressed for p > 1=L1. Therefore, m2
H is �nite and very

insensitive to physics at energies above 1=L1. Notice that, contrary to supersymmetry,
the cancellation of quadratic divergences in Eq. (15) is due to particles of equal spin.
Eq. (15) yields

m2
H '

�
0:12

L1

�2

: (16)

Hence, the PGB mass turns out to be an order of magnitude smaller than the scale
1=L1, which is also smaller than �IR. This mass gap is even larger if mH is compared
with the mass of the �rst KK state, �NP � �=L1. The contribution of Eq. (16) is
positive and cannot trigger electroweak symmetry breaking by itself.

The top contribution to the e�ective potential is given by

p�gind Vtop(�) = �6
Z 1

0

dp

8�2
p3 ln

h
1 +Gi(p)m

2
i (�)

i
; (17)

where m2
i is the boundary squared-mass of Q(i)

L in the background �:

m2
i (�) = j�U j2�y

i�i; (18)

and Gi(p) are the propagators of Q
(i)
L (i = D;S) evaluated on the TeV brane at 4D

momentum p. These are GD(p) = Ĝ
(+;+)
L (L1; L1; p) and GS(p) = Ĝ

(�;+)
L (L1; L1; p),

where Ĝ(�;+)
L (z; z0; p) can be found in the Appendix. This gives a contribution to the

Higgs mass of order

m2
H � �

h2t
�2

1

L2
1

; (19)

where the exact value depends on MQ. The top contribution is negative and, for
certain values of MQ, is larger than the gauge contribution. The top contribution
can then be responsible for the breaking of the electroweak symmetry.
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Despite the occurrence of electroweak symmetry breaking, the one-loop e�ective
potential calculated above cannot by itself lead to a realistic scenario of electroweak
symmetry breaking. A tree-level Higgs quartic coupling is necessary to obtain a large
enough physical Higgs mass and to generate a Higgs VEV a loop factor smaller than
1=L1. In the next subsection we will provide a mechanism to generate a Higgs quartic
coupling, which together with the one-loop gauge and top contributions can lead to
a realistic theory of electroweak symmetry breaking.

Before concluding this subsection, it is interesting to analyze the absence of
quadratic divergences in this class of models from a 4D perspective. In the stan-
dard model, the dominant contribution to the Higgs mass term comes from the loop
of the top quark and it is quadratically divergent. The cancellation of this divergence
then must arise from a loop of some extra �elds. This is indeed what happens in our
case. The top quark is realized as the zero mode of a bulk fermion and it corresponds,
in the holographic picture, to a mixture between the elementary source and the CFT
bound states. The physical spectrum then consists of a massless top quark, plus a
series of CFT bound states that form a complete multiplet of the global SU(3)L. It is
the contribution of this tower of additional states that cancels the divergence of the
top loop. This is, therefore, a cancellation involving an in�nite numbers of 4D �elds.

The picture described above, however, is not quite illuminating to understand the
�niteness of the top contribution to the Higgs mass. To understand it better, we can
perform a change of basis going from the mass eigenstate basis to the \interaction
basis", where we separate an elementary source �eld from the tower of composite CFT
states (the physical top quark is a mixture of these states). The whole contribution
to the Higgs mass then arises from an exchange of the elementary �eld (Fig. 1),
because only the elementary sector feels the explicit breaking directly. Now comes
the most important point. Since the elementary �eld couples only linearly to the CFT
sector, the correction to the Higgs mass cannot proceed through a loop of elementary
modes directly coupled to the Higgs, but it must necessarily involve the strong CFT
dynamics. Therefore, a large momentum circulating in the top loop always 
ows into
the CFT cloud, and consequently the resulting Higgs mass always involves a form
factor F (q2) which encodes the non-perturbative e�ects of the CFT. Since F (q2) is
suppressed for q larger than the compositeness scale, the loop momentum integral
is cut o� above that scale. This is the reason why the quadratic divergences are
absent in our theory. In this picture, no cancellation between di�erent divergent
contributions is necessary. The Higgs mass correction is �nite simply because of
the form factor suppressing the contribution from large virtual momenta: at high
energies the constituents of the composite Higgs become transparent to the short
wavelength probe of the elementary fermion, so that F (q2)! 0 for q2 !1. As the
explicit computation reveals, the damping is exponential. This strong damping can
be understood by recalling that in the 5D theory the mass correction arises as a �nite
non-local e�ect. As such, it involves a brane to brane propagation, and that explains
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the exponential suppression for internal momenta larger than � 1=L1.

A similar scenario, which does not have quadratic divergences for the Higgs, was
considered in Ref. [10]. In that model too, the Higgs is a bound state of the CFT,
and its tree-level mass vanishes since the conformal sector is invariant under a global
supersymmetry. This invariance is explicitly broken by the interactions with the
elementary sector, so that the Higgs is expected to acquire a mass at one loop. The
5D realization of this scenario consists of a warped supersymmetric setup, where
matter and gauge �elds propagate in the bulk of AdS and the Higgs �eld is localized
on the TeV brane. If supersymmetry breaking is triggered on the Planck brane,
the correction to the Higgs mass will be a �nite non-local e�ect. The corresponding
holographic description is almost the same as in our case: the Higgs mass is generated
through the exchange of some elementary �eld and it is �nite because the CFT strong
dynamics exponentially suppresses contributions from large virtual momenta.

3.2 A mechanism for the quartic coupling

Although the Higgs potential is generated by radiative corrections, it is not suÆcient
to guarantee a successful phenomenology. We need a large � O(1) quartic coupling
while keeping the quadratic term smaller than the e�ective cuto� scale, i.e., the scale
that suppresses higher dimensional terms in the Higgs potential. Here we present an
example of dynamics providing such a situation.

The basic idea is simpler to understand in the 4D CFT picture. The explicit
breaking of SU(3)L comes from the elementary sector. Hence, in order to generate
a quartic coupling at tree level, the Higgs must mix with some elementary scalar
'. Since the mass of the elementary scalar is not protected by any symmetry, it is
expected to be of order the cuto� scale � k. This implies that, if we want to generate
an unsuppressed SU(3)L breaking e�ect in the Higgs sector, the elementary scalar '
must be coupled to the CFT with a coupling linear in k: Lint = �k ' � O', i.e., the
operator O' must have dimension 2. If h0jO'O2

�j0i 6= 0, where O� is an operator
that creates �, the Higgs will have non-trivial interactions with the scalar ', and
an explicit breaking of SU(3)L will appear in the Higgs potential at tree level. For
example, if ' is a 6 of SU(3)L, which decomposes under SU(2)L as a triplet ('T ),
a doublet ('D) and a singlet ('S), a Higgs quartic coupling is generated from the
diagrams of Fig. 2. We are assuming here that the di�erent SU(2)L components of '
have di�erent masses due to the SU(3)L breaking in the elementary sector; otherwise
the quartic coupling is zero because of the non-linearly realized SU(3)L symmetry. In
this theory, however, there is the danger of also generating a quadratic term for H.
This comes from the diagrams of Fig. 3. A way to avoid the generation of a Higgs
squared-mass is to assume that the breaking of SU(3)L in the elementary ' a�ects
only 'T and not the other SU(2)L components, 'D and 'S. It is clear that in this
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Figure 2: Contributions to the Higgs quartic coupling. The CFT dynamics is repre-
sented as a thick gray line, while a thin black line represents the propagator of the
elementary scalar '. A cross � indicates an SU(3)L breaking by the CFT.

H

H

H

H�

'S 'D

Figure 3: Contributions to the Higgs mass. The CFT dynamics is represented as a
thick gray line, while a thin black line represents the propagator of the elementary
scalar '. A cross � indicates an SU(3)L breaking by the CFT.

case, the diagrams of Fig. 3 respect SU(3)L and vanish. Therefore, a mechanism of
this type must requires a certain pattern of SU(3)L breaking in the elementary '
sector.3

Let us see how this idea is implemented in the 5D AdS picture. By AdS/CFT,
a scalar operator of dimension 2 corresponds to a bulk scalar � of squared-mass
M2

� = �4k2. Note that as long as M� � �4k2 (and certain conditions for the brane
masses are met), � is not tachyonic and does not develop a VEV. The 5D scalar � is
responsible for communicating the SU(3)L breaking on the Planck brane to the TeV
brane where the Higgs lives.4 The �eld � must be coupled to the Higgs on the TeV
brane. We thus require � to transform as 62=3 under SU(3)L�U(1)X and have the
following coupling:

L = Æ(z � L1)
p�gind

�
����

y� + h:c:
�
; (20)

where �� is a coupling of mass dimensions 1=2. A small deviation fromM2
� = �4k2,

as arising for example from the one-loop correction to the bulk mass of �, will not
spoil our mechanism.

By integrating out the � �eld, we �nd a tree-level Higgs potential in the low-

3We could have a Higgs quartic coupling without quadratic term if only 'T is present. Never-
theless, in this case the quartic coupling turns out to be negative.

4Another possibility, which could avoid introducing �, is to have a Higgs with a pro�le in the
extra dimension.
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energy e�ective theory,

VH;tree = m2
HjHj2 +

�H
2
jHj4: (21)

m2
H and �H are generated by 5D diagrams similar to those in Fig. 3 and Fig. 2

respectively, where the internal propagators now represent the 5D �eld � with the
appropriate SU(2)L quantum numbers. We �nd

m2
H = 2�2�v

2
h
ĜS � ĜD

i
; (22)

�H =
2

3
�2�

h
8ĜD � 5ĜS � 3ĜT

i
; (23)

where ĜS , ĜD and ĜT are the rescaled propagators of the SU(2)L singlet, doublet
and triplet components of � with end points on the TeV brane, evaluated at zero 4D
momentum. The explicit form of these propagators can be found in the Appendix.
For M2

� ' �4k2, which we assume here, they are given by

Ĝa ' 1

ra

�
1 + (m0;aL0 � 2) ln

�
L1

L0

��
; (24)

where ra � m0;a + m1 + L0(m0;a � 2L�10 )(m1 + 2L�10 ) ln(L1=L0) and a = S;D; T .
We introduced a common scalar mass m1 on the TeV brane for the SU(2)L singlet,
doublet and triplet components of � �eld, but allowed di�erent masses m0;a on the
Planck brane. The values of the masses m0;a are determined by the high-energy
SU(3)L-breaking dynamics on the Planck brane. Here we do not specify a particular
pattern for this symmetry breaking, but rather we look for the parameter region of
m0;a (and m1) where the successful Higgs phenomenology is obtained.

Inserting Eq. (24) into Eq. (22), we obtain

m2
H '

2�2�
rD rS

(m0;D �m0;S) v
2: (25)

We see that, as expected, if the doublet and singlet components of � do not feel the
breaking of SU(3)L on the Planck brane, m0;D = m0;S, the resulting Higgs squared-
mass parameter is zero. Assuming this, the quartic coupling, Eq. (23), is given by

�H ' 2�2�
rT rS

(m0;T �m0;S): (26)

Therefore, for m0;T >� m0;S, we obtain a suÆciently large Higgs quartic coupling.

We have seen that the desirable Higgs potential is obtained for m0;T >� m0;S '
m0;D.5 Although this may appear a rather ad hoc hypothesis, we stress that it is

5An alternative parameter region ism0;D;m0;S <� k <� m0;T ;m1, in which case the tree-level Higgs
potential is given by m2

H ' �2�(m0;D �m0;S)(2 ln(L1=L0)
2m2

1)
�1v2 and �H ' 2�2�m0;T=(m1rT ) so

that we can have m2
H � v2, �H � 1.
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an assumption about the underlying physics at the Planck scale which is responsible
for the symmetry breaking. We do not explicitly address this sector here, but we
expect that there are some mechanisms realizing (approximately) the situation dis-
cussed above. We must say, however, that even if m0;S = m0;D at tree level due to
some speci�c SU(3)L breaking pattern on the Planck brane, quantum e�ects (com-
ing, for example, from gauge interactions) will modify this relation. Therefore, a
Higgs squared-mass will be induced from Eq. (25), at least, at the quantum level.
This contribution is diÆcult to calculate since it depends on the Planck-brane �elds
that break SU(3)L, but it can be estimated to be one-loop factor smaller than v2.
We can then conclude that the Higgs potential Eq. (21) together with the one-loop
contributions of Eqs. (13) and (17) can lead to a successful electroweak symmetry
breaking with a VEV for the Higgs a loop factor smaller than 1=L1, and a physical
Higgs mass larger than the experimental bound. The precise determination of hHi
and mh is, however, not possible here due to the dependence of �H on the unknown
free parameters of the model.

4 Pseudo-Goldstone Bosons as Holograms of A5

In this section we consider the possibility of breaking the gauge symmetry in the
warped extra dimension by boundary conditions, and not by scalar �elds on the two
branes. We will show that the holographic picture is almost the same as before and
that the holographic PGB in this case corresponds in the 5D theory to the zero mode
of the �fth component of the gauge boson, A5. We note that the model presented in
the previous section and the one presented here must coincide in the limit v � �IR,
since the breaking of SU(3)L by the scalar � is equivalent to a breaking by boundary
conditions in the limit v !1 [11].

Let us consider the most general case of a bulk gauge group G reduced to the
subgroups H0 and H1 on the Planck and TeV branes, respectively. This corresponds
to assigning the following boundary conditions to the gauge bosons at the Planck
and TeV branes:

Aa
� (+;+) T a 2 AlgfHg;

A�a
� (+;�) T �a 2 AlgfH0=Hg;

A _a
� (�;+) T _a 2 AlgfH1=Hg;

Aâ
� (�;�):

(27)

Here, by + (�) we denote the Neumann (Dirichlet) boundary condition, and H =
H0\H1. The A5's have the opposite boundary conditions to those of the correspond-
ing A�'s.
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Figure 4: The holographic theory consists of
a CFT interacting with an elementary sector
represented here by the gauge �elds Aa

�, A
�a
�

and a generic �eld '. The Goldstone bosons
��a are eaten by the gauge �elds A�a

� to form
massive vectors; the remaining �â are PGBs.

H
(+;+)

(�;�) G

H0

(+;�)

H1

(�;+)

Figure 5: The pattern of symme-
try breaking.

The holographic 4D theory consists of a CFT sector whose global invariance G is
spontaneously broken down to H1 by strong dynamics, with an order parameter of
O(TeV). External gauge �elds weakly gauge the subgroup H0 of G:

L = LCFT � 1

4g2
(F �

��)
2 +A�

�J
��; � = a; �a: (28)

This situation is somewhat di�erent from the model of section 3, where the whole
G was gauged in the 4D theory and Higgsed down to H0 at high energies. The two
scenarios, however, are indistinguishable from low-energy observers. The gauging of
only a subgroup of the global symmetry G is experienced by the CFT as an explicit
breaking of G.

Let us count the number of PGBs present in the theory. The spontaneous break-
ing in the CFT sector delivers n = dim(G=H1) Goldstone bosons. However, the
gauging of H0, Eq. (28), makes part of them, m = dim(H0=H), being eaten by the
gauge bosons A�a

�. The remaining n � m are PGBs; they are massless at tree level,
but they acquire masses from radiative corrections due to the explicit breaking of
G by the interaction terms of Eq. (28). Only the gauge bosons associated to the
symmetry subgroup H = H0 \H1 are exactly massless. Figs. 4 and 5 give a pictorial
representation of the holographic theory and of the symmetry breaking pattern.

In general, any interaction with the elementary sector can communicate the ex-
plicit breaking of G to the CFT sector. The AdS/CFT correspondence prescribes
that adding a generic �eld in the bulk of AdS with Neumann boundary conditions
on the Planck brane corresponds to modifying the CFT content and adding some el-
ementary 4D �eld ' which couples to the conformal sector through a coupling ' �O'
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(see Fig. 4). Since ' will come in a representation of the group H0 (rather than
G), which is the symmetry of the elementary sector, the coupling ' � O' is not G-
invariant. As the only source of explicit breaking is represented by those interactions,
this necessarily implies that the mass terms for the PGBs are generated only through
processes where elementary �elds are exchanged (Fig. 1).

Since the 4D holographic picture and the 5D AdS setup describe the same physics,
they must exhibit the same physical spectrum. Therefore, there must be n � m
massless scalars in the 5D theory after KK reduction. We now see in detail how
these massless scalars appear. The 5D gauge Lagrangian is given by

Lgauge =
p
g
h
� 1

4g25
gKMgLNFKLFMN + LGF

i
; (29)

where the metric gMN is that of Eq. (1) and LGF is the gauge-�xing term. A conve-
nient choice for LGF is

LGF = � 1

2�g25

h
g��@�A� + z � g55 @z(A5=z)

i2
; (30)

with which all mixing terms between A� and A5 cancel [12]. Eq. (29) can be written
as

Lgauge =
1

2g25kz

�
A�

�
���@�@

� � (1� 1=�) @�@�
�
A� + (@zA�)

2

+ (@�A5)
2 � � z2

�
@z
A5

z

�2�
+ � � � ;

(31)

where the ellipses stand for interaction terms; 4D indices are raised/lowered with
���. We now perform a KK reduction. We are interested only in the massless scalar
spectrum. This comes from the zero modes of the �fth components of the gauge
bosons, A5(x; z) = f0(z)A

(0)
5 (x) + � � � , where f0(z) satis�es

@z

�
f0(z)

z

�
= 0: (32)

The solution to this equation is only compatible with (+;+) boundary conditions, in
which case we obtain

f0(z) =
z

N0
; where N0 =

r
L2
1 � L2

0

2
: (33)

The components ofA5 with (+;+) boundary conditions areAâ
5. There are dim[G=H1]�

dim[H0=H] of them, as expected from the 4D dual picture. Therefore the massless
modes of Aâ

5 must correspond to the PGBs of the 4D CFT [13]. A further check of
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this correspondence comes from their wavefunction. It is peaked towards the TeV
brane as expected if the holographic PGBs are really bound states of the CFT. The
excited KK modes of A5 can be eliminated from the spectrum by going to the unitary
gauge � =1.

It is clear from the 5D point of view that a tree-level potential for A5 is ab-
sent, because it is forbidden by gauge invariance. An e�ective potential is then
generated radiatively as a function of the non-local, gauge invariant Wilson line
W = TrP exp

�
i
R L0
L1
dz A5

�
. This implies that A5 will get a mass at one loop, which,

by non-locality, is �nite and cuto� insensitive. In general, the energy is minimized
at a nonzero background value of A5, triggering spontaneous breaking of the sym-
metry H [14]. As in 
at space, di�erent values of the background A5 = f0(z)câT â,
with câ = const:, de�ne physically inequivalent vacua. This is because one can-
not �nd a continuous gauge parameter �(z) = �â(z)T â with the de�ned bound-
ary conditions (�;�) that eliminates A5 by the use of the gauge transformation
A5 ! UA5U

y + U@z� U
y. Nevertheless, by relaxing one of the two boundary con-

ditions, e.g. that on the Planck brane, it is possible to \gauge away" A5 by the
transformation with

�(z) = �
Z z

L1

dzA5: (34)

Under this gauge transformation, however, the charged bulk �elds are also trans-
formed: �(x; z)! ei�(z)�(x; z). This implies that the theory with A5 = 0 is equiva-
lent to that with nonzero background A5, but only if we use the rede�ned bulk �elds
ei�(z)� � �0 instead of �. The Planck-brane boundary conditions of the �elds �0

are then di�erent from those of the �elds �, since � and �0 di�er at z = L0 by a
non-trivial gauge phase:

�0(L0) = e�i�(L0)�(L0): (35)

This phase is the Wilson line.

The one-loop contributions to the e�ective potential of A5 are easily estimated
as follows. The appearance of the Wilson line in the vacuum energy requires a
contribution of a bulk �eld that propagates from one brane (at L0) to the other (at
L1). The energy involved in this contribution is then of the order of the inverse

of the conformal distance between the branes, E � 1=
R L1
L0
dz � 1=L1. Therefore,

the mass of A5 is estimated to be m2
A5
� g25(L1=L0)2E4 Ĝ(L0; L1; p)jE�p�1=L1, where

Ĝ(z; z0; p) is the propagator of the bulk �eld given in the Appendix. It is interesting
to look at the limit L0 ! 0. In this case the propagators from L0 to L1 for the gauge
boson and the graviton vanish, implying that no e�ective potential is induced for
A5. We thus �nd that A5's are massless in this limit at all loop orders. Notice that,
contrary to the 
at space case, the zero modes of A5 are still normalizable modes
even though the extra dimension is in�nite [see Eq. (33)], and thus remain in the
theory as massless scalars. This is in fact what we expect from holography. In the

18



u v

	

A
(0)
5 A

(0)
5

Figure 6: One-loop correction in AdS to the A5 zero-mode mass term.

4D picture, the limit L0 ! 0 corresponds to sending the UV cuto� to in�nity. This
implies that the 4D low-energy gauge coupling becomes zero (gaugeless limit), and
the gauge bosons that explicitly break G decouple from the theory, making the PGBs
true Goldstone bosons. Note that in the gaugeless limit the number of Goldstone
bosons is n = dim(G=H1) instead of n � m. In the 5D AdS the m extra massless
scalars come from A�a

5; they have (�;+) boundary conditions and admit zero modes
for L0 = 0.

The limit L0 ! 0 is subtler when other interactions are present. The point is
that interactions between the CFT and the elementary sector that proceed through
a relevant coupling are not expected to die o� when the UV cuto� goes to in�nity.
This is the case, for example, of the interaction between an elementary chiral fermion
� and a CFT operator, Lint = ��O, for dim[O] < 5=2. By AdS/CFT this corresponds
to a bulk fermion with mass jM	j < k=2. In the 5D picture the non-decoupling is
evident from the fact that the brane to brane fermionic propagator does not go to
zero in the limit L0 ! 0 for jM	j < k=2.

4.1 The mass of A5 at one loop

We present here the calculation of the mass of A
(0)
5 at one-loop level, which con�rms

the statements made above. We consider the simple case of Eq. (27) with H0 = H1 =
H, and concentrate on the contribution from a bulk fermion with a 5D massM	 and
the following boundary conditions:

Aa
� (+;+); Aa

5 (�;�);
Aâ
� (�;�); Aâ

5 (+;+);
	 =

�
 iL(+;+)  iR(�;�)
 �̂

L(�;�)  �̂

R(+;+)

�
: (36)

The relevant diagram at one loop is depicted in Fig. 6. The contribution from other
particles can be easily derived from this result.

The Lagrangian of a 5D fermion with a constant bulk mass M	 is

L =
p
g

�
i

2
�	eMA �

ADM	� i

2
(DM	)y�0eMA �

ADM	�M	
�		

�
; (37)
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with eMA = kz ÆMA the inverse vielbein and �M = f
�;�i
5g the 5D Dirac matrices.
The covariant derivative is

DM = @M +
1

8
!M AB

�
�A;�B

�� iAM ; (38)

where the only non-vanishing entries in the spin connection !ABM are !�a5 = ���a=z.
The mass correction to the zero mode of A5 is written as

m2
A5

= �(g25k)C(r)
Z

d4p

(2�)4

Z L1

L0

du
1

(ku)4

Z L1

L0

dv
1

(kv)4
f0(u)f0(v)

� Tr
�

5 iS(+;+)(v; u; p) 
5 iS(�;�)(u; v; p)

�
;

(39)

where C(r) is the Dynkin index Tr(T �T �) = C(r) Æ�� for a fermion in the represen-
tation r. Here, f0 is the A5 zero-mode wavefunction, Eq. (33), and S(�;�)(z; z0; p)
denotes the propagator of a 5D fermion, with boundary conditions (�;�) and 4D
momentum p, between the two points z and z0 along the �fth dimension.

Using the fermion propagator given in the Appendix, one can obtain an expression
for m2

A5
in terms of integrals of Bessel functions. In the particular case of integer

values of M	=k, the Bessel functions reduce to trigonometric functions so that the
integrals greatly simplify. For example, when M	 = 0 Eq. (39) becomes, after some
algebra:

m2
A5

= �C(r)
�2

(g25k)

Z L1

L0

dv f0(v)

Z v

L0

du f0(u)

Z 1

0

dp
p3

sinh[p(L1 � L0)]
: (40)

The integrals are convergent and the result is �nite. The momentum integral involves
the brane to brane propagator, as expected from the previous discussion, and it
converges exponentially. Performing the integrals one obtains the result

m2
A5

= �C(r)
�2

(g25k)
1

L2
1 � L2

0

F (L0=L1); (41)

where the function F (x) is given, for example, by

F (x)jM	=0 =
3

8
�(3)

(1 + x)2

(1 � x)2 ; (42)

F (x)jM	=k =
x(1 + x)2

4(1 � x)2

Z 1

0

dt
t5

sinh t

1�
(x� 1)2 t cosh t+ (�1 + x(2� x+ t2)) sinh t

�
' 1:67x +O(x2);

(43)
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F (x)jM	=2k =
x3(1 + x)2

4(1� x)2

Z 1

0

dt
t9�

(x� 1)2 t cosh t+ (�1 + x(2� x+ t2)) sinh t
�

�
h
3(1 � x)2 (t3 + 6t� 3xt� 3) t cosh t

+
�
9(1 � x)4 + 3(1 � x)2(1 + x2 � 3x)t2 + x2t4

�
sinh t

i�1
'12:4x3 +O(x4);

(44)

for the case of M	=k = 0; 1; 2, respectively. We �nd that the A5 mass correction
is O(1=L2

1) for jM	j < k=2, while it receives a strong suppression for jM	j > k=2
(F (x)jM	=ck / x2jcj�1 for jcj > 1=2). This is in agreement with the holographic
picture where for jM	j > k=2 the CFT operator coupled to the elementary fermion
becomes irrelevant and the Yukawa coupling becomes small as shown in Eq. (9).6

It is interesting to notice that m2
A5

is even under a change of the sign of M	.
From a 5D perspective this is expected, as a change of the sign in the bulk fermion
mass is equivalent to inverting the chirality, L $ R. Given the assignment for the
boundary conditions of the fermion, Eq. (36), this chirality inversion corresponds to
exchanging the i superscript with �̂, an operation which leaves Eq. (41) invariant.
From a 4D holographic perspective, on the other hand, the fact that the result does
not depend on the sign of M	 arises as a consequence of the requirement that the
two CFT descriptions in terms of the left-handed and right-handed sources, Eq. (10)
and Eq. (11), are equivalent for �k=2 �M	 � k=2.

4.2 The standard-model Higgs as a hologram of A5

It has already been noticed [6] that the Higgs as a PGB can be realized as the
discretization of the Wilson-loop in a deconstructed �fth dimension. We have shown
here that the connection can be even more strict: the PGB can be the holographic
image of the �fth component of the gauge �eld that lives in a warped extra dimension.
In fact, such a Higgs happens to be a composite bound state of a strongly interacting
(conformal) sector, so that di�erent ideas, which previously seemed distinct, merge
together into a single scenario. Moreover, if the bulk group G is simple, one could

6Apparently, Eq. (41) does not seem to give a one-loop suppression of m2
A5

compared with 1=L21
forM	 < k=2, as g25k is expected to be large � ln(L1=L0) in realistic cases. This is because the 4D
Yukawa coupling is large �

p
g25k for M	 < k=2, canceling the suppression from the loop factor.

On the other hand, for M	 = k=2 the 4D Yukawa coupling is given by
p
g25k= ln(L1=L0) = O(1),

so that m2
A5

is one-loop suppressed compared with 1=L21. In general, written in terms of the 4D
Yukawa coupling ht, Eq. (41) always yields the result Eq. (19) regardless of the value of M	, i.e.,
the value of ht.
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also pursue the idea of uni�cation of the standard-model electroweak interactions. If
boundary gauge kinetic terms do not play a major role, the renormalization-group

ow of the gauge couplings, in the general scenario of Eq. (27), will follow the pattern:

H = H0 \H1 H1 G

at low
energy

exact uni�cation
at E � 1=L1

apparent \uni�cation"
at E � 1=L0

Strictly speaking, the gauge couplings of the holographic theory never become G-
symmetric at high energies. Nevertheless, low-energy observers still �nd uni�cation
predictions from G as if uni�cation occurred at E � 1=L0 [15], because the gauge
couplings in the holographic theory become strong at E � 1=L0 and thus their low-
energy values are insensitive to the initial values at high energies.

The most economical choice for a simple electroweak group is SU(3)L. In this
case it is known that the hypercharge normalization does not come out correct:
embedding the Higgs in an adjoint of SU(3)L gives a prediction sin2 �W = 3=4 [16],
which cannot be accommodated neither with a uni�cation at TeV nor at MPl. This
diÆculty, however, is avoided if we introduce brane-localized gauge kinetic terms such
that the low-energy gauge coupling values are correctly reproduced. In this case the
above picture is modi�ed by large threshold corrections arising either at E � 1=L0

or 1=L1, depending on where we put the brane-localized kinetic terms. The situation
is similar in the case where one tries to embed also the standard-model SU(3)C into
the bulk simple group. The simplest possibility in this case is SU(6). Although a
naive prediction from the SU(6) group theory does not yield the observed values
of the gauge couplings, we can always adjust them by appropriately choosing the
coeÆcients of brane-localized gauge kinetic terms, which do not necessarily respect
SU(6). Therefore, although these theories are not as predictive as 4D supersymmetric
uni�ed theories, they are not in contradiction with the observed value of the low-
energy gauge couplings.

An important issue for any realistic theory with the Higgs as A5 is to have correct
Yukawa couplings between matter and the Higgs. This issue was studied in 
at
space in Ref. [17], and the mechanism considered there can be applied in our warped
case without any essential modi�cation. For example, we can adopt the SU(6) model
of [17] (either supersymmetric or non-supersymmetric) with the gauge group reduced
to SU(5)�U(1)X on the Planck brane and to SU(4)C�SU(2)L�U(1) on the TeV
brane. Below we explain things in the supersymmetric case. The matter �elds
are introduced as hypermultiplets, transforming as D(15), U(20) and E(15) (and
N (6) for right-handed neutrinos) under SU(6), together with some brane �elds. [In
the non-supersymmetric case, these �elds are bulk and brane fermions.] Realistic
Yukawa matrices are then reproduced by appropriately choosing the bulk masses for
these �elds: c � M=k ' 1=2 for the third generation and c > 1=2 for the �rst two
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generations (the size of the 4D Yukawa coupling is given by � p
ln(L1=L0) g, � g,

and � jcjpln(L1=L0) g (L0=L1)(jcj�1=2) for jcj < 1=2, = 1=2, and > 1=2, respectively,
where g is the 4D gauge coupling). An additional ingredient to the 
at space case is
that some components of the bulk multiplets become exponentially light for c > 1=2.
These are the �elds with the following boundary conditions: �(+;�) and �c(�;+)
(in the 4D super�eld notation) and give unwanted vector-like matter with masses
much lighter than the TeV scale. We can, however, make these �elds heavy by
introducing appropriate �elds �� and ��c on the Planck and TeV branes, respectively,
and by coupling them to � and �c through the brane mass terms Æ(z�L0)[���]�2 and
Æ(z�L1)[��c�c]�2 . [The corresponding terms in a non-supersymmetric theory are the
brane fermion masses.] Proton decay is potentially dangerous in this theory, because
SU(6)/(SU(3)C�SU(2)L�U(1)Y ) gauge �elds have masses of order TeV, which could
mediate rapid proton decay. However, the structure of the theory allows us to impose
the baryon number: D(1), U(1), E(0), N (0) with appropriate charges for the brane
�elds. Therefore, we can make proton absolutely stable. An important di�erence with
respect to the 
at space model is that, in the absence of brane-localized gauge kinetic
terms, the gauge couplings in the present model should unify into SU(5)�U(1)X
at the TeV scale. As was explained before, this unwanted prediction is avoided
if we introduce TeV-brane localized gauge kinetic terms such that the low-energy
gauge coupling values are correctly reproduced,7 although it implies a loss of any
quantitative prediction about gauge coupling uni�cation. Small neutrino masses are
obtained either by exponential suppressions of the neutrino Yukawa couplings or by
the seesaw mechanism operated on the Planck brane in the case of large and small
bulk right-handed neutrino masses, respectively.

The last issue toward a realistic theory of the PGB Higgs is the quartic cou-
pling. If the theory is supersymmetric, as the one described above, the O(1) quartic
coupling is generated through the supersymmetric gauge potential. Supersymmetric
theories have two Higgs doublets at low energies, one of which is the PGB of the
global symmetry. The tree-level potential takes the form of VH / (jH1j2 � jH2j2)2,
and the PGB Higgs corresponds to the direction H1 = H2. Supersymmetry can be
broken either at the Planck brane [10] or at the TeV brane [19]. In the former case,
the holographic theory is essentially a non-supersymmetric theory. Supersymmetry
is a global invariance only of the CFT sector, and this partial supersymmetry is re-
sponsible for the generation of the tree-level quartic coupling in the Higgs potential
without introducing a mass term. Having a non-zero Higgsino mass, however, will
require some additional source of supersymmetry breaking. On the other hand, if
supersymmetry is broken on the TeV brane in the 5D theory, the holographic theory
is a locally supersymmetric theory with supersymmetry broken at the TeV scale by
the CFT dynamics. The scale of supersymmetry breaking in this case should not be

7Large brane kinetic terms on the TeV brane may also help to reduce constraints from precision
electroweak measurements [18].
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very high, as the tree-level Higgs quartic coupling becomes zero if the second Higgs
boson, which is not a PGB, obtains a large supersymmetry breaking mass.

The quartic coupling in non-supersymmetric theories remains as a diÆcult issue.
However, we can at least adopt the mechanism considered in the previous section
with a little modi�cation. For example, in the case of an SU(3)L theory, we can
introduce a bulk scalar �eld �, transforming as a 6 under SU(3)L. By introducing a
tadpole on the TeV brane for the SU(2)L singlet component of �, we can generate
the Higgs quartic coupling in essentially the same way as discussed in section 3.2.
This possibility seems to indicate that we can have realistic theories in the non-
supersymmetric case as well.

5 Phenomenological Scales and Comparison with

Pions in Large N QCD

To better understand the present theory of PGBs, it is instructive to look at the
di�erent physical scales of the model from the 4D perspective. This will elucidate
the PGB nature of the Higgs and its similarities with pions in QCD.

Let us consider the case in which the PGB is A5 with the symmetry breaking
pattern of Fig. 5. This is equivalent to the model of section 3 if v � �IR, since in
this limit the SU(3)L breaking by � reproduces the breaking by boundary conditions.
The original 5D scales of the model are �IR, 1=g25, k = L�10 and L�11 . They can be
related to 4D physical quantities in the following way:

g� �
q
g25k; m� � �

L1
; g2 =

g2�
ln(L1=L0)

; (45)

where g� measures the strength of the KK coupling, m� is the mass splitting of the
KK towers (approximately this is the �rst-KK mass), and g is the 4D gauge coupling
for the gauge bosons of H. Let us see how the di�erent scales are related. Using
naive dimensional analysis we can estimate �IR (the scale at which the 5D gauge
theory becomes strongly coupled for an observer on the TeV brane):

�IR � 24�3

g25

L0

L1
� 24�2m�

g2�
: (46)

We can de�ne a decay constant f� for the PGBs in our theory. We follow the usual
de�nition: m2

W = g2f2� , where mW is the mass that the gauge bosons A�a
� obtain

from the strong dynamics. In the 5D picture this is the mass of the zero-mode gauge
bosons with (+;�) boundary conditions. One �nds m2

W = 2=(L2
1 ln(L1=L0)), and
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therefore

f� =

p
2m�

�g�
: (47)

Using the AdS/CFT relation g� � 1=
p
N [5], we obtain f� �

p
N as expected in

strongly coupled large N theories [20]. Notice that �IR can be larger than the naive
value of 4�f�. This is because the PGBs in our theory arise from higher dimensional
gauge bosons, and the 5D gauge invariance improves the high energy behavior of the
theory. The smallest scale in the model is the mass of the PGBs. It appears at loop
level, as that of charged pions in the massless quark limit. We obtained in section 4
that this is of order

m2
� = m2

A5
� g2

16�2
m2
�

�2
: (48)

The value of the PGB mass from 5D shows the same dependence on m� as that of
pions in QCD [21].

We then �nd that, in general, these theories have the following pattern of scales

�IR > f� > m� > m�: (49)

In real QCD this pattern is not completely followed, since the pion decay constant is
smaller than the � mass. This could be due to the fact that in QCD we have N = 3,
which is not really a large number. In spite of this, other predictions of large N QCD
agree surprisingly well with the experimental data. Similarly, when the above 5D
AdS model is used for the standard model, one realizes that the pattern of scales in
Eq. (49) is not really ful�lled. This is because g� � 4 in order to reproduce the 4D
gauge coupling values from g2 = g2�= ln(L1=L0). Therefore, the theory of KK states
(resonances) is very close to the non-perturbative limit (in the large N expansion).
The pattern of scales that we obtain is similar to real QCD:

�IR >� m� > f� > m�: (50)

We must emphasize, however, that the relation g2 = g2�= ln(L1=L0) is subject to
large logarithmic corrections and large dependence on brane-kinetic terms, so it is
possible that g� takes smaller values than what are naively obtained from the 4D
gauge coupling values, making the KK theory more perturbative. This is in fact also
needed if we do not want to have large corrections to electroweak observables coming
from virtual KK states. These states couple to the Higgs (also a composite object
in these models) with a strength g�, and for the value g� � 4 and L1 � 1=TeV, they
gives a too large deviation from the standard-model predictions.
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6 Conclusions

We have presented a class of models where the standard-model Higgs appears as a
composite PGB from a strongly coupled theory, similar to pions in QCD. We have
used the AdS/CFT correspondence to describe the models in terms of the weakly
coupled dual theory. The dual theory corresponds to a gauge theory in a slice of
5D AdS in which the bulk gauge symmetry is broken to the standard-model gauge
group on both boundaries. This automatically delivers massless scalars (at tree level)
on the TeV brane that we associate to the standard-model Higgs �eld. A remnant
global symmetry, under which the Higgs transforms non-linearly, protects the Higgs
mass from large radiative corrections. The Higgs mass is generated at one-loop
level through the explicitly breaking of the global symmetry due to the standard-
model gauge interactions. We have shown that this one-loop contribution is not
quadratically divergent. In the 5D AdS picture, this is because of the locality. The
Higgs lives on the TeV brane away from the other scalar that breaks the bulk gauge
symmetry (which is located on the Planck brane). Therefore, the Higgs can learn
this breaking only by bulk �elds that propagate from one brane to the other. This
is a non-local e�ect and thus is �nite. In the 4D CFT picture, the cancellation of
quadratic divergences is understood in a di�erent way. The Higgs is a composite
state of CFT which decouples at high energies from the standard-model �elds that
are elementary states. We have calculated the e�ective potential of the Higgs from
gauge loops and have shown that the Higgs squared-mass is �nite and a loop factor
smaller than the �rst resonance mass. This is a very appealing property, since it
gives a rationale for the electroweak scale smaller than the new physics scale, as
experiments seem to indicate.

If the breaking of the bulk gauge symmetry is due to boundary conditions, the
massless scalar corresponds to the �fth component of the bulk gauge boson. There-
fore, we �nd that Higgs-gauge uni�cation in warped space is equivalent to a Higgs
as a composite PGB. We have also discussed the similarities and di�erences of our
PGBs with pions in QCD.

The models with the PGB Higgs generically su�er from the absence of a tree-
level Higgs quartic coupling, needed to generate a physical Higgs mass larger than
the experimental bound. We have presented a mechanism that can generate a quartic
coupling without inducing a large quadratic term. This requires a speci�c assumption
about the breaking of the global symmetry at high energies.

The models constructed here have an important phenomenological di�erence from
little Higgs models. The global symmetry that protects the Higgs mass is a symmetry
of the strong CFT sector of the theory, but not a symmetry of the standard model.
Therefore, there is no partner of the standard-model �elds to form a complete mul-
tiplet of the global symmetry. New electroweak-scale states appear as resonances
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that are in complete multiplets of the global group, similar to the situation in QCD.
Detecting these resonances in future colliders will allow us to �nd the symmetries of
the strong CFT, and tell us about the symmetry that protects the electroweak scale
from potentially large radiative corrections.
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Appendix

In this appendix we give the propagators for a bulk scalar, fermion and gauge �elds
in a slice of 5D AdS (see also Ref. [22]). We start by giving the scalar �eld propagator
in the presence of general brane kinetic and mass terms. The free action for a scalar
�eld � is given by

S =

Z
d4x

Z L1

L0

dz

(
p
g

�
gMN@M�

y@N��M2�y�

�

+ Æ(z � L0)
p�gind

�
z0 g

��
ind @��

y@���m0�
y�

�

+ Æ(z � L1)
p�gind

�
z1 g

��
ind @��

y@���m1�
y�

�)
:

(51)

The propagator Ĝ is given as a solution of

�
z2@2z + z@z �

��p2z2 + �2
��
Ĝ(z; z0; p) = �z

k
Æ(z � z0): (52)

Here, � =
p
4 +M2=k2 and Ĝ represents the propagator for the rescaled �eld �̂ �

(kz)�2�, which is related to the propagator G for the unrescaled �eld, �, as G =
(kz)2(kz0)2Ĝ.

If � has boundary conditions (+;+), the scalar propagator (for the rescaled �eld)
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is given by

Ĝ(z; z0; p) =
�L0

(XI=XK � ZI=ZK)

�
�
I�(jpjz<)� ZI

ZK
K�(jpjz<)

��
I�(jpjz>)� XI

XK

K�(jpjz>)
�
;

(53)

where jpj � p�p2 and z< (z>) is the lesser (greater) of z and z0; I�(x) and K�(x)
are the modi�ed Bessel functions. The coeÆcients XI , XK, ZI and ZK are given by

XI = jpjL1I��1(jpjL1)�
�
�� s=2 � z1jpj2L2

1L
�1
0 �m1L0

�
I�(jpjL1);

XK = �jpjL1K��1(jpjL1)�
�
�� s=2 � z1jpj2L2

1L
�1
0 �m1L0

�
K�(jpjL1);

(54)

ZI = jpjL0I��1(jpjL0)�
�
�� s=2 + z0jpj2L0 +m0L0

�
I�(jpjL0);

ZK = �jpjL0K��1(jpjL0)�
�
�� s=2 + z0jpj2L0 +m0L0

�
K�(jpjL0);

(55)

where s = 4. The propagator for a �eld having the odd boundary condition at the
Planck brane (TeV brane) is obtained by taking the limit m0 !1 (m1 !1).

Restricting the end points to the TeV brane, z = z0 = L1, and taking the zero-
momentum limit, p! 0, the scalar propagator of Eq. (53) becomes

Ĝ(z = z0 = L1; p! 0) =
L0

2�

�
�+ 2 +m1L0

�� 2 �m1L0
� �+ 2�m0L0

�� 2 +m0L0

�
L0

L1

�2���1

�
�
1 +

�+ 2 �m0L0

�� 2 +m0L0

�
L0

L1

�2���
1 +

�+ 2 +m1L0

�� 2 �m1L0

�
:

(56)

For � = 0 (M2 = �4k2), this is further simpli�ed as

Ĝ(z = z0 = L1; p ! 0) =
(1 + (m0L0 � 2) ln(L1=L0))

m0 +m1 + L0(m0 � 2L�10 )(m1 + 2L�10 ) ln(L1=L0)
; (57)

giving the propagator used in section 3.2 (Eq. (24)).

The fermion propagators used in section 4.1 are given by

S(�;�)(z; z0; p) = � �k2zz0�5=2 �� 6p+ 
5
�
@z +

1

2z

�
+
M	

kz

��
PR Ĝ

(�;�)
R + PL Ĝ

(�;�)
L

�
;

(58)
where PL;R = (1 � 
5)=2 and M	 is the bulk mass of the fermion. The quantity

Ĝ
(+;+)
R is given by Eq. (53) for � = jM	=k + 1=2j, s = 1, m0 = �M	, m1 =M	 and

z0 = z1 = 0. The case of ĜR with the odd boundary condition at the Planck brane
(TeV brane) is reproduced by taking the limit m0 !1 (m1 !1). The expression
for ĜL is obtained from that of ĜR by simply making the replacementM	 ! �M	.
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Finally, the rescaled gauge boson propagator is given by taking � = 1 and s = 2
in Eq. (53). The parameters m0 and m1 then represent brane masses for the gauge
boson induced by spontaneous symmetry breaking caused by brane Higgs �elds. The
case of boundary condition breaking at the Planck brane (TeV brane) is reproduced
by taking the limit m0 !1 (m1 !1).
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