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“Anarchy” is the hypothesis that there is no fundamental distinction among the three flavors of neutrinos. It
describes the mixing angles as random variables, drawn from well defined probability distributions dictated by
the group Haar measure. We perform a Kolmogorov–Smirnov (KS) statistical test to verify whether anarchy is
consistent with all neutrino data, including the new result presented by KamLAND. We find a KS probability
for Nature’s choice of mixing angles equal to 12%, consistent with the anarchical hypothesis. In turn, assuming
that anarchy is indeed correct, we place lower boundsjUe3j

2 > 0:019 (two sigma) and 0.0011 (three sigma) on
the remaining unknown “angle” of the leptonic mixing matrix.

All fermions in the Standard Model of particle physics
(SM) seem to come in threes. The three copies of each funda-
mental matter particle have in common all properties except
one – the mass. It is common to say that there are three fami-
lies, generations, orflavorsof each matter particle in the SM.
Currently we do not know the reason behind the number three,
nor why the matter particles should “repeat” at all. Therefore,
it is important to look for any information that may shed light
into the origin of flavor.

Within the SM, it has been known for quite some time that
different quark flavors can mix quantum mechanically, and
that the weak interactions can turn one flavor into another. The
“amount” of mixing is summarized by the so-called Cabibbo–
Kobayashi–Maskawa (CKM) unitary matrix. The CKM ma-
trix, in turn, can be parameterized by three mixing angles
�12; �13; �23 and one complex phaseÆ (throughout,we use the
“PDG parameterization” [1] for the mixing matrices). A non-
vanishing phaseÆ indicates that SM processes can violate CP
invariance, distinguishing matter from anti-matter in a subtle
manner. With the beautiful data from theB-factory experi-
ments, we have been able to confirm the CKM framework,
and measure all angles and the CP-odd phase withO(10)%
accuracy.

A noteworthy feature of the CKM matrix is that it is rather
well approximated by the unit matrix, meaning that the quark
mixing angles are all small. This fact, combined with the fact
that the quark masses are quite distinct (the ratio of the lightest
to heaviest quark mass isO(10�5)), is interpreted as evidence
for the existence of some underlying symmetry or physical
mechanism that differentiates the quark families and hence ex-
plains the hierarchy in the quark masses and the small mixing
angles.

In the SM, all neutrinos are exactly massless. This being
the case, one can always choose a basis where the Maki–
Nakagawa–Sakata (MNS) unitary matrix, the leptonic analog
of the CKM matrix, is the unit matrix without loss of gen-
erality. This means that there are no SM processes through
which one lepton flavor can turn into another. This hypothesis
has been indeed confirmed by all experimental searches for
charged lepton flavor violation to date [1].

If neutrinos have masses, and these masses are distinct,

there is no reason to expect that the MNS matrix is trivial, and
lepton flavor transitions are observable in principle. In this
case, the most sensitive probes for lepton flavor transitions are
neutrino oscillation processes, through which a neutrino pro-
duced in a well-defined flavor state�� is detected in a different
flavor state�� after propagating over a macroscopic distance
L. The transition probabilities depend on the mixing angles
and the CP-odd phase of the MNS matrix, plus the difference
of the neutrino masses-squared,�m2

ij � m2
i �m2

j .

Since 1998, there is compelling evidence that neutrino fla-
vor transitions do occur when the neutrinos traverse macro-
scopic distances. Atmospheric [2], solar [3], and, very re-
cently, reactor neutrino experiments [4] have all observed data
consistent with the neutrino oscillation hypothesis. In light of
all the experimental evidence, it appears that neutrinos have
masses, and that leptonic flavors mix.

There are two striking features regarding the values of the
oscillation parameters which are extracted from the current
neutrino data. One is that the neutrino masses are extremely
small. Neutrino oscillation experiments have determined that
the neutrino mass-squared differences are [13]j�m2

23j =
(2 � 7) � 10�3 eV2 [2] and�m2

12 = (4 � 20) � 10�5 eV2

[4]. These results, combined with direct searches for neu-
trino masses [1] yield that the heaviest neutrino mass is less
thanO(1) eV, over six orders of magnitude smaller than the
smallest charged fermion mass of which we know (the elec-
tron mass). The other is that, of the mixing angles, two
(�12; �23) are known with some precision, and are both large:
sin2 2�23 >� 0:9 [2] andsin2 2�12 >� 0:4 [4].

Assuming a three family mixing scenario, there are two
more parameters in the MNS mixing matrix that are still un-
known: �13 and Æ. In particular, ifÆ 6= 0 neutrino oscilla-
tion processes need not conserve CP. Leptogenesis models [5],
on the other hand, try to relate the existence of matter but no
anti-matter in the Universe to the CP violation present in the
neutrino sector, making its observation of the utmost inter-
est. CP-violating effects parameterized by the CP-odd phase
Æ of the MNS matrix can be probed in accelerator-based long-
baseline neutrino oscillation experiments if, for example, one
compares the flavor transformation probabilities of neutrinos
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and anti-neutrinos (written here in vacuum),

P (�e ! ��)� P (��e ! ���) = �16s12c12s13c
2
13s23c23

sin Æ sin
�m2

12L

4E
sin

�m2
13L

4E
sin

�m2
23L

4E
; (1)

wheresij = sin �ij , cij = cos �ij . It is well known that the
observation of CP violation in neutrino oscillations is possible
only if �12 and�m2

12 are “large enough” (and the atmospheric
parameters are also large, as has been established by the atmo-
spheric data). The KamLAND result has shown that this is the
case. The remaining question, therefore, is whether�13 is also
large enough to render the experimental search for CP viola-
tion possible. The only information we currently have is that
�13 is relatively small: sin2 �13 <

� 0:05, constrained by the
CHOOZ experiment [6].

The purpose of this letter is two-fold. First, we examine if
the current data “requires” new symmetry principles in order
to control the structure of the MNS matrix, analogous to the
situation in the quark sector. Saying that there is no symme-
try principle behind the MNS matrix means there is no fun-
damental distinction among the three flavors of neutrinos. If
this is the case, the MNS matrix is distributed (statistically)
according to the bi-invariant Haar measure of group theory,
which dictates the probability distribution of the mixing an-
gles. The hypothesis here is that Nature has chosen one point
according to this probability distribution. This is the concept
of “anarchy” in neutrinos [7, 8]. We would like to exam-
ine if the data are consistent with anarchy by performing a
Kolmogorov–Smirnov (KS) statistical test. We find that they
are perfectly consistent.

Second, given the empirical success of anarchy, we study
what it has to say about�13. Anarchy prefers large values for
�13, meaning that a small�13 would be inconsistent with the
anarchical hypothesis. By turning this argument around, we
can place alower limit on �13 at various confidence levels,
again using the KS test.

Consider the following situation: there is a model that “pre-
dicts” that a certain quantity is described by a probability dis-
tribution. For example, one may construct a model that pre-
dicts that a given quantityx may have any value from 0 to 1,
with equal probability. This means that the probability density
f(x) is [14]

f(x) =

�
1 if x 2 [0; 1];
0 otherwise:

(2)

Let us assume that the value ofx is known:x = x0. The
question to be addressed is how well does the resultx = x0
agree with the model presented above (that the probability
density forx is given by Eq. (2))? This question can be an-
swered using the KS test. Given that we have drawn the spe-
cific valuex = x0, we would like to test the hypothesisHf

that the probability distribution associated with the random
variablex is f(x).

In order to do so we define the distribution function [15]

TABLE I: sin2 �ij in the MNS and CKM mixing matrices, according
to the PDG parameterization [1]. In square brackets we quote the
currently allowed experimental values for the CKM (MNS) entries
at the 90% (three sigma) confidence level.

“angle” CKM [90% expt.] MNS [3� expt.]

sin2 �13 jVubj
2 [(6:2� 23) � 10�6] jUe3j

2 [0� 0:05]

sin2 �12 sin2 �C [0:048� 0:051] sin2 �sol [0:2� 0:5]

sin2 �23 jVcbj2 [(1:4� 1:9)� 10�3] sin2 �atm [0:35 � 0:65]

F (x) �
R x
�1

f(x0)dx0. For Eq. (2),

F (x) =

8<
:

0 if x � 0;
x if x 2 [0; 1];
1 if x � 1:

(3)

We then compareF (x) with the best possible guess for a dis-
tribution functionFguess(x) that can be obtained given that
x = x0 has been “drawn,” namely,

Fguess(x) = �(x � x0): (4)

Note that it is very easy to generalize this toN random draw-
ings ofx, which yield, say,x0; x1; : : : ; xN�1 [9].

The (two-sided) KS statistic (“D-function”) is defined by
[9]

D = supx[jFguess(x)� F (x)j]: (5)

In the example we have been discussing,D0 = x0 if x0 � 0:5
or D0 = 1 � x0 if x0 � 0:5 (note that the two expressions
agree atx0 = 0:5, and we assume thatx0 2 [0; 1]). If the
hypothesisHf is correct, the probability that a larger value
of D (i.e. a “worse fit”) would be computed from a different
random drawing ofx is [9]

P (D � D0) = 2(1�D0); (6)

which is, in the example we have been discussing,

P (x0) =

�
2x0 if x0 � 0:5;
2(1� x0) if x0 � 0:5:

(7)

The smaller the value ofP (x0), the less likely it is thatHf

is correct. In this context, we allow statements such asHf is
only allowed at the[1� P (x0)] confidence level.

We wish to apply the test described above to the MNS and
CKM mixing matrices for leptons and quarks, respectively.
Our model is that the mixing matrices are random variables
drawn from a “flat” distribution of unitary3 � 3 matrices.
Following the PDG convention, we define the three mixing
angles as in Table I. Within this convention, the hypothesis is
that the marginalized probability density function is given by
(see [8] for a detailed discussion of this point)
Z
f(U (3))d(phases) = f(cos4 �13; sin

2 �12; sin
2 �12) = 1;

(8)
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where we have integrated over all (both physical and unphysi-
cal) complex phases. The mixing angles are defined such that
�ij 2 [0; �=2]; 8i; j. The probability distribution is flat in
sin2 �12, sin

2 �23, andcos4 �13. It is clear thatf = 1 is cor-
rectly normalized,Z

f d(cos4 �13)d(sin
2 �12)d(sin

2 �23) = 1; (9)

as it should be.
Since anarchy implies that the three mixing angles are

distributed asuncorrelated random variablesaccording to
Eq. (9), we are allowed to perform aseparateKS test for each
of the three mixing angles. The three distinctD-functions are
(from Eq. (5) and the line that succeeds it),

D�0
13

= (1� sin2 �013)
2; (10)

D�0
12

= 1� sin2 �012; (11)

D�0
23

= 1� sin2 �023: (12)

The superscript0 refers to the randomly picked value (i.e.,
the physical value, “drawn” by Nature) of the correspond-
ing mixing angle. We have assumed thatsin2 �012;23 < 1=2,
cos4 �013 > 1=2. The generalization for all values of�0ij is
trivial and does not add to our discussion [16].

Again under the assumption that the three “random vari-
ables” are not correlated, we define the probability that a dif-
ferent random draw would yield a worse fit as

P (KS) � P (�012)� P (�013)� P (�023); (13)

whereP (�0ij) = 2(1�D�0
ij
), as in Eq. (6). Therefore

P (KS) = 8 sin2 �012(2 sin
2 �013 � sin4 �013) sin

2 �023: (14)

By using the best fit valuessin2 �12 = 0:3 [10] and
sin2 �23 = 0:5 [2] for the MNS matrix, we find

P (KS) = 2:4(sin2 �13 �
1

2
sin4 �13): (15)

Given the boundsin2 �13 <� 0:05, the anarchical hypothesis is
consistent, with probability12%.

One can also check whether anarchy works in the quark
sector. Using the values tabulated in Table I, one obtains a
probability smaller than4 � 10�8, implying that the hypoth-
esis that the CKM matrix is a random unitary3 � 3 matrix is
safely discarded (at more than the five sigma level). Hence,
a fundamental distinction among the three flavors of quarks
seems to be required.

Once we have established as consistent the hypothesis that
the MNS matrix is a matrix drawn from a random sample of
unitary 3 � 3 matrices, we now turn the argument around,
and try to place a lower limit on�13. What we require is that
P (KS) > 1 � P0, whereP0 is defined to be the confidence
level of the limit.

Fig. 1 depictsP (KS) for the MNS matrix as a func-
tion of sin2 �13 � jUe3j

2 within the three sigma bounds al-
lowed experimentally forsin2 �12 � sin2 �sol andsin2 �23 �
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FIG. 1: P (KS) for the MNS matrix as a function ofsin2 �13 �
jUe3j

2, see text for details. The top dashed curve corresponds to
sin2 �sol = sin2 �atm = 0:5, while the bottom dashed curve corre-
sponds tosin2 �sol = 0:2 andsin2 �atm = 0:35. The solid curve cor-
responds to the best fit valuessin2 �sol = 0:3 andsin2 �atm = 0:5.
The hatched region is currently excluded by the neutrino data. In
the bottom left corner,P (KS) for the CKM matrix as a function of
sin2 �13 � jVubj

2 is also depicted within the experimentally allowed
range forjVubj2, assuming that the values ofjVcbj2 andsin2 �C vary
within the range indicated in Table I.

sin2 �atm, as tabulated in Table I. For the best fit values of
sin2 �atm and sin2 �sol, one is able to “rule out”jUe3j

2 <
0:019 at the two sigma level andjUe3j

2 < 0:0011 at the
three sigma level. Fig. 1 also depictsP (KS) as a function
of sin2 �13 � jVcbj

2 for the CKM matrix within the 90% ex-
perimentally allowed ranges defined in Table I.

It is worth recalling that anarchy predicts a flat probability
distribution for the CP-violating phaseÆ [8], and hence the
distribution insin Æ is 1=j cos Æj, peaked atsin Æ = �1. If an-
archy is correct, chances are that the observation of CP viola-
tion in long-baseline oscillation experiments is indeed within
reach!

We now summarize our results, with more discussions to
follow. We have statistically tested the hypothesis that the
MNS matrix is a matrix drawn from a random “flat” sample
of unitary3�3 matrices. According to the KS test performed,
this “anarchical hypothesis” is consistent with the data. The
anarchical hypothesis fails the KS test when it is performed
with the CKM matrix. Our result is different from other at-
tempts to statistically “test” anarchy. For example, the authors
of [11] have claimed that the neutrino sector prefers the exis-
tence of some symmetry behind neutrino masses and mixing
angles to completely random entries. We have not attempted
to perform such a “compartive test,” which is, at least, hard to
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interpret in a well defined way. We do not believe that such
tests are capable of indicating whether one hypothesis is fa-
vored with respect to the other. Our test has a well defined
statistical interpretation, and directly probes whether anarchy
in the neutrino sector is a good hypothesis.

Having checked that anarchy is consistent with our current
understanding of the MNS matrix, we were able to use the
anarchical hypothesis to “predict” the value of the still un-
observed mixing angle�13. At the two sigma level, anar-
chy requires thatsin2 �13 > 0:019, for example. If there is
indeed no structure in the leptonic mixing matrix, it seems
very likely that one should be able to observe CP-violation in
long-baseline neutrino oscillation experiments, as not only are
all angles large, but the CP-odd parametersin Æ is also “pre-
dicted” to be large.

We have nothing to say about the value of the neutrino
masses. The hypothesis we tested is that the MNS matrix
is “random,” independent of whether the masses are degen-
erate, partially degenerate or hierarchical [8]. Even in the
case of non-LMA solutions to the solar neutrino puzzle (cur-
rently ruled out at 99.95% C.L. [4]), one can obtain random
mixing matrices [12]. Incidently, it is interesting to note
that the the neutrino masses seem to be “less hierarchical”
than the charged fermion masses. Assuming that the neu-
trino masses are not degenerate, it turns out thatm3=m2 'p

�m2
23=�m

2
12 = 3 � 13, not too far away from unity (of

course, we do not knowm2=m1 : : :). This is consistent with
random mass matrices generated via the seesaw mechanism
[7].

We would like to underline important assumptions and lim-
itations of our result. By hypothesis, the probability dis-
tributions for the mixing angles are uncorrelated. Our dis-
criminatory procedure does not include information regard-
ing whether the different variables are more likely to be cor-
related than not. Given the minimal statistics (provided by
the fact that we live in only one Universe), adding this sort
of information would not lead to different conclusions, al-
though one should start to worry if, say, it turns out that
sin2 2�23 = sin2 2�12 = 1. One should also be warned that
the KS test performed here need not be the most powerful test
for the anarchical hypothesis, statistically speaking [9].

Finally, we emphasize what our resultdoes notimply. Al-
though the anarchical hypothesis is consistent with the data,
neutrino mass models which rely on flavor symmetries and
nontrivial “textures” are not disfavored in any well defined
way. Some are perfectly justified by top-down arguments, in-
cluding, say, grand unification of matter fields. We would like
to point out, however, that the “burden of proof” is with the
models that assume that there is structure in the leptonic mix-
ing matrix. The anarchical hypothesis may be viewed as the

simplest of flavor models – a model of flavor without flavor.
In light of our long experience with quark masses and mixing
angles, it is remarkable that, in the neutrino sector, one can do
without new symmetry principles in order to appreciate the
entries of the MNS mixing matrix.
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