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Abstract 

Due to a long-range resistive wake, the closed orbit may experience an unstable drift. Unlike the 
conventional betatron instabilities, this closed orbit instability is not sensitive to the spread of the betatron 
frequencies. For bunched beams, feedback appears to be the only way to stabilize the closed orbit above 
threshold. This new instability can be significant both for existing and for designed high intensity rings.   

I. Introduction    

It is generally believed that collective fields do not affect the closed orbit of the beam. When 
induced fields are weaker than the external focusing, the closed orbit can be assumed rigid, and 
all the collective eigenfrequencies lie near the betatron sidebands of the revolution harmonics. 
Imagine however that a wake function has a very long tail, much longer than a revolution period, 
such as a resistive wall wake. In this case, the wake fields are accumulated over a long time and 
can become comparable to the external focusing, leading to an unstable drift of the closed orbit. 
An estimation of this effect shows that it could be very important for high intensity proton rings, 
and for electron rings with a large full current, such as B-factories. 

II. Basic Physics 

To begin, consider the simple model of a single macroparticle inside a homogeneous chamber. 
Taking into account the accumulation of the wake field, the transverse equation of motion can be 
written (see, e.g. [1]): 
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where N is the number of particles, r0 is the particle’s classical radius, W(z) is the wake function, 
cT=Π  is the storage ring circumference, ωb is the betatron frequency, and the remaining 

constants correspond to the standard physical notation. With )exp()( tity ω−∝ , Eq. (1) leads to  
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Conventional betatron eigenfrequencies are found as solutions at bωω ±≈ . Far more important 

for the present discussion is the fact that Eq. (2) has additional solutions that can be significant for 
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long-range wakes, by which we mean |)(||)()(| sWsWTsW <<−− . Let us assume that Eq. 

(2) has a solution in the vicinity of a multiple of the revolution frequency, Ω+= 0ωω n  with 

0 || ω<<Ω . Then, the rapid variation 0ωn  drops out of the sum on the right hand side of Eq. (2), 

and the remaining slow variation can be approximated by an integral, ∫∫∑
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leading to the following equation for the complex frequency shift Ω : 
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where the slow variation Ω is dropped from the left hand side. 

Because the wake function 0)( =sW  for 0>s , all the singularities of the transverse impedance 
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iZ  lie in the lower half-plane of its argument, at 0Im <Ω . Let 

us suppose for simplicity that the only singularity is a simple pole at λi−=Ω , so that 
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In this case, the dispersion equation (3) yields  
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where bν  is the betatron tune. There are several interesting features of this solution. First of all, it 

describes a term in an infinite sequence of eigenfrequencies, indexed by the arbitrary integer n. In 
fact, all these modes describe the multi-turn dynamics of the wake fields, and the number n is 
associated with the n-th spatial harmonic of the wake field expansion over the ring azimuth 

Π= /2 sπθ . When the number of particles is small enough, all these modes decay as the field 
decrement λ , some of them being slightly faster, and some slightly slower. The value λi−  can 
be considered as a single-particle “frequency” of the drift modes, while the intensity-dependent 
part in the right hand side of Eq. (5) gives their coherent “tune shifts”. When the beam intensity 
increases, the decrement of the most long-lived mode approaches zero, and at a certain current 
this mode becomes unstable. This threshold intensity is calculated from Eq. (5). To determine the 
threshold, assume, as is usual, that the wake amplitude 0W  is negative, || 00 WW −= . In this 

case, the least stable mode has integer part of the betatron tune ][ bn ν= , and the threshold 

intensity thN  is given by 
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where ][}{ bbb ννν −=  is the fractional betatron tune. Note that the threshold is determined by 

the amplitude of the integral wake ∫
∞

−=
0

0 )(/ sdsWcW λ , which reflects the specific nature of 

this instability that it is caused by the long-term accumulation of the wake fields, leading to a drift 
of the closed orbit. Hence, it follows that this closed orbit instability is determined by the total 
number of particles in the ring, N, and is insensitive to their bunching, so long as 0 || ω<<Ω . In 

other words, the same dispersion equation (5) and threshold condition (6) describe single-bunch, 
multi-bunch, and coasting beams.  

One further important point is the independence of these drift modes on the spread of the betatron 
frequencies. For bunched beams, neither the spread of the revolution frequencies nor synchrotron 
motion matter. For a coasting beam, however, the spread of the revolution frequencies 0ω∆  

damps the closed orbit instability if ||0 Ω>∆ωn .  

It is interesting to compare the closed orbit and the betatron mode increments. For a coasting 
beam, the coherent betatron tune shift bΩ

 
of the n-th azimuthal mode driven by the same 

exponential wake (4) is: 
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where the wake decrement was assumed to be small enough, }{0 bνωλ << . The betatron tune 

shift (7) is almost exactly opposite to the coherent tune shift of the closed orbit mode of the same 
number, given by Eq. (5). This means that the stability conditions for these two types of modes 
are opposite: where the betatron mode is most stable, the drift mode is most unstable and vice 
versa.  Note that this equality of the coherent parts of the betatron and drift modes is specific to 
the exponential wake function, introduced above as a simple model. In fact, however, this 
exponential function is more than just a simple model: it describes a resistive wall wake in the 
long-range limit, as we discuss below. 

 

III. Drift Equation in General Case 

In this section, we derive an equation for drift modes with arbitrary impedance and lattice 
functions. As was pointed out above, the behavior of the drift modes does not depend on the 
beam bunching. Here, the calculations are carried out for a coasting beam. Then, for the specific 
case of a homogeneous wake function and smooth focusing, the result is shown to be identical to 
the macroparticle beam of the previous section, Eq. (3).  

To begin, consider the case of a long-range wake function generated by a localized element at a 
specific azimuth of the storage ring. This is opposite to the previous section, where the wake 
function was assumed to be homogeneous around the orbit. At the location s′ , where the wake 
field is located, each particle is kicked by an angle 
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This angle causes a distortion of the closed orbit (see, e. g. [2]): 
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where )(sβ  is the lattice beta-function and ),( ss ′ψ  is the betatron phase advance between the 

points s′  and s  determined so that πνψ 2),(0 <′< ss . 

Assuming )exp()(),( tisytsy Ω−= , the closed orbit equation leads to 
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which in turn gives rise to the dispersion equation 
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Note that for the drift modes, the dispersion relation depends on both the impedance and the local 
β-function, as it does for the conventional betatron modes. In distinction from the homogeneously 
distributed impedance of Eq. (3), this localized impedance gives only a finite number of 
solutions, namely one in the case of the exponential wake treated above. The reason for this is 
that, for the localized wake source, the fields have a finite number of degrees of freedom.  

It is now simple to write an equation for an arbitrary impedance distribution around the ring. 
Because of linearity, all the closed orbit perturbations can be directly summed. Thus, if 

),(
~ Ω′⊥ sZ  is defined to be a linear density of impedance at the azimuth s′ , so that the impedance 

of the length sd ′  is sdsZsdZ ′Ω′=Ω′ ⊥⊥ ),(
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),( , then the equation for the periodic 

eigenfunctions )(sy  and eigenvalues Ω  is:  
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It is straightforward to show that Eq. (12) reduces to Eq. (3) in the homogeneous case of the 

previous section with )2/()( πνβ Π=s  and ΠΩ=Ω′ ⊥⊥ /)(),(
~

ZsZ . 

 

 IV. Impedance of Resistive Wall  

Conventionally, the resistive wall impedance is calculated assuming that the skin depth 

Ω= πσδ 2/c  , is much smaller than the wall thickness d. This assumption can be incorrect for 
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slow drift modes, and especially for a thin metallic coating, where the skin depth can be larger 

than the metal thickness. For instance, the skin depth in stainless steel ( 116 s103.1 −⋅=σ ) at 
frequency 1)2/( =Ω π KHz is 3.1=δ cm, while the metal thickness normally does not exceed a 
few millimeters.  

Recently, V. Lebedev proposed an effective method to calculate the resistive transverse 
impedance of multi-layer chambers (see Ref. [3]). Below, the results obtained by his method are 
presented for two model cases. For infinite vacuum outside the metal chamber, the impedance per 
unit length is found to be 
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where 377/40 == cZ π  Ohm, b >> d  is the chamber radius and δκ /)1( i−=  . In the case 

when an ideal magnetic material is placed outside, the impedance does not look much different 
(see [4]): 
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Both these cases can be approximated as 
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where the material factor 1=g
 
and the wake decrement )4/(2 bdc πσλ =  for an ideal magnetic 

material outside, and 2/1=g  and )2/(2 bdc πσλ =  for the vacuum outside. If the chamber can 

be considered thin ( d>δ ), the impedance is single-pole, which corresponds to the exponential 
wake function considered as a model in section II, with  
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and the outside factor 15.0 −≅g , and the tilde means that the value is taken per unit length. 

Note that in this case the amplitude of the integral wake λ/0W  does not depend on the chamber 

conductivity or thickness. Taking into account that at the threshold of instability 0|| →Ω  by 
definition, it follows that the impedance can be taken out of the integral equation (12) for 
threshold calculations. In the smooth approximation, this gives the following “universal” formula 
for the threshold intensity (see Eq. (6)): 
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A paradoxical feature of this result is its independence of the specific wall properties. The reason 
is that, although for higher conductivity the wake function amplitude decreases, the wake field 
decay becomes slower, so that the wake integral does not change. However, the rate of growth of 
the drift instability also decreases when the conductivity increases.  

 

V. Practical Examples 

 

In this section, the closed orbit instability is examined for several high-intensity rings.  

For the LER of the PEP-II B-factory with 2.2=Π km, 6.36=ν , 3106 ⋅=γ , 3.2=b cm (see 

e.g. Ref. [4]), the smooth approximation of Eq. (17) gives 14105.1 ⋅=thN , compared with the 

design value 14101⋅=N . Taking into account inaccuracy of the smooth approximation, it can be 
concluded that the closed orbit instability might be dangerous for this ring.  

For the SNS ring, with Π=248 m, b=10 cm, νb =6.2 and 2=γ  (see Ref.[5]), the smooth-
approximation threshold is found to be an order of magnitude higher than the design intensity: 

15102 ⋅=thN , while the design intensity 14102 ⋅=N .  

For the present design values of the Very Large Hadron Collider [6] with the circumference 
233 km, the betatron tune 214, the fractional betatron tune 0.5 (taken as an example), the vacuum 
chamber radius 0.9 cm, and the relativistic factor γ=1000 at injection, the threshold occurs at 
4.9*1014 protons, i.e. two times less than the design number of protons. 

In reality, the threshold could be smaller than the smooth approximation result of Eq. (17), 
depending on beta function beating and the wake localization, see Eq. (12).  

 

VI. Conclusion  

The drift instability of the closed orbit described here can be dangerous for high-intensity rings. 
The instability rate is highest when the working point is chosen slightly above integer resonance, 
where the conventional betatron modes for the resistive wall impedance are most stable. There 
are no chromaticity effects or Landau damping for the drift modes, because they are not coupled 
to the betatron oscillations. High intensity machines can be examined theoretically for the closed 
orbit instability by solving the dispersion equation derived here for arbitrary given lattice 
functions and impedance distribution. 
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