
Fermilab FERMILAB-Conf-00/260-E October 2000

PreFPIX2: Core Architecture and Results1

J. Hoff, A. Mekkaoui, D. Christian, S. Zimmerman, G. Cancelo, R. Yarema
Fermilab, P.O. Box 500, Batavia, Illinois 60510

Abstract
FPIX is a pixel architecture designed for colliding-beam

experiments at the Tevatron. Its most important application to
date is the BTeV experiment. PreFPIX2 is a preliminary chip
submission which represents the completion of the
development of the FPIX Core, i.e. the pixel control and
readout architecture. This FPIX Core will be mated to a
Periphery specific to a particular experiment.

Earlier plans called for the BTeV FPIX chip to be designed
in a rad-hard process. However, deep-submicron CMOS
processes have demonstrated appropriate radiation tolerance at
a lower cost and with greater reliability. Therefore, PreFPIX2
has been fabricated in a 0.25 micron process utilizing radiation
tolerant design techniques.

The architecture has undergone substantial modification
from earlier versions of FPIX. Most notable are the
improvements to the column token passing scheme and to the
End-of-column logic. Extensive simulations were performed
using both SPICE and structural-level Verilog. Monte Carlo
simulations of the BTeV pixel detector at half, full and double
the planned luminosity were converted to input files for the
chip simulations, allowing the designers to observe the chip
operating under real conditions and for extended periods of
time. Analyses of the results reveal that at all luminosities the
FPIX Core correctly identifies better than 99.6% of input hits.
Bench tests of fabricated chips confirm the accuracy of the
simulations.

I. INTRODUCTION

The FPIX architecture has been under development at
Fermilab for the last three years. At present, the driving force
behind this work is the BTeV experiment [1] though
significant effort has been made in the design process to
broaden the applicability of this architecture to fit any
Tevatron experiment. In BTeV, the pixel detector will be
employed for on-line track finding for the lowest level trigger
system [2], and therefore, the pixel chips are required to read
out all hit data from every crossing [3]. Given the expected
distance from the beam (6mm for the nearest chips) and the
expected luminosity (2x1032 cm-2 s-2), this means that the chip
closest to the beam line will be expected to read out an average
of 1.25 pixels per BCO crossing with statistical fluctuations
often much higher.

 PreFPIX2 is a developmental step in the evolution of the
final FPIX architecture. After the completion of FPIX1, it
became apparent that certain functions such as pixel control
and readout were independent of the requirements of any given
experiment but that other functions, like data packing and

communication with data acquisition hardware, changed for
every experiment. Those functions independent of
experimental requirements were organized into the FPIX Core.
Experimentally dependent requirements were organized into
the Periphery. PreFPIX2 represents the completion of the
FPIX Core architecture. The FPIX Periphery specific to the
BTeV experiment is under development.

The chip was developed in a 0.25µm process, using
radiation tolerant design techniques such as enclosed
transistors [4]. This will ultimately enable FPIX to achieve the
desired radiation tolerance (25-30 Mrad) without resorting to a
rad-hard process. PreFPIX2 has been developed to test a
number of algorithmic and electrical modifications to the
original read-out control system developed in FPIX1. Most
notably, the programmable ability to operate in either an
externally triggered or a self-triggered mode has been
eliminated. The FPIX Core itself is now purely self-triggered.

In Section II, the FPIX Core architecture will be described.
Section III will cover major developments to the FPIX
architecture. Finally, Section IV will discuss the detailed
simulation technique employed in preFPIX2’s development
and the results obtained thus far.

II. FPIX ARCHITECTURE

A. Core versus Periphery
The basic job of the FPIX Core is to convert the various

pixel hits into a predictable data stream (see Figure 1).
Whenever coreTalking is active, the Core will output a new
data word (coreData) with every rising edge of the Readout
clock. Moreover, coreData will be stable by the falling edge
of the Readout clock . When coreTalking is inactive, coreData
is zero.

CoreData itself is a 24-bit wide word that consists of three
bits for hit magnitude, five bits for column location, eight bits
for row location, and eight bits for time stamp.

The Periphery communicates with the Core by providing
the clocks and two control signals, RejectHits and SendData.
When RejectHits is active, the Core is instructed to stop
accepting new hits. Pixels already hit can still be read out.
When SendData is active, the Periphery is telling the Core that

1 This work is sponsored by the U.S. Department of
Energy under contract No. DE-AC02-76CH03000 Figure 1 FPIX Core Data Stream.

coreTalking

coreData

Readout Clk

W0 W1 W2 W3 0000

it can accept more information from the Core. When
SendData is inactive, the Core will send no more data, but it
can continue to accept hits.

Using the structure in Figure 2, it is possible to imagine a
wide range of Periphery cells customized to an experiment’s
needs.

B. Core Organization
The FPIX Core is a column-based architecture that uses an

indirect addressing scheme to associate pixel hits with a time
stamp. It is best understood as consisting of three mutually
dependent functional blocks as shown in Figure 3. These three
blocks are the Core Logic, the End-of-column Logic and the
Pixel Cell.

The Core Logic understands time. At the rising edge of the
beam clock, it stamps every time slice with an eight-bit beam
crossing (BCO) number. This number is broadcast to all End-
of-column Logic blocks. The Core Logic also contains a very
simple state machine that knows if the Core is Talking or
Silent. The Core is Silent until the End-of-column Logic
blocks indicate that they have data to output. When this
happens, at the next rising edge of the Readout clock, the Core
will switch to the Talking state, and output can begin. The
Core Logic does not wait for any kind of chip token or
validation from the Data Acquisition (DAQ) hardware. That
would be the job of the Periphery block. While in the Talking
state, the Core starts passing a Horizontal Token across the
End-of-column Logic blocks to arbitrate rights to the output

bus. When the Horizontal Token drops out of the other side of
the End-of-column Logic blocks readout is done, and, at the
next rising edge of the Readout clock, the Core switches back
to the Silent state.

The End-of-column Logic blocks are considerably more
complicated. They also understand time in that, whenever
there is a hit, they store the BCO numbers broadcast by the
Core Logic. Obviously, they also understand hits, which are
driven to them from the Pixel Cells via the HFastOR signal, a
distributed OR-gate with a pull-down transistor in every Pixel
Cell in the column. The End-of-column Logic Blocks also
understand the existence of the Pixel Cells because they
communicate to those pixels through a series of commands
and tokens. Finally, the End-of-column Logic Blocks
understand output. When the Core is in the Talking state and
when a particular End-of-column Logic Block has the
Horizontal Token and when that End-of-column Logic Block
has hit pixels to output, then it outputs those pixels.

The Pixel Cells themselves know nothing of time. They
only understand hits and commands from their End-of-column
Logic block. These commands are Idle (do nothing), Listen
(listen for new hits), Reset (reset your contents), and Output
(output your contents). There are four sets of such commands
coming from the End-of-column Logic block. If a pixel is
Empty and it receives a hit, it associates itself with whichever
command set is issuing the Listen command. From that point
and until the Pixel Cell is reset, it obeys only the commands
from the associated command set. The Pixel Cells also
communicate back to the End-of-column Logic bock via the
fast ORs – the HFastOR in response to a Listen command
communicates hits and the RFastOR in response to an Output
command communicates the presence of Pixel Cells as yet
unread. Rights to the column output bus are arbitrated by a
Column Token issued by the End-of-column Logic block.

The original FPIX architecture included the ability to
switch between an externally triggered or self-triggered mode.
In the externally triggered mode, an external source provided
the chip with a BCO number which was compared to the BCO
numbers latched in the End-of-column Logic Blocks. In the
self-triggered mode, a second BCO counter broadcast
requested BCO numbers. If there was a match with any stored
BCO number in any End-of-column Logic block, then the
counter would be stopped and all hit pixels associated with
that BCO number would be read out. This constant need to
compare requested BCO numbers to stored BCO numbers
dramatically reduced the efficiency of the readout scheme.

In preFPIX2, there are no such BCO comparisons.
Instead, if any End-of-column Logic block has any data to
output, it immediately alerts the Core Logic, which then
switches to the Talking state. Unlike the original output
scheme, this method does not guarantee that hit pixels would
be output in time stamp order. However, the new output
scheme dramatically improves readout efficiency.

III. DEVELOPMENTS IN PREFPIX2

A. End-of-column Logic

Core Periphery

coreData

BCO clock

Read clock

SendData

RejectHits

HaveData

18x160

Pixel Detectors
Output to DAQ

FPIX Architecture

Input from DAQ

Figure 2 The Core - Periphery arrangement in the FPIX
architecture

Pixel Cell

Pixel Cell

Pixel Cell

Pixel Cell

End of Column

Logic

Pixel Cell

Pixel Cell

Pixel Cell

Pixel Cell

End of Column

Logic

Pixel Cell

Pixel Cell

Pixel Cell

Pixel Cell

End of Column

Logic

Pixel Cell

Pixel Cell

Pixel Cell

Pixel Cell

End of Column

Logic

Core Logic

Figure 3 The FPIX Core Organization. In a full FPIX chip, there
would be 18 columns with 160 Pixel Cells per column.

The original FPIX architecture utilized four Command
State Machines, one for each command set. The state
machines were simple, with only two states, Empty and Full.
However, since the state machines made their transitions at the
rising edge of the BCO clock, great pains were necessary to
ensure that information synchronous to the Readout Clock,
such as the completion of an output, arrived to these state
machines with enough setup and hold time. Moreover, the
original architecture required a priority encoder state machine,
necessary for determining which command set would be the
next to issue the Listen Command. This required a substantial
amount of room, and created some timing problems of its own.

In the new FPIX Core, these problems are solved as shown
in Figure 4. First, there is the addition of the Column State
Machine, which operates at the rising edge of the Readout
Clock. Second, in the four Command State Machines, the
simple two-state machine is replaced with a four-state machine
that still operates on the rising edge of the BCO clock. By
developing the state machines with different clocks, the
synchronicity problems are eliminated. The Column State
Machine governs all activity that must be synchronous with the
Readout Clock. The Command State Machines govern all
activity that must be synchronous with the BCO Clock.

A simple, purely combinatorial priority encoder chooses

which Command State Machine will be the next to enter the
Listen state from among those state machines currently in the
Empty State. In the Empty State, the Command State
Machines issue the Idle Command. In the Listen State, they
issue the Listen Command. Once a hit is received, several
things happen. First, the BCO number currently being
broadcast by the Core Logic is stored in a register associated
with the Command State Machine currently in the Listen State.
Second, that state machine makes the transition to the Full
State where it once again issues the Idle command. Third, the
state machine picked by the Hit Priority Encoder as next to
Listen moves to the Listen State.

Since it is possible for more than one Command State
Machine to be in the Full state at the same time, a second
priority encoder is required. This Output Priority Encoder is
necessarily more complicated than the Hit Priority Encoder.
For example, if the DAQ system can read a chip faster than
hits are input to it, then low priority Command State Machines
may never enter the Listen state, and this would have no effect
on our efficiency. High priority Command State Machines
would do all the work. However, if a state machine enters the
Full state, then it must reach the Output state as quickly as
possible or that data will be lost. In other words, somehow all
machines in the Full state must have equal priority while, at
the same time, something must distinguish them so that a
choice can be made. Finally, to minimize the transistor count
and to maintain the isolation of the Readout and BCO clocks,
the Output Priority Encoder must also be purely combinatorial.
The solution is to rely on the states of the Command State
Machines and to use a circular scheme as shown in Figure 5. If
State Machine A is in the Output state, then State Machine B
has the highest priority in the Output Priority Encoder, then C
and then D. If State Machine B is in the Output state, then
State Machine C has the highest priority then D and then A. If
no one is in the Output state, then State Machine A has the
highest priority. Once in the Output State, the state machine
issues the Output Command until it receives the Output Done
signal from the Column State Machine. At that point, the
Reset Command is issued as a redundant means of making
sure all hit pixels are cleared.

The Column State Machine starts in the “Nothing to Say”
or Nothing State where it remains until it sees an Output
(Read) command issued by any of the Command State
Machines. At the next rising edge of the Read Clock, the
Column State Machine makes the transition to the “Something
to Say” or Something State. At this point, the Core logic is
alerted to the fact that there is data to output, and the Column
Tokens are sent up to the first Pixel Cell that needs to be
output. The state machine then waits for the arrival of the
Horizontal Token from the Core Logic. When the token
arrives, the Column State Machine makes the transition to the
Talking state, and it releases the Readout clock to the Pixel
Cells enabling them to output their data. Simultaneously, the
stored BCO number (which associates the hit pixels with the
time they were hit) is driven onto the bus. The last pixel is
being read out when the RFastOR goes away. This signals the
completion of the read cycle. At the next rising edge of the
Read Clock, the Column State Machine makes the transition to
the Silent state. This sets the Output Done signal informing
the Command State Machine that it can make its own

Empty

Full

Output Lis ten

Nothing

T alking

Silent
Some
thing

Command State Machine
(changes on the ris ing edge of the BCO clock)

Column State Machine
(changes on the ris ing edge of the Read Clock)

Hit Priority AND
either a hit or
no one in Listen State

A HitOutput Priority AND
either an Output Done
or no one in Output
State

Output Done

Any Read Command

Arrival of the
Horizontal Token

Completion
of the Read

Core returning
to Silent

Figure 4 End-of-column Logic State Machines

transition from the Output to the Empty State. The Output
Done signal is reset when the Command State Machine
reaches the Empty state. When the entire array has been read
out, the Horizontal Token drops out of the last End-of-column
Logic Block, and the Core Logic makes its transition from
Talking to Silent. This signals to all the Column State
Machines that they can make their own transition back to the
Nothing State.

B. Token Passing Logic
Experience with earlier versions of FPIX has revealed that

there are two limiting factors in readout speed related to the
Column Token.

First, speed is limited by how fast the token can be passed
from one hit pixel to another. Once a hit pixel has been
ordered to Output, it waits for the Column Token, grabs it and
then drives its data onto the bus at the rising edge of the Read
Clock. Simultaneously, it releases the token to the next hit
pixel in the column. Under worst case conditions, that token
must travel almost the entire length of the column before it
reaches the next hit pixel and it must do this before the next
rising edge of the Read Clock. The amount of time it takes for
the token to pass through an empty pixel is called the skip
frequency. Therefore, the maximum readout speed is equal to
the skip frequency divided by the number of pixels in the
column.

Second, speed is limited by how long it takes an entire
column to restore itself after a read has been completed. This
determines how rapidly successive read cycles can be made.

The token passing architecture shown in Figure 6 has been
optimized in preFPIX2 to permit skipping frequencies between
7 and 8GHz, yielding readout clock frequencies in excess of
40 MHz. It is also resettable, allowing for maximum speed in
successive read cycles.

IV. MONTE CARLO-VERILOG SIMULATION

A unique and very comprehensive method of design and
simulation was practiced on the FPIX Core. First, individual
digital subcircuits including nand gates, nor gates, inverters,
CMOS transmission gates, SR-flip-flops and D-flip-flops were
simulated using SPICE to determine their best, worst and
typical propagation delays. Next, all critical drivers such as
Command Drivers and Address Drivers were similarly
evaluated under their expected loads. All of these delays were
transferred into the Verilog hardware description language.
Then the readout architecture and control system were
constructed in a bottom-up fashion from those basic digital
components. No behavioral modeling was permitted in the
FPIX Core, and great attention was given to ensuring that
gates were not excessively loaded with capacitance. The net
result was a Verilog model of the FPIX Core accurate to the
gate level and, in many places, the transistor level. It modeled
the entire data path from the output of each of the 2880 analog
front-ends to the pads of the chip.

This procedure yielded a number of benefits. First,
through software, purely structural Verilog code can be
converted into schematics. Therefore, layout-versus-schematic
(LVS) comparisons became, in effect, layout-versus-Verilog
comparisons. Second, this design procedure ultimately
produced a Verilog model of the Core that was extremely
accurate with respect to timing. SPICE simulations were
performed regularly at higher and higher levels of the
hierarchy to ensure this.

Next, the analog front end of each pixel was modeled
behaviorally as a delay block whose inputs were a digital hit
indicator and a hit magnitude and whose outputs were the
discriminator “New Hit” output and the three-bit magnitude
output of the pixel’s FADC. The delay between the rising-
edge of the hit indicator input and the rising-edge of the “New
Hit” output depends on the magnitude of the hit. The delay
between the rising edge of the hit indicator input and the
falling-edge of the “New Hit” output also depends on the
magnitude of the hit. This models the “dead time” of the
analog front end after a new hit. All of these delays were

From Neighbor To Neighbor

Output Full

I’m Next

Output

Full

From Neighbor

To Neighbor

Output

Full

To Neighbor

From Neighbor

Output Full

From NeighborTo Neighbor

Figure 5 A Logical Diagram of the Output Priority Encoder

TokenOut

Hit

Hit

TokenIn

TokenReset

Figure 6: The Token Passing circuitry

determined experimentally from prototype versions of the
front end.

Monte Carlo analysis of 5000 beam crossover periods in
the interaction chamber was done using MCFAST, making
geometric cuts around the region that would be occupied by
the hottest chip. This produced a list of hit pixels with their
associated charge magnitudes in each of the 5000 time slices.
Different analyses were made assuming the expected
luminosity of the beam, half that luminosity and twice that
luminosity. The results of these analyses were converted into
Verilog and used as input to the FPIX Core model.

Finally, a rudimentary DAQ system was modeled to
capture the output of the FPIX Core. This output was
reconstructed into hit pixels, their hit magnitude and time
stamp. The input and output lists were compared and
additional lists were made of matches, missing members of the
input list, and extra members of the output list.

The majority of the unmatched members of the output list
failed to match members of the input list due to an improper
hit magnitude. This occurs when a single pixel is hit twice
before the first hit can be read out. This happens because the
behavioral model of the analog front end attempts to model
reality. That is, the digital back end of the pixel would ignore
the new hit because it was already full. However, the ADC in
the analog front end would respond to the new hit by updating
its value if the new hit was larger than the original hit. The net
result in the output list is an “original hit” that has a correct
time stamp, a correct address and a potentially incorrect
magnitude. The new hit will be missing from the output list.
The Verilog model of the analog front end does not care if the
new hit is larger or smaller than the old hit. Therefore, the
number of unmatched members of the output list shown in
Table 1 is necessarily larger than expected in reality.

The number of unmatched members of the input list in
Table 1 is usually related to situations where hits cannot be
accepted by a pixel. For example, if all of the Command State
Machines are either in the Full or Output states, then no
Command State Machines are available to be transferred to the
Listen state. Under these conditions, the column can accept no
new hits, and therefore, those hits are missing from the output
list.

Table 1
Simulated Results of the FPIX Core displayed by luminosity

Luminosity # of hit
pixels in
the input

list

of
unmatched
members of
the input list

of
unmatched
members of

the output list

1x1032 cm-2 s-2 1342 0 0

2x1032 cm-2 s-2 2751 2 3

4x1032 cm-2 s-2 11643 33 16

V. CONCLUSIONS

The FPIX Core architecture has been completed.
Substantial improvements were made to its architecture,
resulting in readout efficiencies greater than 99.6%. Rigid
adherence to bottom-up design techniques, with great attention

paid at the start of the project to propagation delays in low-
level digital cells, resulted in a Verilog model of the
architecture that was accurate at the gate level to the final
design. Therefore, the Verilog model could be compared to
the final layout using standard CAD software. The model’s
timing was also very accurate even at the highest levels.
Monte Carlo simulations of the interaction region performed
by the physicists on the BTeV project were used as inputs to
the model of the FPIX Core. This enabled the designers to
exhaustively test the design. It also permitted the chip
designers to present to the system designers a description of
expected data stream coming from the chip.

VI. ACKNOWLEDGMENTS

The authors would like to thank Al Dyer for his
exceptional wire-bonding abilities and Gerry Dychakowsky for
PC board layout. We would also like to thank Penny Kasper
for the MCFAST Monte Carlo data.

VII. REFERENCES

[1] A. Kulyatsev, et al “A Proposal for an Experiment to
Measure Mixing, CP Violation and Rare Decays in Charm
and Beauty Particle Decays at the Fermilab Collider –
BTEV”, Fermilab-Proposal-897.

[2] G. Cancelo, et al, “High Readout Speed Chip Developed
at Fermilab”, Fermilab-Conf-98/278, published in the
Proceedings of the Fourth Workshop on Electronics for
LHC Experiments, Rome, Italy, September, 1998

[3] D. Christian, “Development of a pixel readout chip for
BTeV”, Nuclear Instruments & Methods in Physics
Research A, 435m 144-152 (1999).

 [3] J. Hoff and A. Mekkaoui, “FPIX Core Architecture and
the PreFPIX2 Chip”, Fermilab-TM-1100,

[4] W. Snoeys, “Radiation tolerance beyond 10 Mrad for a
pixel readout chip in standard submicron CMOS”, Proc.
Of the 4th Workshop on Electronics for LHC Experiments,
Rome, September, 1998, CERN/LHCC/98-36, 114

