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ABSTRACT

This paper focuses on the dynamical implications of close supermassive black hole

binaries both as an example of resonant phase mixing and as a potential explanation

of inversions and other anomalous features observed in the luminosity pro�les of some

elliptical galaxies. The presence of a binary comprised of black holes executing nearly

periodic orbits leads to the possibility of a broad resonant coupling between the black

holes and various stars in the galaxy. This can result in eÆcient chaotic phase mixing

and, in many cases, systematic increases in the energies of stars and their consequent

transport towards larger radii. Allowing for the presence of a supermassive black hole

binary with plausible parameter values near the center of a spherical, or nearly spherical,

galaxy characterised initially by a Nuker density pro�le enables one to reproduce in

considerable detail the central surface brightness distributions of such galaxies as NGC

3706.

Subject headings: galaxies: evolution { galaxies: kinematics and dynamics { galaxies:

structure
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1. Introduction and Motivation

Understanding the dynamical implications of a su-
permassive black hole binary near the center of a
galaxy is important both because of the insights the
problem can shed on physical processes associated
with a time-dependent potential and because, even
if it itself is not resolvable observationally, the binary
can have directly observable e�ects.

As is well known to nonlinear dynamicists, a time-
dependent potential can induce signi�cant amounts
of time-dependent transient chaos, an interval during
which orbits exhibit an exponentially sensitive depen-
dence on initial conditions, and resonant couplings be-
tween the natural frequencies of the time-dependent
potential and the frequencies of the chaotic orbits
can trigger eÆcient resonant phase mixing (Kandrup,
Vass, & Sideris 2003). Like `ordinary' chaotic phase
mixing (e.g., Kandrup & Mahon 1994, Merritt & Val-
luri 1996), this resonant mixing can facilitate a rapid
shu�ing of orbits on di�erent constant energy hyper-
surfaces. Even more importantly, however, because
the potential is time-dependent the energies of indi-
vidual orbits are not conserved, so that resonant mix-
ing can also facilitate a shu�ing of energies between
di�erent constant energy hypersurfaces.

For this reason, resonant phase mixing has impor-
tant implications for collective relaxation in nearly
collisionless systems (Kandrup 2003), e.g., holding
forth the prospect of explaining from �rst principles
the striking eÆcacy of violent relaxation (Lynden-
Bell 1967) that has been observed in numerical sim-
ulations and inferred from astronomical observations
(see, e.g., Bertin 2000). That large scale collective
oscillations could trigger very eÆcient violent relax-
ation has been shown in the context of one simple
model, namely orbits of stars in a Plummer sphere
that is subjected to a systematic time-dependence
which eventually damps (Kandrup, Vass, & Sideris
2003). The binary black hole problem provides a com-
plementary example of how, via resonant couplings,
smaller scale time-dependences can also have a sur-
prisingly large e�ect.

The binary black hole problem is also interesting
because the binary can have directly observable con-
sequences. The fact that energy is not conserved im-
plies the possibility of readjustments in the density
pro�le of stars near the center of a galaxy. In many
cases this energy nonconservation means that, on the
average, stars near the center gain energy, which im-

plies a systematic transport of luminous matter near
the black holes out to larger radii. To the extent, how-
ever, that mass traces light, such changes in the den-
sity distribution translate into predicted changes in
the observed surface brightness distribution because
of the presence of such a binary.

In particular, for reasonable choices of black hole
masses and orbital parameters, the binary can actu-
ally cause an `inversion' in the surface brightness pro-
�le, so that surface brightness is no longer a monoton-
ically decreasing function of distance from the center.
Indeed, the simplest models which one might envi-
sion are adequate to reproduce distinctive features ob-
served in the brightness distributions of such galaxies
as NGC 3706, as reported in Lauer et al (2002).

The �rst half of this paper considers the binary
black hole problem as an example of how a time-
dependent potential can facilitate eÆcient phase mix-
ing in a galaxy. Section 2 considers the simplest ped-
agogical example, namely a black hole binary inserted
into the (possibly anisotropic) harmonic potential as-
sociated with a constant density ellipsoid. Section 3
explores how results from that model are altered by
allowing for a more realistic density pro�le consistent
with what has been inferred from high resolution pho-
tometry (e.g., Lauer et al 1995).

One important issue here involves determining as
a function of amplitude (i.e., black hole masses)
and frequency (i.e., orbital period) when the time-
dependent perturbation can have a signi�cant e�ect.
A second involves determining the degree to which the
eÆcacy of energy and mass transport re
ect the de-
gree of chaos exhibited by the orbits, both in the pres-
ence and the absence of the perturbation. To what ex-
tent, e.g., does eÆcient energy transport require that
a large fraction of the orbits in the time-dependent
potential be chaotic? Does resonant phase mixing
rely crucially on the presence of transient chaos?

Another issue involves determining the extent to
which the bulk manifestations of a black hole binary
vary for spherical, axisymmetric, and nonaxisymmet-
ric (e.g., triaxial) galaxies. Is it, e.g., true that spher-
ical and nearly spherical systems are impacted less
by the presence of a supermassive binary since, in the
absence of the binary, all or almost all of the orbits
are regular? In a similar vein, one would like to un-
derstand the extent to which the e�ects of the binary
depend on the steepness of the cusp. And, perhaps
most importantly, it would seem crucial to determine
how the size of the `sphere of in
uence' of the binary
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depends on the size of the black hole orbits and their
masses. Perhaps the most important conclusion here
is that this `sphere' can be much larger than the size
of the black hole orbits. For plausible choices of pa-
rameter values, black holes moving along orbits with
size � rh can signi�cantly impact the density distri-
bution at radii as large as � 10� 20rh or more.

All these issues have important implications for
determining when a supermassive black hole binary
might be expected to have observable consequences.
The second half of the paper, Sections 4 and 5, fo-
cuses on these consequences. Section 4 considers the
genericity of the simple models considered in Section
2 and 3, which assume circular orbits and equal mass
black holes, and then focuses on direction-dependent
e�ects which must be understood to determine how
potentially observable quantities depend on the rela-
tive orientation of the observer and the binary.

Section 5 then focuses in detail on one speci�c ob-
servable prediction, namely that supermassive black
hole binaries can alter the density distribution near
the center of a galaxy. What this entails is: (i)
generating N -body realisations of density distribu-
tions consistent with a Nuker Law (Lauer et al 1995);
(ii) evolving these N -body systems in the �xed time-
dependent potential corresponding to the galaxy plus
orbiting black holes; (iii) determining how the initial
density distribution changes over the course of time;
and, (iv) presuming that mass traces light, integrat-
ing the resulting density distribution along the line
of sight to obtain a surface brightness pro�le. These
are not fully self-consistent computations; but they
can at least provide strong indications as to what the
expected e�ects of the binary would be. The crucial
point, then, is that such an exercise results generically
in brightness distributions that resemble qualitatively
the forms reported in Lauer et al (2002); and that by
�ne-tuning parameters within a reasonable range, one
can reproduce many of the details of what is actually
observed.

Section 6 summarises the principal conclusions and
discusses potential implications.

2. Supermassive Black Hole Binaries in Con-

stant Density Ellipsoids

2.1. Description of the experiments

The computations described here involved orbits
evolved in the potential

V (x; y; z) =
1

2

�
x2

a2
+
y2

b2
+
z2

c2

�

� M

jr� r1(t)j �
M

jr� r2(t)j ; (1)

where r1 and r2 correspond to circular orbits in the
x� y plane, i.e.,

x1(t) = rh sin!t; y1(t) = rh cos!t; z1(t) = 0;
(2)

and r2 = �r1: The axis ratios a, b, and c were all se-
lected to be of order unity, the black hole masses were
taken to satisfy 0:005 �M � 0:05, and the radius was
assumed to be in the range 0:005 � rh � 0:5. (Be-
cause the potential corresponds to a constant density
ellipsoid, there is an obvious symmetry with respect
to the scaling M ! kM and r ! k1=3r.)

A `realistic' value for the frequency ! can be com-
puted as a function of a, b, c, M , and rh. Sup-
pose, e.g., that a = b = c = 1:0. In this case,
if M �M(rh), with M(rh) the galactic mass con-
tained within radius rh, the black holes can be viewed
as test particles moving in the galactic potential, so
that ! = 1:0, independent of rh. If, alternatively,
M �M(rh), the potential associated with the galaxy
can be neglected and one is reduced de facto to the
circular, equal mass two-body problem, for which
! =

p
M=4r3h. However, for the purpose of this Sec-

tion, ! was viewed as a free parameter so that, for
�xed amplitude and geometry, one can explore the
response as a function of driving frequency. This en-
ables one to determine the extent to which the re-
sponse manifests a sensitive dependence on frequency,
which can provide important insights into the reso-
nant couplings that generate the response.

The assumptions that the black holes are in cir-
cular orbits and that they have equal masses are of
course suspect. However, as will be discussed in Sec-
tion 4, it appears that relaxing these assumptions
does not change the principal conclusions. This model
appears structurally stable towards modest changes in

the orbital parameters of the binary.

Attention focused primarily on the statistical prop-
erties of representative orbit ensembles, integrated
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from sets of � 1600 initial conditions. These were
generated by uniformly sampling a speci�ed constant
energy hypersurface as de�ned in the limit M ! 0
using an algorithm described in Kandrup & Siopis
(2003). Allowing for the black holes changes the
initial energies, so that one is de facto sampling
a `slightly thickened' constant energy hypersurface.
The initial conditions were integrated forward for a
time t = 512, with orbital data recorded periodically.
The integrations also tracked the evolution of a small
initial perturbation, periodically renormalised in the
usual fashion (e.g., Lichtenberg & Lieberman 1992),
so as to extract estimates of the largest �nite time
Lyapunov exponent. For a, b, and c of order unity, the
dynamical time tD � 2�, so that t = 512 corresponds
to an interval � 80tD. Sets of simulations were gen-
erated by selecting an ensemble of initial conditions,
specifying a, b, c, M , and rh, and then integrating for
a number (� 100) of di�erent frequencies in the range
0 � ! � 24:0.

For each simulation, speci�ed by a, b, c,M , rh, and
!, the orbits were analysed to extract the following
quantities:

(i) the fraction f of `strongly chaotic' orbits, esti-
mated as in Kandrup & Siopis (2003) (as discussed in
Kandrup, Vass, & Sideris [2003], because the poten-
tial is time-dependent it is oftentimes diÆcult to make
an absolute distinction between regular and chaotic
orbits, although it is relatively easy to identify orbits
that are `strongly chaotic');

(ii) the mean value h�i of the �nite time Lyapunov
exponents for the strongly chaotic orbits;

(iii) the mean value hÆEi of the energy shift ÆE � E(t)
�E(0) for all the orbits at various times t > 0; and

(iv) the dispersion �ÆE associated with these shifts.

The data were also analysed to determine the func-
tional forms of hÆE(t)i and �ÆE(t), and to search for
correlations between changes in energy and values of
�nite time Lyapunov exponents for individual orbits
within a single ensemble.

In addition to such `representative' ensembles, inte-
grations were performed to track phase mixing in ini-
tially localised ensembles, so as to determine the ex-
tent to which the observed behaviour resembles ordi-
nary chaotic phase mixing in a time-independent po-
tential (e.g., Merritt & Valluri 1996, Kandrup 1998)
or resonant phase mixing in a galaxy subjected to
large scale bulk oscillations (Kandrup, Vass, & Sideris
2003).

2.2. Results

2.2.1. Statistical properties of orbit ensembles

Overall, as probed by the shu�ing of orbital en-
ergies, there is a broad and comparatively eÆcient
resonant response. For �xed values of a, b, c, M , and
rh, the range of `interesting' frequencies ! can be two
orders of magnitude or more in breadth. It is evident
that one does not need to `�ne-tune' ! to trigger an

eÆcient shu�ing of energies.

Despite this, however, the resonance can exhibit
substantial structure, especially in spherical systems.
In particular, superimposed upon a smooth overall
trend, quantities like hÆEi can exhibit a complex,
rapidly varying dependence on !.

Consider, e.g., Fig. 1, the bottom panels of which
exhibit hÆEi and �ÆE at time t = 512 as func-
tions of ! for two models, one that is spherical with
a2 = b2 = c2 = 1:0 and the other triaxial with
a2 = 1:33, b2 = 1:0, and c2 = 0:80. Both models
have M = 0:05 and rh = 0:3. The curves for the
two models have envelopes with a comparatively sim-
ple shape but, for the spherical model, an enormous
amount of substructure is superimposed. This sub-
structure re
ects the idealised assumption of a har-
monic oscillator, which implies that all unperturbed
orbits oscillate with the same frequency. Indeed, a
close examination of Figs. 1 (c) and (d) reveals that
the resonances are associated with integer and (to a
lesser degree) half-integer values of !, harmonics of
the natural frequency ! = 1:0 associated with the un-
perturbed orbits. Allowing for an axisymmetric sys-
tem leads to two characteristic frequencies, which can
exhibit a yet more complex response pattern. If, how-
ever,M and rh are chosen large enough to elicit a sig-
ni�cant response, the resonances typically broaden to
the extent that much, if not all, that structure is lost.
Allowing for a fully triaxial system leads to three un-
equal frequencies, which yields such a plethora of har-
monics that, even for comparatively weak responses,
the short scale structure is largely lost.

It is evident from Fig. 1 that, although hÆEi is sub-
stantially larger for the triaxial than for the spherical
model, �ÆE is comparable. What this means is that,
even though the spherical model leads to a smaller
systematic shifting in energies, the energies of orbits
in these two models are shu�ed to a comparable de-
gree. The observed di�erences in hÆEi do not re-

ect the fact that the nonspherical model is triaxial.
Rather, they appear again to re
ect the fact that, for
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a spherical system, there is only one characteristic fre-
quency for the unperturbed orbits. Modest deviations
from spherical symmetry, be these either axisymmet-
ric or not, suÆce typically to yield amplitudes more
closely resembling Fig. 1 (g) than 1 (c).

For a speci�ed set of initial conditions and a given
set of values for a, b, c, and rh, there appears to be a
threshhold value of M below which no substantial re-
sponse is observed; and, similarly, the response `turns
o�' for higher energy orbits that spend most of their
time far from the binary. However, for `interesting'
choices of M , as probed, e.g., by hÆE(!)i or �ÆE(!),
the resonance has a characteristic shape. As the fre-
quency increases from ! = 0, hÆEi and �ÆE exhibit
a rapid initial increase, peak at a maximum value,
and then begin a much slower decrease. For �xed pa-
rameter values, the value of the frequency triggering

the largest response is roughly independent of mass,

but it is true that, for larger values of M , the rel-
ative decrease in hÆE(!)i and �ÆE(!) with increas-
ing ! is slower than for smaller M . It seems natural
to suppose that this re
ects the fact that, for larger
amplitude perturbations, higher order harmonics be-
come progressively more important. Examples of this
behaviour are exhibited in Figs. 2 (a) and (b).

Alternatively, for �xed values of a, b, c, andM , the
location of the peak frequency is a decreasing func-
tion of rh. In particular, when the black holes are
closer together one requires higher frequencies to elicit
a signi�cant response. Examples of this behaviour are
illustrated in Figs. 2 (c) and (d).

EÆcient shu�ing of energies seems tied unambigu-
ously to the presence of large amounts of chaos, as
probed by the fraction f of strongly chaotic orbits
and, especially, the size of a typical �nite Lyapunov
exponent. Large f and h�i do not guarantee large
changes in energies, but they are an essential prereq-
uisite. In some cases, notably nearly spherical sys-
tems, f and h�i are very small in the limit ! ! 0.
As ! increases, however, f and especially h�i also
increase; and, for values of ! suÆciently large to trig-
ger an eÆcient response, the ensemble will be very
chaotic overall. For values of ! in the resonant re-
gion, f and h�i tend to exhibit only a comparatively
weak dependence on !. As in Fig. 1 (f), the mean
h�i often exhibits a modest decrease at frequencies
where the resonance is strongest, but the e�ect is not
all that large. This decrease likely arises because the
orbits having acquired higher energies, tend to spend
their time at larger radii, further from the binary.

2.2.2. Shu�ing of energies as a di�usion process

Overall, the shu�ing of energies induced by the
black hole binary is di�usive, although the basic pic-
ture depends on the amplitude of the response.

When the changes in energy experienced by indi-
vidual orbits are relatively small, it is the dispersion
that tends to grow di�usively, i.e.,

�ÆE / t1=2: (3)

In this case, the mean shift in energy typically grows
more quickly in time, being reasonably well �t by a
linear growth law hÆEi / t. Alternatively, when the
response is stronger, it is the mean shift that grows
di�usively, i.e.,

hÆEi / t1=2; (4)

whereas the dispersion is well �t by a growth law
�ÆE / t1=4. Examples of both sorts of behaviour can
be seen in Fig. 3.

One might naively have supposed that, since the
shu�ing of energies is associated with the presence
of chaos, changes in energy should grow exponen-
tially. This however, does not appear to be the case.
One cannot exclude the possibility that the initial
response of the orbits (t < 5 tD or so) is exponen-
tial, but it is evident that, overall, the response is
di�usive. Time-dependent chaos does not trigger ex-
ponentially fast mixing in energies. However, it can

still be extremely important in that it allows compar-

atively eÆcient shu�ings of energies that would be

completely impossible in a time-independent Hamilto-

nian system.

One �nal point should be stressed. That changes in
energy are di�usive, re
ecting a slow accumulation of
energy shifts, corroborates a fact also evident from an
examination of individual orbits: Changes in energy
experienced by individual orbits do not result from
single close encounters with the black holes. Instead,
they really do re
ect resonance e�ects associated with
the time-dependent potential.

2.2.3. Correlations amongst orbital properties for

di�erent orbits within an ensemble

Orbits with smaller �nite time Lyapunov expo-
nents � tend to exhibit energy shifts that are smaller
in magnitude jÆEj. Orbits with large � can experi-
ence both large and small net changes in energy, but
the energies of orbits with small � invariably remain
nearly constant.

5



This conclusion holds for both strong and weak re-
sponses, but there is one important di�erence: When
the response is weak, so that it is the dispersion of
the ensemble that evolves di�usively, changes in en-
ergy exhibited by individual orbits are comparably
likely to be positive or negative. However, when the
response is stronger, so that it is the mean shift that
evolves di�usively, the energies of individual orbits
tend instead to increase systematically.

When the response is relatively weak and changes
in energy are equally likely to be either positive or
negative, the distribution of energy shifts n(ÆE) is
typically well �t by a Gaussian with mean roughly
equal to zero. However, when the response becomes
stronger, the distribution of energy shifts becomes dis-
tinctly asymmetric and cannot be well �t by a Gaus-
sian, even allowing for a nonzero mean.

Correlations between the `degree' of chaos and the
`degree' of energy shu�ing experienced by individ-
ual orbits are perhaps best illustrated by extract-
ing energy shifts ÆE at di�erent times ti for indi-

vidual orbits, computing the mean and dispersion,
hÆEi and �ÆE , associated with the resulting time se-
ries fÆE(ti)g, and demonstrating how these moments
correlate with the value of the �nite time Lyapunov
exponent �. Examples of such an analysis are exhib-
ited in Fig. 4. The obvious point is that the moments
are invariably small when � is small, whereas larger
� typically implies larger values of jhÆEij and �ÆE .

2.2.4. Chaotic and resonant phase mixing

The presence of the supermassive black hole binary
will facilitate eÆcient chaotic phase mixing whenever
the orbits have a large �nite time Lyapunov exponent.
For frequencies ! well out of the resonance region,
chaotic orbits behave in much the same fashion as
they would in a time-independent potential, and the
resulting chaotic phase mixing closely resembles what
has been observed in other contexts (e.g., Merritt &
Valluri 1996, Kandrup 1998). If, however, ! is in the
resonance region, the chaotic phase mixing becomes
more complex in that there is also a shu�ing of or-
bits between di�erent constant energy hypersurfaces.
This implies that the (necessarily time-dependent)
`well-mixed' states observed at later times are statis-
tically di�erent from the (nearly) time-independent
state that would arise for ! = 0. In particular, the
time-dependence leads generically to changes in such
physically observable quantities as the mass density
�(r).

The behaviour observed for ensembles evolved in
the potential (1) is qualitatively similar to that ob-
served for ensembles in the Dehnenesque potentials
described in Section 3.

3. Supermassive Black Hole Binaries in Cuspy

Galaxies

3.1. Description of the experiments

The computations described in this Section in-
volved orbits evolved in a more realistic galactic po-
tential of the form

V (x; y; z) = � 1

(2� 
)

�
1� m2�


(1 +m)2�


�

� M

jr� r1(t)j �
M

jr� r2(t)j : (5)

Here
m2 = (x=a)2 + (y=b)2 + (z=c)2; (6)


 is the cusp index, assumed to satisfy 0 � 
 � 2, and
r1 and r2 are again given by eq. (2).

For a = b = c = 1, this potential reduces to the
spherical Dehnen (1994) potential with unit mass,
and, quite generally, for large r, V ! �1=m. It
follows that, for axis ratios of order unity, one can
interpret eq. (5) as a potential for a galaxy with
mass Mg � 1:0. For nonspherical systems, eq. (5)
yields density distributions di�erent from the triax-
ial Dehnen models �rst considered by Merritt & Frid-
man (1996), in that it is V , rather than �, that is
constrained to manifest ellipsoidal symmetry.

This potential is unrealistic in that, for large radii,
V does not become spherically symmetric; and one
can also argue that it is unrealistic in the sense that,
assuming mass traces light, the isophotes become
peanuty for axis ratios far from spherical. Given,
however, that one is interested primarily in physical
processes in the central portions of the galaxy, the
r !1 asymptotic behaviour is largely unimportant;
and it should be recalled that the isophotes in `real'
galaxies tend to manifest systematic deviations from
ellipticity (e.g., Kormendy & Bender 1996). This po-
tential has the huge advantage that, unlike Merritt
and Fridman's nonspherical Dehnen potential, it can
be expressed analytically, thus reducing by two orders
of magnitude or more the time required for orbital
integrations. Moreover, as discussed in Section 5, for
the case of spherical symmetry the behaviour of or-
bits in this potential is very similar to orbits evolved
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in the potential associated with a Nuker Law, at least
for those choices of Nuker parameters for which the
potential can be expressed analytically.

For spherical systems with a = b = c = 1:0,

M(r) = [r=(1 + r)]
(3�
)

(7)

represents the total mass within a distance r of the
galactic center. For axis ratios of order unity, eq. (7)
also provides a reasonable estimate for moderately
nonspherical systems.

As for the computations described in Section 2, the
computations here involved axis ratios of order unity,
masses in the range 0:005 �M � 0:05, and radii sat-
isfying 0:005 � rh � 0:5. Integrations again extended
for times 0 < t < 512. Following Merritt and Frid-
man's (1996) normalisation for their triaxial Dehnen
model, one can translate the dimensionless model into
physical units by de�ning the correspondence

t = 1 , 1:46� 106M�12
11 a3:2kpc yr; (8)

where

M11 =

�
M

1011M�

�
and akpc =

�
a

1 kpc

�
:

One can identify an energy-dependent dynamical
time tD following either Merritt and Fridman, who re-
lated it to the period of a speci�c type of regular orbit,
or following Kandrup & Siopis (2003), who proposed
an alternative prescription based on the times be-
tween turning points in representative orbits. Those
two prescriptions yield results in agreement at the 5%
level or better. More generally, for axis ratios of or-
der unity, at least for small radii the angle-averaged
density and energy distributions are relatively similar
to those associated with a `true' maximally triaxial
Dehnen model, so that a dynamical time tD(E) can
be estimated to within 20% or so from Table 1 in
Merritt & Fridman (1996). This implies, e.g., that,
for 
 = 1:0, a time t = 512 corresponds to roughly
100tD for stars in the 20% mass shell or, equivalently,

� 8� 108M
�1=2
11 a

3=2
kpc yr.

As in the preceding Section, ! was often treated
as a free parameter, although particular attention did
focus on realistic values. For a spherically symmetric
system with black hole masses and radii satisfying
M �M(rh),

!2 = r�
h (1 + rh)

�3; (9)

so that, e.g., ! = r
�1=2
h (1 + rh)

�1 for 
 = 1:0. Alter-

natively, for M �M(rh), once again ! =
p
M=4r3h.

For 
 = 1:0, M = 0:01, and rh = 0:05, �ducial values
considered in many of the computations, the galactic
potential can be neglected in a �rst approximation,
so that ! � p20 � 4:47:

3.2. Results

3.2.1. Similarities and di�erences

Overall, the behaviour of ensembles evolved in the
potential (5) is strikingly similar to what was observed
for the oscillator potential (1), even for cusp indices

 6= 0 and/or orbits with relatively large energy, for
which the form of the potential is quite di�erent. This
suggests strongly that the qualitative form of the be-

haviour observed for the oscillator model is generic.

The only obvious di�erence between the two models
is that the short scale resonance substructure, espe-
cially prominent when a = b = c, is completely lost.
Because the force is no longer linear, di�erent unper-
turbed orbits, even those with the same energy, have
di�erent natural frequencies, so that the resonance is
not dominated by a single frequency.

Overall, spherical, axisymmetric, and triaxial sys-
tems exhibit broad resonance patterns that are similar
in shape one to another and to the patterns observed
for the oscillator model, although some relatively mi-
nor di�erences do exist. Fig. 5 exhibits data for two
models, one spherical and the other triaxial, each with

 = 1:0, rh = 0:05, and M = 0:01. The models were
both generated for ensembles of initial conditions with
E = �0:70 and hrini � 0:33. The black hole radius
rh = 0:05 corresponds roughly to the 0.2% mass shell.

These models are representative in the sense that
modest changes in the parameters of the binary do
not lead to signi�cant qualitative changes in the re-
sponse. Equally important, however, they are also
robust towards changes in axis ratio. Axisymmetric
and slightly triaxial models (e.g., as nonspherical as
a2 = 1:05, b2 = 1:00, and c2 = 0:95) yield results
very similar to the spherical case. `Strongly' triaxial
models yield results similar to the particular triaxial
model exhibited here.

Analyses of these and other models lead to the con-
clusion that, even for systems that are spherical or
nearly spherical, the relative measure f of strongly
chaotic orbits tends to be large even when ! = 0,
this corresponding to two stationary but separated
black holes. One does not require a strong time-
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dependence to generate a large measure of chaotic

orbits. What is, however, true is that, for axisym-
metric and other nearly spherical systems, the degree
of chaos, as probed by h�i, tends to be considerably
smaller than is the case for strongly triaxial systems.

In signi�cantly triaxial models, the degree of chaos,
as probed by f or h�i, is a comparatively 
at function
of !. By contrast, in nearly spherical and axisymmet-
ric systems, the degree of chaos, especially as probed
by h�i, increases rapidly with increasing ! until it
becomes comparable to the degree of chaos exhibited
by strongly triaxial models. The obvious inference
is that, when the system is nearly spherical or ax-

isymmetric, the time-dependence associated with the

orbiting binary is required to give the chaotic orbits

particularly large Lyapunov exponents.

This has an important practical implication: Al-
though the degree of chaos and the amplitude of the
response tend to be comparable at high frequencies
for models with very di�erent shapes, at relatively
low frequencies nearly axisymmetric models tend to
exhibit less chaos and a weaker response. For the
black hole parameter values in the models used to
generate Fig. 5, a realistic frequency corresponds to
! � p20. It is, however, evident that, for such a low
frequency, h�i is substantially smaller for the spheri-
cal model than for the triaxial model; and it is even
more evident that this is re
ected by smaller values
of hÆEi and �ÆE .

Consider, however, a real supermassive black hole
binary which, presumably, starts o� at a large dis-
tances from the center of a galaxy with signi�cantly
eccentric orbits that, as a consequence of dynamical
friction (Merritt 2001) slowly decay to smaller, more
nearly circular orbits. When the black holes are in
relatively large orbits, they will have a comparatively
minimal e�ect on the mass distribution of the galaxy.
In part this is because the force that they exert on
the ambient stars is tyically compared with the force
associated with the galaxy as a whole. This, how-
ever, is not the whole story. Equally important is
the fact that, when the orbit is very large, the orbital
frequency ! is very small.

Typically, the black holes only become an impor-
tant source of energy and mass transport once their
orbits have decayed to the point that the black hole
masses become comparable to, or larger than, M(rh),
at which point an eÆcient resonance can be trig-
gered. This, however, does not mean that the black
holes only have a signi�cant e�ect at distances � rh.

Rather, once the resonance has been triggered, it can
impact orbits which, on the average, are much further
from the center of the galaxy: the triaxial model in
Fig. 5 shows that a binary with rh = 0:05 can induce
very large e�ects on orbits with hrini > 6rh.

The crucial point in all this is that, because larger
frequencies are required to trigger the resonance in
galaxies that are nearly axisymmetric, in axisymmet-

ric and other nearly spherical galaxies black holes of

given mass must be in a tighter orbit before they can

trigger a signi�cant response. Concrete examples of
this will be discussed in Section 4.

3.2.2. Chaotic and resonant phase mixing

The time-dependent potential associated with the
black hole binary can alter `ordinary' chaotic phase
mixing in at least two important ways.

The time-dependent potential tends to enhance the
degree of chaos in the system, increasing both the
fraction of chaotic orbits and the size of a typical
Lyapunov exponent. To the extent that the bulk po-
tential of a galaxy is in a time-independent equilib-
rium or near-equilibrium state, the relative measure of
(at least strongly) chaotic orbits should be relatively
small, since presumably one requires large measures
of regular (or nearly regular) orbits to provide the
`skeleton' of the interesting structures that are associ-
ated with those chaotic orbits which are present (Bin-
ney 1978). As discussed above, introducing a time-
dependent perturbation leads oftentimes to a signi�-
cant increase in the relative measure of chaotic orbits.
Moreover, even when the time-dependent potential
does not signi�cantly increase the measure of chaotic
orbits, it can make already chaotic orbits more unsta-
ble, thus allowing them to mix more eÆciently.

Because energy is no longer conserved, the time-
dependent potential also facilitates mixing between
di�erent constant energy hypersurfaces, which is com-
pletely impossible in the absence of a time-dependence.
As discussed already, the time-dependent potential
does not in general allow energies to change exponen-
tially fast; and it is also evident that, as probed by

their energies, two initially nearby chaotic orbits will

not diverge exponentially. This implies that mixing of
energies is not as eÆcient a process as mixing in con-
�guration or velocity space. However, the resonant
mixing of energies associated with chaotic orbits still
plays an important role in shu�ing the orbits.

An example of such resonant phase mixing is pro-
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vided in the left panels of Fig. 6, which track the
evolution of an initially localised ensemble with E =
�0:70 in a spherical Dehnen potential with 
 = 1
and a = b = c = 1:0, allowing now for black hole
parameters M = 0:005, rh = 0:05, and ! =

p
10.

The right panels track the same ensemble, evolved
identically except that ! = 0. Two points are imme-
diate. One is that, for the realistic case when ! 6= 0, a

time t = 64, corresponding to � 108M
�1=2
11 a

3=2
kpc yr, is

suÆcient to achieve a comparatively well mixed con-
�guration. Achieving a comparable degree of mixing
for the ! = 0 system requires a time t > 512. The
other point is that orbits in the ensemble evolved with
! 6= 0 have di�used to radii r > 0:3, which is impossi-
ble for orbits in the ! = 0 ensemble, for which energy
is conserved.

4. Observational Consequences of the Dy-

namics

4.1. Genericity of the idealised model

Attention hitherto has focused on the dynamical
consequences of a supermassive black hole binary,
viewed as the prototype of a time-dependent per-
turbation acting in a galaxy idealised otherwise as
a collisionless equilibrium. The object of this and
the following Section is to consider instead potentially
observable consequences, the most obvious of which
is a changing surface brightness distribution induced
by a readjustment in the mass density as stars are
transported to larger distances from the center of the
galaxy.

To understand the origins of such observational
consequences, one can proceed by viewing the host
galaxy as a superposition of orbit ensembles with dif-
ferent energies E and, for di�erent choices of binary
parameters, determine when, for any given value of
E, the binary can have an appreciable e�ect, e.g., by
generating a large energy shift hÆEi. The results de-
scribed in the preceding Section indicated that the
response will only be large when the size rh of the
binary orbit is suÆciently small that the total black
hole mass M1+M2 �M(rh). This, however, implies
that, in a �rst approximation, one is justi�ed in as-
suming that the frequency of the binary can be es-
timated neglecting the bulk potential of the galaxy,
so that, relaxing the assumptions of equal mass black

holes and strictly circular orbits,

! =

r
M1 +M2

A3
; (10)

with A the value of the semi-major axis.

Perhaps the most obvious question here is simply:
For �xed E and A, how do quantities like hÆEi de-
pend on the total mass Mtot = M1 +M2? The an-
swer is that, at least for `realistic' binary black hole
masses, i.e., M1 and M2 < 0:01Mgal, hÆEi is a com-
paratively smooth, monotonically increasing function
of Mtot. For very small masses, there is essentially
no response; but, beyond a critical mass, the pre-
cise value of which depends on properties of the host
galaxy, the dependence is roughly power law in form,
i.e., hÆEi /Mp

tot, with the power p typically in the
range 1 < p < 2. Examples of this behaviour are
exhibited in the left panels of Fig. 7, which show the
e�ects of increasing the total mass for �ve di�erent
models, one spherical, one prolate axisymmetric, one
oblate axisymmetric, and two genuinely triaxial. This
particular set of examples again incorporated circular
orbits and equal black hole masses; but, as will be
discussed below, these assumptions are not crucial.

A second obvious question is: How small must
the binary orbit be in order to elicit a signi�cant re-
sponse? Physically, one might suppose that the bi-
nary was initialised in a comparatively large orbit as
the result of a merger of two colliding galaxies; but
that the orbit slowly decayed via dynamical friction,
allowing the black holes to sink toward the center of
the galaxy. However, within the context of such a
scenario the crucial issues to determine are (i) when
the binary can begin to have a large e�ect, i.e., how
small the orbit must be; and (ii) when the e�ects of
the binary `turn o�' again. These issues are addressed
in the right panels of Fig. 7, which exhibit hÆEi as a
function of rh for the same �ve galactic models used
to generate the left panels.

Two points would seem evident: (1) The binary
has its largest e�ect when rh is substantially smaller
that the typical radius of the orbits with the speci-
�ed energy. The ensembles considered here were each
comprised of orbits with initial energy E = �0:70 and
mean radius hri � 0:33, but the maximum response
was observed for a binary with rh � 0:04, i.e., a size
roughly ten times smaller! This result, perhaps sur-
prising super�cially, re
ects the fact that mass and
energy transport have been triggered by a resonance,
rather than by direct binary scatterings of individual
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stars with the black holes. One needs a very tight bi-
nary orbit to get frequencies suÆciently large to trig-
ger a signi�cant response. (2) As discussed already
in Section 3, for the case of the triaxial models, the
e�ects of the binary appear to `turn on' at substanta-
lly larger values of rh than for the spherical and ax-
isymmetric systems. This would suggest that a black
hole binary could have an especially large e�ect in a
strongly triaxial galaxy: since the range of black hole
sizes that can have an appreciable e�ect is substan-
tially larger, the time during which the resonance will
act should presumably be longer.

But how generic are the idealised computations de-
scribed in Section 3? It might not seem unreasonable
to assume that the black holes follow nearly circular
orbits, since dynamical friction will tend to circularise
initially eccentric orbits; but the assumption of equal
mass black holes is clearly suspect.

Computations show that varying the eccentricity
within reasonable bounds has only a comparatively
minimal e�ect. Increasing the eccentricity e from val-
ues near zero to a value as large as e = 0:5 will not
change quantities like hÆEi by more than 25%; and, in
general the e�ect is much smaller even than this. This
is, e.g., evident from the left panels of Fig. 8, which
were generated for the same �ve models considered in
Fig. 7.

As is evident from the right hand panels of Fig. 8,
there is a substantially stronger, systematic depen-
dence on the mass ratio M2=M1. For �xed Mtot =
M1 +M2, the largest e�ects arise for M1 �M2; but
even here the dependence on the mass ratio is not
all that sensitive. In particular, for all but the triax-
ial models, the response is a relatively 
at function of
M2=Mtot forM2=Mtot > 0:25 or so, which means that,
for �xed M1 + M2, mass ratios 1=3 �M2=M1 � 1
yield comparable results. It is true that, for �xed
semi-major axis A and total mass Mtot, the e�ect
of the binary is signi�cantly reduced for M2 �M1,
but the reason for this is easily understood: When
M2 �M1, the more massive black hole is located very
near the center of the galaxy. This implies, however,
that, even if the binary has a very high frequency,
the more massive black hole remains too close to the
center to have an appreciable e�ect on stars at large
radii. The smaller black hole is typically found at
much larger values of r, but its mass is too small to
signi�cantly impact the surrounding stars.

4.2. Systematic changes in density

Changes in energy induced by transient chaos lead
generically to a readjustment in bulk properties like
density; and, to the extent that there is an average
increase in energy, this readjustment implies a sys-
tematic displacement of stars to larger radii. To see
how this e�ect can proceed, one can sample a constant
energy hypersurface to generate a set of initial con-
ditions, integrate those initial conditions into the fu-
ture, and then compare angle-averaged radial density
distributions �(r) generated at various times t � 0.

The left panels of Fig. 9 summarise results for a
triaxial model with a2 = 1:25, b2 = 1:0, and c2 = 0:75,
assuming circular orbits with M1 = M2 = 0:01, rh =
0:05, and ! =

p
20. The ensemble of 4800 orbits was

constructed such that E = �0:70 and hrini � 0:33.
The �ve panels exhibit the density distributions at
t = 0, 16, 32, 64, and 128, the last corresponding

physically to a time � 2�108M�1=2
11 a

3=2
kpc yr. The right

panels exhibit analogous data for the same ensemble
and potential but with the black holes held �xed in
space, i.e., ! � 0.

As one would expect, the density distribution re-
mains essentially unchanged for the time-independent
potential with ! = 0, but the realistic case with
! =

p
20 leads to a signi�cant readjustment in den-

sity. (Minor changes in the ! = 0 model re
ect a
modest readjustment to the insertion of the �xed bi-
nary in an equilibrium generated without a binary.)
Already by t = 16, a time corresponding to an inter-

val � 2:5 � 107M
�1=2
11 a

3=2
kpc yr, there is a pronounced

decrease in density in the range 0:3 � r � 0:5 and an
increase in density at larger radii. Initially the tra-
jectories are restricted energetically to radii r � 0:6.
By t = 128, more than 13% of the trajectories are
located at radii r > 1:0.

4.3. The size of the `sphere of in
uence'

Figure 9 demonstrates that a black hole binary can
signi�cantly impact orbits which spend most of their
times at radii � rh. The obvious question, however,
is: how much larger? To answer this question one can
evolve collections of ensembles with a variety of dif-
ferent initial radii, and determine how their response
varies as a function of r. The results of two such in-
vestigations are summarised in Fig. 10. In each case,
the con�guration corresponded to a spherical Dehnen
model with a = b = c = 1:0 and a supermassive black
hole binary with M = 0:005, rh = 0:25, and fre-
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quency ! = 0:2828. The left panels are for a model
with 
 = 0:0; the right panels for 
 = 1:0.

It is evident that the binary can have a signi�cant
e�ect on orbits even at very large radii. The `sphere
of in
uence' extends out to r � 4, even though rh =
0:25. It is also apparent that the ensembles which
experience the most shu�ing in energies, as probed by
hjÆEji and �ÆE , are precisely those ensembles with the
largest Lyapunov exponent h�i. Indeed, for the 
 =
0:0 and 
 = 1:0 models, the rank correlation between
the mean shift hjÆEji and the mean exponent h�i for
di�erent ensembles, are, respectively, R(hÆEi; h�i) =
0:615 and 0:613.

It is also evident that the value of the cusp index 

has a signi�cant e�ect on the details of the response.
The value of 
 does not have a large e�ect on the size
of the binary `sphere of in
uence', but it does impact
the amplitude of the response and how that response
correlates with radius. In both cases, there is a signif-
icant response for 0:15 � r � 6:0, but the response in
this range, as probed both by the degree of shu�ing
in energies, is somewhat larger for the cuspy model.
Even more strikingly, however, the presence of the
cusp appears to reduce both the size of the Lyapunov
exponents and the degree of shu�ing at very small
radii. For the cusp model with 
 = 1:0, compar-
atively little shu�ing of energies and comparatively
small amounts of chaos are observed at radii� rh. In
the cuspy model, the very lowest energy stars tend to
be more regular and to be less susceptible to resonant
mixing.

4.4. Anisotropy

To what extent does the mass transport induced
by a supermassive black hole binary depend on di-
rection? Even if, e.g., the host galaxy is modeled
as exactly spherical, the binary breaks the symmetry
and, as such, could introduce anisotropies into a com-
pletely isotropic ensemble of stars. This is important
since such anisotropies would imply that changes in
visual appearance induced by the binary could depend
appreciably on the observer's viewing angle.

As a simple example, one can consider the direction-
dependent density distributions associated with a
uniform sampling of a constant energy hypersur-
face which, assuming a spherical potential, implies
a spherically symmetric density distribution and an
isotropic distribution of velocities. One example
thereof is exhibited in Fig. 11, which was generated for

a Dehnen model with a = b = c = 1 and 
 = 1:0, con-
taining a binary executing a circular orbit in the x�y
plane with the `correct' Kepler frequency. Here the
top left panel exhibits spatial distributions at times
t = 0 and t = 512; the top right panel shows the cor-
responding velocity distributions. At time t = 0, the
spatial and velocity distributions are all equal modulo
statistical uncertainties; at late times they di�er sys-
tematically, but it remains true that n(jxj) = n(jyj)
and n(jvxj) = n(jvy j). It is obvious from the left panel
that there is a systematic outward transport of stars
in all three directions, but it is also evident that, as
might have been anticipated, there is a larger net ef-
fect on the spatial components in the plane of the
orbit. Similarly, there is a modest shift in veloci-
ties which, again, is more pronounced in the x and
y components. The bottom two panels contain plots
of, respectively, the x and y and the x and z coordi-
nates at t = 512. Examination of these panels con-
�rm the fact that the initially spherical distribution
is more extended in the plane of the binary than in
the orthogonal direction. In particular, the resulting
density distribution could easily be misinterpreted as
a disc or a torus.

But what happens if the host galaxy is already non-
spherical? If, e.g., the galaxy is genuinely triaxial, one
might perhaps suppose that the binary will have set-
tled into one of the symmetry planes; but, assuming
that this is really the case, there are at least two ob-
vious questions that need to be addressed. (1) How
does the overall response depend on which symmetry
plane? If, e.g., the binary is oriented perpendicular
to the long axis, will its net in
uence be signi�cantly
di�erent from its in
uence if oriented perpendicular
to the short axis? (2) For a binary oriented in a given
plane, to what extent do observable properties depend
on viewing angles?

Both these questions were addressed as before by
evolving uniform samplings of constant energy hyper-
surfaces which yield a triaxial number density but are
still characterised by an isotropic distribution of ve-
locities. One example of such a computation is sum-
marised in Fig. 12. Here panel (a) exhibits the density
distributions n(jrij) at t = 0; the remaining three pan-
els exhibit the corresponding distributions at t = 512
for three di�erent integrations, with the binary ori-
ented in the x� y, y � z, and z � x planes.

Overall the `angle-averaged' properties of the dif-
ferent simulations are very similar: The mean short
time Lyapunov exponents h�i for the three di�erent
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runs agree to within 10%, and even smaller variations
were observed for quantities like hÆEi. Indeed, the
shape of the galaxy seems more important than the
orientation of the binary. For all three binary orien-
tations, one observes that the largest e�ect is in the
x-direction, which corresponding to the long axis, and
the smallest in the short-axis z-direction. The details
of the response observed here depend to a consider-
able extent on both the shape of the potential and the
energy of the initial ensemble. In particular, for some
choices the response is largest in the short-axis rather
than long-axis direction. However, it seems true quite
generally that the orientation of the binary is compar-
atively unimportant. There remains a dependence on
viewing angle but, if anything, this e�ect is somewhat
weaker than for the case of spherical systems.

For the case of an axisymmetric system with the bi-
nary oriented in the x� y symmetry plane, one �nds
generically that distributions in the x and y direc-
tions agree to within statistical uncertainties, but that
the z-direction distributions di�er systematically. In
some cases (depending on both shape and binary
paramters), there is more mass transport in the z di-
rections; in others the e�ect is more pronounced in
the x and y directions. These di�erences likely re-

ect the fact that this mass transport is triggered by
a resonance. The unperturbed orbits have di�erent
characteristic frequencies in di�erent directions, but
this would suggest that the resonant coupling could
well be stronger (or weaker) in one direction than in
another.

5. Modeling Luminosity Pro�les in Real Gal-

axies

5.1. Basic strategy

The objective here is to show that the physical
e�ects discussed above, which appear the inevitable
consequence of the presence of a supermassive black
hole binary in the center of a galaxy, could provide a
natural explanation of the fact that, in a number of
galaxies that have been observed usingWFPC 2 (e.g.,
Lauer et al 2002), the projected surface brightness dis-
tribution in a given direction is not a monotonically
decreasing function of distance from the center of the
galaxy.

The computations described here are not com-
pletely realistic. As in Section 3, they assume a pair
of black holes of exactly equal mass executing exactly
circular orbits; and, as in the preceding, the computed

orbits of test stars are not fully self-consistent since
one is neglecting both changes in the form of the bulk
potential that will arise as stars are displaced from
their original trajectories and the fact that the binary
orbit slowly decays. They do, however, demonstrate
that allowing for a binary of relatively small size, � 10
pc, comprised of black holes with mass� 1% the mass
of the galaxy, leads generically to luminosity dips of
the form that have been observed. Moreover, �ne-
tuning parameters within a reasonable range of values
allows for the possibility of a comparatively detailed
(albeit in general nonunique) �t to observations of
speci�c galaxies.

The basic programme is as follows:

� Generate N -body realisations of a spherical galaxy
characterised by an isotropic distribution of velocities
and a Nuker (Lauer et al 1995) density pro�le �(r)
with speci�ed parameter values.

� Insert into that system a black hole binary with
speci�ed masses M1 = M2 = M and radius rh. For
`realistic' values ofM and rh,M(rh) is typically small
compared with the black hole mass, so that one can
assume, at least approximately, that the black holes
are executing a Keplerian orbit with frequency ! =p
M=4r3h.

� Next evolve the initial conditions in the �xed time-
dependent potential comprised of the Nuker potential
plus the potential of the orbiting black hole binary,
and track the radial density distribution �(r) as a
function of time.

� Finally, assuming that mass traces light, compute
line-of-sight integrals along the density distribution to
obtain integrated surface densities and, hence, surface
brightness distributions as functions of time.

Although this approach does not pretend to be
completely realistic, it would not seem totally un-
reasonable to insert the binary `by hand' without
allowing for the dynamics whereby it has evolved
into a tightly bound orbit near the galactic center.
When the size of the binary orbit is very large, it
will have a comparatively minimal e�ect. Energy
and mass transport only becomes important at com-
paratively small radii, where M �M(rh), and again
become unimportant when the radius becomes too
small. Most of the action happens for a limited range
of radii.

Note, moreover, that the assumption M �M(rh)
tends to mitigate the fact that the computations are
not fully self-consistent: Although the bulk forces
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associated with the galaxy cannot be neglected at
all radii where the binary has an appreciable e�ect,
they can presumably be neglected, at least approxi-
mately, at the comparatively small radii near the bi-
nary where the e�ect of the black holes is strongest.

5.2. The initial form of the density and po-

tential

Initial attempts at modeling using a spherical Deh-
nen potential yielded results that were in qualita-
tive agreement with observations. However, com-
paratively large systematic deviations were observed,
which appeared to re
ect the fact that the transition
between the inner and outer power-law pro�les pre-
dicted by a Dehnen potential is too gradual to repre-
sent real galaxies. For this reason, models were con-
structed instead using an initial density distribution
satisfying the more general Nuker Law (Lauer et al
1995)

�0(r) = �cr
�
(1 + r�)

(
��)
� : (11)

Dehnen models are recovered for � = 1 and � = 4.
The central density �c was chosen so that the total
galactic mass Mg = 1:0. The associated potential
V (r) satis�es (in units with G = 1)

V (r) = �4�
�
1

r

Z r

0

�(~r) ~r2 d~r +

Z 1
r

�(~r) ~r d~r

�
: (12)

Unfortunately, this potential can be expressed in
terms of elementary functions only for certain choices
of � and �, which means that, generically, orbits
must be computed using an expensive interpolation
scheme. This motivated an e�ort to seek �ts assum-
ing values of � and � for which V can be expressed
analytically. For the small number of pro�les consid-
ered hitherto, reasonable �ts were achieved for � = 2
and � = 4, which, for 
 = 0, corresponds to a poten-
tial

V (r) = � 2

�

tan�1 r

r
(13)

and

M(r) =
2

�

�
tan�1 r � r

1 + r2

�
: (14)

Most models were constructed assumingM(rh)�
M1 +M2, so that the approximation of a Keplerian
frequency is typically very good. However, in an e�ort
to allow for the in
uence of the galactic potential,
the models allowed for a slightly modi�ed frequency
! =

pM=(2rh)3, whereM =M1 +M2 + 4M(rh).

5.3. Generating a surface brightness distribu-

tion

Con�guration space was divided into N = 100
equally spaced concentric shells i. Each shell cor-
responded to a range of energies, Ei�1 < E < Ei,
i = 1; :::; N , sampled along the principal axes in the
plane of the binary, but perpendicular to the line con-
necting them. This was done to ensure that energy
was a monotonic function of radius, so that shu�ing
of energies could be related directly to a redistribution
of orbits in con�guration space. Each shell was sam-
pled to select M = 300 initial conditions, which were
then integrated into the future for a time t = 512.
Orbital data were recorded at intervals �t = 128 and
the value of energy at that time was used to reassign
the orbit to a (in general) new shell. If Mi(t) denotes
the number of orbits in shell i at time t, then

�i(t) =
Mi(t)

M
; (15)

the relative 
uctuation in number, can be interpreted
as a discretised version of a radial density 
uctuation
Æ(t) satisfying

�(r; t) = [1 + Æ(r; t)] �0(r); (16)

with �0 the initial density distribution. The smooth
Æ(t) was interpolated from �i(t) using a smooth-curve
�tting routine.

The resulting density �(r; t) was then integrated
along the line of sight to generate a surface brightness

�(r; t) =
2

�

Z 1
r

�(~r; t)~rp
~r2 � r2

d~r: (17)

Here � denotes the mass-to-light ratio, which was
assumed constant for the modeling described here.

5.4. Results

Figure 13 exhibits data for a typical model, cor-
responding to a Nuker Law with � = 2, � = 4, and

 = 0. The binary is comprised of two black holes
with M = 0:005 and rh = 0:15, yielding a Kepler
frequency ! = 0:6086. The half-mass radius of the
model is r = 2:264, and over 75% of the mass is con-
tained with r = 5.

Several points are evident: Most obvious, perhaps,
is simply the fact that the binary induces a distinc-
tive signature, characterised by an inversion in both
the mass density and the surface brightness pro�le.
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In some cases, especially when 
 6= 0, the contents
of the innermost shells can remain essentially intact.
Aside, however, from those innermost shells, one can
identify a well-de�ned sphere of in
uence in which the
binary has observable e�ects. For r < r1, one observes
a systematic underpopulation of stars and, hence, a
dip in luminosity; for r1 < r < r2, one observes a sys-
tematic overpopulation resulting from stars that were
transported outward from radii r < r2. For r > r2 the
density and surface brightness distribution remain es-
sentially unchanged. Also interesting is the fact that
the signature, once established, remains unchanged in
bulk properties. In particular the dip is comparably
prominent visually at t = 128 and t = 512.

Figure 14 exhibits the result of a more systematic
attempt to model the surface brightness of NGC 3706,
again starting from a Nuker Law with � = 2, � = 4,
and 
 = 0. Physical distance was translated into
angular separation assuming a scale factor of 0:15, so
that, e.g., r = 1 corresponds to 0.15 arcsec or, assum-
ing the distance estimate given by Lauer et al, r � 24
pc. It was again assumed that M = 0:005, but, in
this case, rh = 0:025, which corresponds to a physical
rh � 0:6 pc and an angular separation � 0:004 arcsec.

It is easy to identify qualitatively three distinct
parts of the surface brightness, namely a `dip', a
`bulge', and an outermost unperturbed region. The
inner dip, extending out to � 0:10 arcsec, is a region
from which stars have been ejected systematically, so
that the surface brightness is lower than what is pre-
dicted by an unperturbed Dehnen model. The bulge,
which extends out to � 0:30 arcsec, corresponding to
the region to which those stars have been ejected, is
characterised by a surface brightness that is larger
than for the unperturbed model. On scales > 0:30
arcsec or so, the binary has only a comparatively min-
imal e�ect, so that the surface brightness remains es-
sentially unchanged.

As is evident from the right panels of Fig. 14, the
perturbed Nuker model is quite successful in mod-
eling the dip and the outer region, where errors in
surface brightness correspond typically to Æ� � 0:005
magnitudes or less. In particular, it is evident that
the dip is much better �t by the perturbed model than
by an unperturbed Nuker model. Both qualitatively
{ in the sense that an unperturbed Nuker model re-
quires a monotonically decreasing surface brightness
{ and quantitatively { in terms of the actual error
Æ� {, the perturbed model does a much better job.
However, both the perturbed and unperturbed mod-

els are somewhat less successful in accounting for the
detailed shape of the bulge (although the model with
a binary does somewhat better).

There are at least two possible explanations for
this lack of success. Most obvious is the fact that,
by demanding � = 2 and � = 4, so that the po-
tential could be written in terms of elementary func-
tions, one has limited one's 
exibility in modeling the
transition region between the inner and outer (unper-
turbed) power law pro�les. Allowing for fractional
values of these parameters (which requires that the
potential be computed numerically) will likely yield
better �ts. However, it is also possible that this lack
of success re
ects in part the oversimplistic character
of the model. In a real galaxy, the binary will slowly
drift inwards as a consequence of dynamical friction;
and the fact that rh was not really constant might be
expected to have some observable e�ects. Attempts
to remedy these de�ciencies of the model are currently
underway.

It should, however, be stressed that the general
e�ects computed for the binary are relatively insen-
sitive to rh, provided only that M > M(rh). This
is, e.g., evident from Fig. 15, the two panels of which
exhibit surface brightness distributions at t = 256
for both the model considered in Fig. 14 and another
model identical except that rh = 0:085. Careful ex-
amination reveals some di�erences in detail, but nei-
ther �t is clearly superior visually. It is also evident
from Fig. 14 that the basic observable structure devel-
ops very quickly. Although the details of the surface
brightness pro�le can vary considerably for times as
long t � 128 or more, the existence of the dip region
is obvious already by t = 32.

One �nal point should be noted. Arguing that this
sort of dip in surface brightness could be attributed
to a supermassive black hole binary does not neces-
sarily imply that the binary is still present. To the
extent that, neglecting the binary, the galaxy may be
idealised as a collisionless equilibrium, one might ex-
pect that a dip in surface brightness, once generated,
could persist even after the binary has coalesced, at
least for times short compared with the time scale on
which stars at larger radii could be scattered inwards
via collisional relaxation. To the extent that the bulk
potential is time-independent, in the absence of `colli-
sions' energy is conserved, so that an underpopulated
region in energy space cannot be repopulated.
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6. Discussion

The computations described in this paper yield
several potentially signi�cant conclusions regarding
phase mixing triggered by a time-dependent poten-
tial. Most obvious is the fact that an orbiting super-
massive black hole binary can serve as an important
source of transient chaos which facilitates eÆcient res-
onant phase mixing, shu�ing the energies of stars (or
any other objects) as well as phase space coordinates
on a constant energy hypersurface. In particular,
the e�ects observed here from a comparatively `small
scale' perturbation are quite similar qualitatively to
the e�ects observed when galaxies are subjected to
larger scale systematic oscillations (Kandrup, Vass,
& Sideris 2003). Especially striking, perhaps, is the
fact that even though the perturbation is relatively
low amplitude and concentrated very near the center
of the galaxy, it can have signi�cant e�ects at compar-
atively large radii. All this would appear to reinforce
the expectation that resonant phase mixing could be
a generic physical e�ect associated with galaxies that
are subjected to some oscillatory time dependence.

Contrary, perhaps, to naive expectation, it appears
that the shu�ing of energies is di�usive, rather than
exponential, so that energy phase mixing is less dra-
matic than phase mixing of coordinates and veloci-
ties. Even though the time-dependent perturbation
can increase both the relative abundance of chaotic
orbits and the degree of exponential sensitivity ex-
hibited by chaotic orbits, it does not in general tend
to make orbits exponentially unstable in the phase
space direction orthogonal to the constant energy hy-
persurfaces.

However, energy shu�ing induced by such tran-
sient chaos could still play an important role in ex-
plaining violent relaxation. Indeed, the fact that this
energy shu�ing is not exponential would seem con-
sistent with full self-consistent simulations of violent
relaxation (e.g., Quinn & Zurek 1988) which indicate
that, even though `particles' in N -body simulations
are almost completely `randomised' in terms of most
phase space coordinates, they tend to exhibit at least
a partial remembrance of initial conditions. In par-
ticular, `particles' that start with low (high) binding
energies tend systematically to end with low (high)
binding energies. If, e.g., stars in simulations involv-
ing hard, head-on collisions of galaxies are ordered
in terms of their initial and �nal binding energies,
the rank correlation R between the initial and �nal

ordered lists typically satis�es (Kandrup, Mahon, &
Smith 1993) R � 0:6.

That a supermassive black hole binary will cause a
systematic readjustment in the density distribution of
the host galaxy seems largely independent of the form
of the galactic potential or the orbital parameters of
the binary, although the precise form of the readjust-
ment does depend on these details. In particular, one
sees qualitatively similar e�ects for Dehnen potentials
with di�erent cusp indices 
, and for Nuker Laws with
di�erent transitional radii properties. Similarly, the
eccentricity and the orientation of the supermassive
binary are not crucial, and allowing for unequal, but
still comparable, masses does not result in qualitative
changes. Irrespective of all these details, one �nds
that, when the total binary mass M1+M2 �M(rh),
with rh the `size' of the binary orbit, stars cannot res-
onate with the binary and comparatively little mass
transport occurs. However, when M1+M2 �M(rh),
one starts seeing substantial e�ects, e�ects which can
extend to radii � rh

One might therefore expect that (i) when the size
of its orbit is large, the binary will have only a min-
imal e�ect on the bulk properties of the galaxy; but
that when, as a result of dynamical friction (e.g., Mer-
ritt 2001), the orbit has decayed to a suÆciently small
size, it will begin to have an appreciable { and observ-
able { e�ect.

HEK acknowledges useful discussions with Chris-
tos Siopis, who tried to convince him of the impor-
tance of explaining luminosity `dips' months before
he was ready to listen. HEK, IVS, and BT were sup-
ported in part by NSF AST-0070809. IVS and CLB
were supported in part by Department of Education
grant G1A62056. We would like to thank the Florida
State University School of Computational Science and
Information Technology for granting access to their
supercomputer facilities.

15



REFERENCES

Bertin, G. 2000, Dynamics of Galaxies, Cambridge
University Press, Cambridge

Binney, J. 1978, Comments Astrophys., 8, 27

Dehnen, W. 1993, MNRAS, 265, 250

Kandrup, H. E., 1998, MNRAS, 301, 960

Kandrup, H. E., 2003, in: Springer Lecture Notes in
Physics, in press (astro-ph/0212031)

Kandrup, H. E., Mahon, M. E. 1994, Phys. Rev. E
49, 3735

Kandrup, H. E., Mahon, M. E., Smith, H. 1993, A&A,
271, 440

Kandrup, H. E., Siopis, C. 2003, MNRAS, submitted

Kandrup, H. E., Vass, I. M., Sideris, I. V. 2003, MN-
RAS, in press (astro-ph/0211056)

Kormendy, J., Bender, R. 1996, ApJ Lett., 464, 119

Lauer, T. et al, 1995, AJ, 110, 2622

Lauer, T. et al, 2002, AJ, 124, 1975

Lichtenberg, A. J., Lieberman, M. A. 1992, Regular
and Chaotic Dynamics, Springer, New York.

Lynden-Bell, D. 1967, MNRAS, 136, 101

Merritt, D. 2001, ApJ, 556, 445

Merritt, D., Fridman, T. 1996, ApJ, 460, 136

Merritt, D., Valluri, M. 1996, ApJ, 471, 82

Quinn, P. J., Zurek, W. H. 1988, ApJ, 331, 1

16



Fig. 1.| (a) The fraction f of strongly chaotic orbits
in a 1600 orbit ensemble with initial energy E = 0:87
and mean initial radius hrini � 0:86, evolved in a
spherical oscillator potential withM = 0:05, rh = 0:3,
and a2 = b2 = c2 = 1:0, plotted as a function of fre-
quency !. (b) The mean value h�i of the largest �nite
time Lyapunov exponent for the strongly chaotic or-
bits. (c) The mean shift in energy hÆEi for all the
orbits. (d) The dispersion �ÆE for all the orbits. (e)
- (h) The same as the preceding for orbits integrated
in a potential with a2 = 1:33, b2 = 1:0, and c2 = 0:80
and an ensemble with E = 0:87 and hrini � 0:89.

Fig. 2.| (a) The mean energy shift hÆEi for the
same ensemble used to generate FIG. 1 (e) - (h), inte-
grated with rh = 0:3, a2 = 1:33, b2 = 1:0, c2 = 0:80,
and (from top to bottom) M = 0:05, M = 0:0281,
M = 0:0158, and M = 0:005. (b) hÆEi for the same
ensembles { solid line for M = 0:005, dashed line for
M = 0:0158, dot-dashed line for M = 0:0281, and
triple-dot-dashed for M = 0:05 { now expressed in
units of the maximum shift hÆEmaxi. (c) The mean
energy shift hÆEi for integrations with a2 = 1:33,
b2 = 1:0, c2 = 0:80, M = 0:05, and (curves peak-
ing from left to right) rh = 0:4. rh = 0:3, rh = 0:2,
and rh = 0:1. (d) hÆEi expressed in units of the max-
imum shift hÆEmaxi { solid line for rh = 0:1, dashed
for rh = 0:2, dot-dashed for rh = 0:3, and triple-dot-
dashed for rh = 0:4.
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Fig. 3.| (a) �2ÆE , where �ÆE(t) is the time-dependent
spread in energy shifts associated with an ensemble
of orbits evolved in an oscillator potential with M =
0:05, rh = 0:3, a2 = 1:33, b2 = 1:0, c2 = 0:80 and
! = 0:5. (b) hÆE(t)i2 for the same ensemble. (c) and
(d) The same for ! = 1:0. (e) and (f) The same for
! = 2:0. (g) and (h) The same for ! = 4:0. (i) and
(j) The same for ! = 8:0.

Fig. 4.| (a) Scatter plots relating �ÆE and �, where
�ÆE represents the dispersion associated with the
time-dependent ÆE(t) for an individual orbit over the
interval 0 < t < 512. The orbits are the same that
were used to generate FIG. 3, integrated with ! = 0:5.
(b) Scatter plots relating hÆEi and �, where hÆEi rep-
resents the mean value of ÆE(t), computed for the
same orbits as in (a). (c) and (d) The same for
! = 1:0. (e) and (f) The same for ! = 2:0. (g)
and (h) The same for ! = 4:0. (i) and (j) The same
for ! = 8:0.
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Fig. 5.| (a) The fraction f of strongly chaotic or-
bits in a 1600 orbit ensemble with initial energy E =
�0:70 and mean initial radius hrini � 0:33, evolved in
a spherically symmetric Dehnen potential with 
 =
1:0, M = 0:01, r = 0:05, and a2 = b2 = c2 = 1:00.
(b) The mean value h�i of the largest �nite time Lya-
punov exponent for the strongly chaotic orbits. (c)
The mean shift in energy hÆEi for all the orbits. (d)
The dispersion �ÆEi for all the orbits. (e) - (h) The
same as the preceding for orbits integrated in a poten-
tial with a2 = 1:25, b2 = 1:00, and c2 = 0:75, again
for an ensemble with E = �0:70 and hrini � 0:33. Fig. 6.| (a) The x and y coordinates at t = 0 for an

initially localised ensemble of orbits with E = �0:70
and hrini � 0:33, evolved in a spherical Dehnen po-
tential with 
 = 1:0, rh = 0:05, M = 0:005, and
! =

p
10. (b) t = 8. (c) t = 16. (d) t = 32. (e)

t = 64. (f) - (j). The same for stationary black holes,
i.e., ! = 0:0.
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Fig. 7.| (a) The mean shift in energy, hÆEi, com-
puted for an ensemble of orbits with E = �0:70 and
hri � 0:33, evolved in a 
 = 1:0 Dehnen model with
a2 = b2 = c2 = 1 in the presence of a supermas-
sive binary comprised of two black holes executing
strictly circular orbits with rh = 0:05 and di�erent
values of M1 = M2 �M . (b) hÆEi for the same
ensemble evolved in the same Dehnen model, again
allowing for a binary executing circular orbits, but
now with M1 = M2 = 0:01 and variable rh. (c) and
(d) The same for a model with a2 = b2 = 0:90 and
c2 = 1:21. (e) and (f) The same for a model with
a2 = b2 = 1:21 and c2 = 0:64 (g) and (h) The same
for a model with a2 = 1:10, b2 = 1:0 and c2 = 0:90.
(i) and (j) The same for a model with a2 = 1:25,
b2 = 1:0 and c2 = 0:75. In each case, the frequency
! =

p
(M1 +M2)=a3, with A the semi-major axis.

Fig. 8.| (a) The mean shift in energy, hÆEi, com-
puted for an ensemble of orbits with E = �0:70 and
hri � 0:33, evolved in a 
 = 1:0 Dehnen model with
a2 = b2 = c2 = 1 in the presence of a supermas-
sive binary comprised of two black holes with mass
M1 = M2 = 0:01 executing orbits with semi-major
axis A = 0:10 and variable eccentricity e. (b) hÆEi
for the same ensemble evolved in the same Dehnen
model, again assumingM1+M2 = 0:02 and a = 0:10,
but now allowing for di�erent ratios M2=(M1 +M2).
(c) and (d) The same for a model with a2 = b2 = 0:90
and c2 = 1:21. (e) and (f) The same for a model with
a2 = b2 = 1:21 and c2 = 0:64 (g) and (h) The same for
a model with a2 = 1:10, b2 = 1:0 and c2 = 0:90. (i)
and (j) The same for a model with a2 = 1:25, b2 = 1:0
and c2 = 0:75.
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Fig. 9.| (a) The initial angle-averaged radial density
distribution associated with a 4800 orbit sampling of
the E = �0:70 constant energy hypersurface, subse-
quently integrated in a pseudo-Dehnen potential with

 = 1:0, M = 0:01, rh = 0:05, a2 = 1:25, b2 = 1:00,
c2 = 0:75 and ! =

p
20. (b) The density at t = 16.

(The dotted line reproduces the initial distribution.)
(c) t = 32. (d) t = 64. (e) t = 128. (f) - (j) The same
for stationary black holes, i.e., ! = 0:0.

Fig. 10.| (a) Mean energy shift hÆEi, computed for
ensembles with di�erent radii, for orbits in a spherical
Dehnen model with 
 = 0:0 and a = b = c = 1:0 and
black hole parameters M = 0:005, rh = 0:25, and
! = 0:2828. Note that the radius r is plotted on a
logarithmic scale. (b) The dispersion �ÆE for the same
ensembles. (c) The mean value h�i for each ensemble.
(d) The dispersion ��. (e) - (h) The same for a model
with 
 = 1:0.
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Fig. 11.| (a) The direction-dependent spatial dis-
tributions n(jxj) (solid curve) and n(jzj) (dashes) at
t = 512 generated for a 4800 orbit sampling of the
E = �0:70 hypersurface with 
 = 1:0, M = 0:01,
rh = 0:005, a = b = c = 1, and ! =

p
20, along with

the distribution n(jxj) (dot-dashed) at time t = 0. (b)
The corresponding direction-dependent velocity dis-
tributions. (c) x and y coordinates for the ensemble
at t = 512. (d) x and z coordinates for the ensemble
at t = 512.

Fig. 12.| Direction-dependent spatial distributions
n(jxj) (solid curve), n(jyj) (dashes), and n(jzj) (dot-
dashes) generated for a 4800 orbit sampling of the
E = �0:62 hypersurface with 
 = 1:0, M = 0:01,
rh = 0:005, a2 = 1:25, b2 = 1:0, c2 = 0:75, and
! =

p
20. along with the distribution n(jxj) (dot-

dashed) at time t = 0. (a) The distributions at time
t = 0. (b) The distributions at t = 512, allowing for
a binary orbiting in the x�y plane. (c) The same for
a binary in the y � z plane. (d) The z � x plane.
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Fig. 13.| Computed quantities for a Nuker model
with � = 2, � = 4, 
 = 0, MBH = 0:005, rh =
0:15, and ! = 0:6086. The �rst column exhibits �,
the relative 
uctuation in density for di�erent shells;
the second exhibits the interpolated smooth density
�; the third exhibits the surface brightness, assuming
that mass traces light. From top to bottom, rows
represent integration times t = 128, 256, 384, and 512.
In each case, the dotted lines represent the original
unperturbed values.

Fig. 14.| Modeling NGC 3706 with a Nuker model
with � = 2, � = 4, 
 = 0, rh = 0:025, and ! = 8:968.
The left column exhibits the observed surface bright-
ness pro�le (solid circles), the surface density pre-
dicted by an unperturbed Nuker Law (dotted lines),
and the time-dependent surface density generated by
the binary (solid lines) at times (from top to bottom)
t = 32, t = 64, t = 128, and t = 256. The right
column exhibits the relative error of the the �t for a
Nuker model without (dashes) and with the binary
(solid lines).

Fig. 15.| (a) The best �t model with � = 2, � = 4,

 = 0, rh = 0:025, and ! = 8:968 at time t = 256. (b)
The same, except assuming rh = 0:085 and ! = 1:567.
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