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We report a new measurement of the pseudorapidity (�) and transverse-energy
(ET ) dependence of the inclusive jet production cross section in pp collisions atp
s = 1:8 TeV using 95 pb�1 of data collected with the D� detector at the Fermilab

Tevatron. The di�erential cross section d 2�=(dET d�) is presented up to j�j = 3,
signi�cantly extending previous measurements. The results are in good overall
agreement with next-to-leading order predictions from QCD, indicate a preference
for certain parton distribution functions, and provide the world's best constraint
on the gluon distribution at high parton momentum fraction x.

1 Introduction

This past decade has witnessed impressive progress in both the theoretical and
experimental understanding of the collimated streams of particles or \jets"
that emerge from inelastic hadron collisions. Theoretically, jet production in
hadron collisions is understood within the framework of Quantum Chromo-
dynamics (QCD), as a hard scattering of the constituent partons (quarks and
gluons) that, having undergone a collision, manifest themselves as jets in the
�nal state. QCD predicts the amplitudes for the hard scattering of partons
at high momentum transfers. Perturbative QCD calculations of jet cross sec-
tions, 1 using accurately determined parton distribution functions (PDFs), 2

have increased the interest in jet measurements at the
p
s = 1:8 TeV Tevatron

proton-antiproton collider. Consequently, the two Tevatron experiments, D�
and CDF, have served as prominent arenas for studying hadronic jets.

Here, we report a new measurement of the pseudorapidity (�) and
transverse-energy (ET ) dependence of the inclusive jet production cross sec-
tion, 3 which examines the short-range behavior of QCD, the structure of the
proton in terms of PDFs, and possible substructure of quarks and gluons.
We present the di�erential cross section d 2�=(dET d�) as a function of jet ET

in �ve intervals of �, up to j�j = 3, where the pseudorapidity is de�ned as
� = ln [cot (�=2)], with � being the polar angle. The present measurement
is based on 95 pb�1 of data collected with the D� detector 4 during 1994{
1995, and signi�cantly extends previous measurements, 5 as indicated by the
kinematic reach shown in Fig. 1a.
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Figure 1. (a) The kinematic reach of this measurement along with that of other collider and
�xed-target experiments in the plane of the parton momentum fraction x and the square
of the momentum transfer Q2, and (b) the single inclusive jet production cross section as
a function of jet ET , in �ve pseudorapidity intervals, showing only statistical uncertainties,
along with theoretical predictions.

2 Jet De�nition and Experimental Systematics

Jets are reconstructed using an iterative cone algorithm with a �xed cone
radius of R = 0:7 in � � ' space, where ' is the azimuth. O�ine data selec-
tions eliminate contamination from background caused by electrons, photons,
noise, or cosmic rays. This is achieved by applying an acceptance cuto� on
the z{coordinate of the interaction vertex, 
agging events with large missing
transverse energy, and applying jet quality criteria. Details of data selection
and corrections due to noise and/or contamination are described elsewhere. 3

A correction for jet energy scale accounts for instrumental e�ects associated
with calorimeter response, showering and noise, as well as for contributions
from spectator partons, and corrects on average the reconstructed jet ET to
the \true" ET .

3;6 The e�ect of calorimeter resolution on jet cross section is
removed through an unfolding procedure. 3

3 Inclusive Jet Cross Section

The �nal measurements in each of the �ve j�j regions, along with statistical
uncertainties, are presented in Fig. 1b (tables of the measured cross sections
can be found in 3). The measurement spans about seven orders of magnitude
and extends to the highest jet energies ever reached. Figure 1b also shows
O�

�3

s

�
theoretical predictions from JETRAD 1 with renormalization and
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Figure 2. Comparisons between the D� single inclusive jet cross sections and the
O�

�3s
�
QCD predictions calculated by JETRAD. Left panel shows comparisons with the

CTEQ4HJ (�) and CTEQ4M (�) PDFs while the right panel shows comparisons with the
MRSTg" (�) and MRST (�) PDFs. (The highest ET points are o�set slightly for CTEQ4M
and MRST.)

factorization scales set to half of the ET of the leading jet and using the
CTEQ4M PDF.

Left and right panels in Fig. 2 provide more detailed comparisons to pre-
dictions on a linear scale for several PDFs (for other PDFs, see 3). The error
bars are statistical, while the shaded bands indicate one standard deviation
systematic uncertainties. The theoretical uncertainties due to variations in
input parameters are comparable to the systematic uncertainties. These qual-
itative comparisons indicate that the predictions are in reasonable agreement
with the data for all j�j intervals.

To quantify the comparisons, we employ a specially derived and previ-
ously studied �2 statistic 3;7 employing all 90 �{ET bins in this measurement,
including correlations in ET as well as in �. For all PDFs we have consid-
ered, Table 1 lists the �2, �2/dof, and the corresponding probabilities for 90
degrees of freedom (dof). We have veri�ed that the variations of correlation
coe�cients within the range of their uncertainties give a similar ordering of
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Table 1. The �2, �2/dof, and the corresponding probabilities for 90 degrees of freedom for
various PDFs studied.

PDF �2 �2=dof Probability

CTEQ3M 121.56 1.35 0.01

CTEQ4M 92.46 1.03 0.41

CTEQ4HJ 59.38 0.66 0.99

MRST 113.78 1.26 0.05

MRSTg# 155.52 1.73 <0.01

MRSTg" 85.09 0.95 0.63

the �2, hence a similar relative preference of PDFs. The absolute values of �2

and associated probabilities vary somewhat with variations in the correlations
in ET and, to a much lesser extent, with variations of correlations in �. The
theoretical predictions are in good quantitative agreement with the experi-
mental results. The data indicate a preference for the CTEQ4HJ, MRSTg",
and CTEQ4M PDFs. The CTEQ4HJ PDF has enhanced gluon content at
large x, favored by previous measurements of inclusive jet cross sections at
small �, relative to the CTEQ4M PDF. The MRSTg" PDF includes no in-
trinsic parton transverse momentum and therefore has e�ectively increased
gluon distributions relative to the MRST PDF. This measurement provides
the world's best constraint on the gluon distribution at high x and is being
included in the new global PDF �ts by the MRST and CTEQ Collaborations.
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