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Abstract

The evolution of the beam distribution in a double-rf system with a phase

modulation on either the primary or secondary rf cavity was measured. We

find that the particle diffusion process obeys the Einstein relation if the phase

space becomes globally chaotic. When dominant parametric resonances still

exist in the phase space, particles stream along the separatrices of the domi-

nant resonance, and the beam width exhibits characteristic oscillatory struc-

ture. The particle-tracking simulations for the double-rf system are employed

to reveal the essential diffusion mechanism. For the first time, coherent oc-

tupolar motion has been observed in the bunch beam excitation. The evolu-

tion of the longitudinal phase space in the octupole mode is displayed.
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I. INTRODUCTION

In particle beam physics, controlled particle diffusion has many applications. This in-

cludes the uniformization of the phase space painting for beam injection, controlled beam di-

lution for minimizing uncontrollable emittance growth due to collective instabilities, stochas-

tic beam scraping, stochastic slow beam extraction, etc. In the past, a secondary high

frequency rf system was employed for attaining a controlled longitudinal beam emittance di-

lution, so that negative mass instability across the transition energy can be minimized [1,2].

The procedure was to modulate the phase of a secondary rf system for a controlled beam

dilution before the transition energy crossing. Earlier theoretical studies indicated that the

diffusion mechanism was dominated by a single parametric resonance [1]. However, a single

parametric resonance can hardly lead to a desired uniform distribution in the longitudinal

phase space [3]. In contrast, we find that the diffusion process is dominated by the chaos

generated by overlapping resonances [4].

Sources of random noise such as the quantum fluctuation, rf noise, intrabeam scattering,

etc., play an important role in beam physics. These random noise sources can usually be

represented by the Langevin force in the equation of motion [5]. When particles are acted on

by the Langevin force, they diffuse in phase space. Applying the central limit theorem for the

random statistically independent noise, the mean square width of the beam distribution at

time t satisfies the Einstein relation: σ2 ≈ Dt, where D is the diffusion coefficient. However,

there are many diffusion processes that do not obey the Einstein relation. One such diffusion

process is usually called anomalous diffusion [6]. Examples of anomalous diffusion can be

found in plasma physics, Lévy dynamics, turbulent flow, space-charge dominated beams [7],

etc. The source and the mechanism of anomalous diffusion are of considerable interest in

physics in recent years.

In past few years, beam dynamics experiments at the Indiana University Cyclotron Fa-

cility (IUCF) Cooler Ring were devoted mainly to the study of single-particle effects in the

presence of nonlinear resonances [8]. This paper reports results of recent beam physics ex-

periments that explore the particle diffusion mechanism in the study of beam manipulation

techniques.

The experiments at the IUCF Cooler Ring employed a primary rf system operating at

the harmonic number h1 = 1 and a secondary rf system at h2 = 9. A secondary rf cavity

operating at a higher harmonic number can flatten the rf potential well to reduce the peak

current, and increase the synchrotron tune spread for Landau damping [9]. The equilibrium

beam profile, conforming with the shape of the potential well, allows a higher ratio of the av-

erage current to the peak current. Furthermore, the increase in the synchrotron tune spread
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provides higher threshold current for the collective instabilities. Such double-rf systems have

been successfully applied to several low-energy storage rings and synchrotron light sources

[9,10]. In our experiments, phase modulation was applied to one of the rf systems. We stud-

ied the particle diffusion mechanism in the longitudinal phase space, checked the Einstein

relation, and examined the effects of overlapping parametric resonances.

This paper is organized as follows. In Sec. II, the synchrotron equation of motion for

the double-rf system with rf phase modulation is formulated. The effect of noise and phase

space damping with electron cooling will be discussed. In Sec. III, we discuss experimental

setup and method. In Sec. IV, we present the results of our experiments and data analysis.

The conclusion is given in Sec. V. Theoretical analysis is given in the Appendix A.

II. SYNCHROTRON EQUATION OF MOTION

Let φ = −h1(θ̃− θ̃s) and δ = (h1|η|/νs)(∆p/p0) be the normalized conjugate phase space

coordinates, where h1 is the harmonic number of the primary cavity, θ̃ and θ̃s are respectively

the orbiting angles of a non-synchronous and synchronous particles, η is the phase slip factor,

p0 is the momentum of a synchronous particle, ∆p = p − p0 is the momentum deviation,

νs = [h1eV1|η|/(2πβ2E)]1/2 is the synchrotron tune, V1 is the voltage of the primary rf cavity,

and e, β and E are the electric charge, the Lorentz velocity factor, and the energy of the

particle. The synchrotron equation of motion for a particle in a single rf system is given by

φ̇ = νsδ, (1)

δ̇ = −νs sin φ, (2)

where the overdot corresponds to the derivative with respect to “time” coordinate θ = ω0t,

where ω0 = 2πf0 is the angular revolution frequency of a synchronous particle. The equation

of motion can be derived from an unperturbed Hamiltonian

H0 =
1

2
νsδ

2 + νs(1− cosφ). (3)

In the presence of quantum fluctuation with white noise and beam cooling, the syn-

chrotron motion can be modeled as

δ̇ = −νs sinφ− λδ +Dξ, (4)

where λ is the damping decrement, and the Gaussian white noise function ξ satisfies

〈ξ(θ)ξ(θ′)〉 = δ(θ − θ′), 〈ξ〉 = 0,
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where the angled brackets represent ensemble average, and D is the amplitude of the white

noise that may arise from beam-gas scattering, intra-beam scattering, rf noise, and other

noise sources in a storage ring. At a typical IUCF Cooler Ring operation condition, λ and D

are approximately 3 ·10−6 and 2 ·10−4, respectively [8]. The equilibrium particle distribution

function that satisfies the Fokker-Planck-Vlasov equation of the stochastic dynamical system

with white noise is given by [5]

ρ(φ, δ) =
1

N e−H0/E0, (5)

where N is a normalization constant with
∫
ρ(φ, δ)dφdδ = 1, and the “thermal energy” of

beam is

E0 = D2/2λ. (6)

In the presence of a secondary rf system with phase modulation, the synchrotron equation

of motion of Eq. (4) becomes

δ̇ = −νs [sin(φ+ ∆φ1)− r sin (hφ+ ∆φ2)]− λδ +Dξ, (7)

where r = V2/V1 is the ratio of the voltage V2 of the secondary rf cavity to the voltage V1 of

the primary rf cavity, and h = h2/h1 is the ratio of their respective harmonic numbers. The

sinusoidal phase modulation terms ∆φ1 and ∆φ2 are

∆φ1 = A1 sin(νm1θ), (8)

∆φ2 = A2 sin(νm2θ) + ∆φ0, (9)

where A1 and A2 are the modulation amplitudes, νm1 = fm1/f0 and νm2 = fm2/f0 are the

modulation tune with modulation frequencies fm1 and fm2, f0 is the revolution frequency

of a synchronous particle, and ∆φ0 is the relative phase differences between two rf systems.

Without damping and the random noise terms, the modulation Hamiltonian for synchrotron

motion is

H =
1

2
νsδ

2 + νs

{
1− cos(φ+ ∆φ1) +

r

h
[1− cos(hφ+ ∆φ2)]

}
. (10)

The objective of this paper is to study the dynamics of enhanced particle diffusion in the pres-

ence of phase modulation. Properties of the time dependent Hamiltonian will be discussed

in the Appendix.
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III. EXPERIMENTAL SETUP AT THE IUCF COOLER RING

The IUCF Cooler ring is a 6-sided proton storage ring with electron cooling. Protons

can be accelerated or stored from 45 to 500 MeV in kinetic energy. In the experiment, the

beam currents were maintained between 100 to 500 µA for a single bunch in the ring at 45

MeV.

In the Cooler ring, there are two rf acceleration cavities; the primary MPI-cavity operates

at a harmonic number h1 = 1, and the secondary PPA-cavity operates at the harmonic

number h2 = 9. The choice of h2 = 9 is limited by the frequency range of the PPA-cavity.

The results of our study do not depend on the choice of h2 provided that h2 � h1 (see

Sec. IV B 3).

In our experiment, a 90 MeV H+
2 beam from the K200 cyclotron was strip-injected into

the Cooler ring resulting in a 45 MeV kinetic energy proton beam. The revolution frequency

was f0 = 1.031680 MHz and only the primary rf system with h1 = 1 was active before our

data taking. After injection, the proton beam was cooled by the electron cooling system

to reduce the beam emittances. The electron cooling rate at the Cooler ring was measured

to be about 3 ± 1 s−1 at this energy [8]. The accelerator cycle-time was set at 10 s, and

the secondary rf system and the data acquisition system were turned on at 3 s after the

completion of injection, i.e. the beam had been cooled to a stationary state in the primary

rf system. The rms bunch length of the cooled beam was about 15 ∼ 20 ns with an rms

fractional momentum spread about 8×10−5 . The primary rf voltage was set at about 300 V,

which, by itself, resulted in a synchrotron frequency fsyn of about 705 Hz.

The beam profile was taken from a BPM sum signal passing through a low loss elephant

trunk (Andrews LDF5-50A Heliax foam-filled) cable, and recorded by a fast digital scope

which was set at a sampling rate of 1 GHz for a total of 512 (or sometimes 1024) channels

for each turn. The bunch profiles were digitized every 25 to 75 turns. This sampling rate

was sufficient to provide a detailed evolution of the beam profile in the diffusion process. A

pre-trigger to start data recording was set at least 100 ns prior to the arrival of the beam

bunch.

Baseline measurements without applying phase modulation on either rf cavity were per-

formed to calibrate the rf systems. The electron cooling system was optimized to attain a

stable proton beam motion. The resulting bunch profile is Gaussian-like with an rms beam

width of σ ≈ 15 ∼ 20 ns, depending on the rf voltage and beam current. Since the solution

of the Fokker-Planck-Vlasov equation of a stochastic dynamical system is given by Eq. (5),

we can thus determine the diffusion coefficient of the beam particles in the Cooler with a

known damping parameter.
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The secondary rf system was turned on only when the data acquisition system began to

take data. Two sets of experiments were carried out with phase modulation on the secondary

and primary rf systems, respectively. Figure 1 shows a typical observed mountain-range plot

of the evolution of the beam profile with an rf cavity voltage ratio r = 0.11, where an rf

phase modulation was applied only to the secondary rf cavity, with a modulation frequency

fm2 = 1400 Hz and a modulation amplitude A2 = 100◦. The three dimensional plot shows

the longitudinal beam distribution versus channel number in every 25 revolutions for the

succeeding digitized profiles.
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FIG. 1. A 3-dimensional plot for the beam-profile evolution with phase modulation on the

secondary rf system. The channel-number axis represents that a revolution time of about 969 ns

was digitized into 512 channels, the time axis shows the resolution of 25 particle revolutions between

2 adjacent profiles, and the vertical axis depicts relative beam intensity. The modulation frequency

fm2 was set at 1400 Hz with modulation amplitude A2 = 100◦ and the rf voltage ratio r = 0.11.
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IV. DATA ANALYSIS

The Fast Fourier transform (FFT) spectra of the bunch centroid and the mean square

bunch length will be used to characterize experimental data. To understand the essential dy-

namics of the diffusion process, we perform extensive multi-particle simulations that include

Gaussian white noise, electron cooling, and rf phase modulations in Eqs. (1) and (7). Com-

paring particle tracking simulations with the experimental data, we investigate the following

physics phenomena: the bunch-shape evolution, the dynamics of the bunch dilution process,

the role of parametric resonances in the diffusion process, and the physics of anomalous

diffusion.

A. Evolution of bunch width in the presence of rf phase modulation

The evolution of the beam profile can be characterized by the motion of the centroid φavg

and the mean square (MS) bunch length σ2. They are defined as

φavg =
∫
φρ(φ)dφ ≈ 1

N

N∑
i=1

φi, (11)

σ2 =
∫

(φ− φavg)
2ρ(φ)dρ ≈ 1

N

N∑
i=1

(φi − φavg)
2 , (12)

where N is the number of particles in a beam bunch, φi is the phase coordinate of the i-th

particle, and ρ(φ) is the normalized density function. In our experiments, the bin size of the

φ coordinate is 1 ns per channel.

A background subtraction is needed to analyze our data because of electronic noise.

The averaged background level of our detection system can be calculated from the channels

where there are no beam particles. The rms noise level σnoise was calculated from the first 40

channels. We then applied a 6σnoise noise cut to our data to increase the signal-to-noise ratio.

The noise cut is particularly important in the calculation of the mean square bunch width,

and higher moments of the beam distribution. Figure 2 shows a characteristic evolution

of mean square bunch width, where the MS bunch length oscillates widely, and damps

eventually into a constant that depends on parameters of the rf systems. On the other hand,

Fig. 3 shows two examples of similar particle diffusion experiments at different modulation

frequencies where the MS bunch lengths exhibit a smooth diffusion of linear or nonlinear

growth and reach a saturation after about 10 ms. What causes the different behaviors of the

particle diffusion mechanism? Can one identify the diffusion mechanism with the underlying
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stochasticity in the dynamical system? What role do the overlapping parametric resonances

play in the diffusion process?
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FIG. 2. Plot of σ2 (ns2) obtained from the experiment data shown in Fig. 1, for modulation

frequency fm2 = 1400 Hz, modulation amplitude A2 = 100◦, rf voltage ratio r = 0.11, and harmonic

number h = 9.
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FIG. 3. Plots of σ2 (ns2) (derived from the measured data) for A2 = 50◦, r = 0.2, and

fm2 = 1100 Hz (left) and 2700 Hz (right) respectively. The evolution of the MS bunch lengths

differs from that of the top plot of Fig. 2. The left plot shows a characteristic linear growth of σ2,

while the right plot shows a characteristic anomalous diffusion.
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B. Phase Modulation on Secondary Rf Cavity

In our experiment with a phase modulation applied to the secondary rf cavity, the rf

phase-modulation amplitude, the modulation frequency, and the voltage ratio between the

two rf cavities were systematically varied. Since the synchrotron frequency of our experiment

was about 705 Hz, the modulation frequency was set to cover a range from 100 Hz to 3600 Hz

with a 100 Hz step, and the modulation amplitude was set from about 10◦ to as high as

about 400◦. We tried to phase lock the primary and secondary rf systems in our experiments.

However, we discovered during our data analysis that the relative phase of two rf systems

was not properly locked when the control parameters were varied. The relative phase ∆φ0

becomes a free parameter in fitting experimental data. Since the phase space location of

overlapping parametric resonances depends on the parameter ∆φ0, the final phase space

distribution of the beam also depends on the relative phase parameter sensitively.
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FIG. 4. Averaged final mean square beam size
〈
σ2
f

〉
versus modulation frequency for various

modulation amplitudes. This is done by averaging the rms beam size over the last 5 ms of the data

taken. The letters indicate the modulation amplitudes, where a: 65◦, b: 100◦, c: 125◦, d: 150◦, e:

175◦, and f: 200◦
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Figure 4 summarizes our data, where the final beam width is plotted as a function of the

modulation frequency for the modulation amplitudes 65◦, 100◦, 125◦, 150◦, 175◦, and 200◦.

Our results show that the beam response is particularly strong at modulation frequencies

near the harmonics of the synchrotron frequency [11]. Our data analysis is therefore focused

on the modulation frequencies about integer multiples of the synchrotron frequency.

1. Effects of dominant parametric resonances in the chaotic sea

In the following, we will show that the oscillatory structure of Fig. 2 for the first 10 ms

arises from particles streaming along the separatrix of the dominant parametric resonances,

and the decoherence of the coherent oscillation in σ2 is due to the diffusion process into the

chaotic sea [4]. Figure 5 shows σ2 vs time for ∆φ0 = 245◦ and 180◦, obtained from numerical

simulations of 4000 particles in an initial Gaussian beam distribution, where we note that the

resulting σ2 depends sensitively on the relative phase ∆φ0. The sensitivity on the relative rf

phase can be understood as follows (see also Appendix A).
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FIG. 5. Plots of σ2 (ns2) obtained from numerical simulations for two different values of the

relative phase difference ∆φ0, 180◦ and 245◦, respectively, while keeping the other parameters the

same. These calculations were carried out under the conditions: fm2 = 1400 Hz, A2 = 100◦,

r = 0.11, and h = 9. The behavior of beam depends sensitively on the value of relative phase

difference ∆φ0.
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Neglecting the intrinsic diffusion term D and phase space damping term λ, the equations

of motion can be cast into a Hamiltonian,

H =
1

2
νsδ

2 + νs

[
(1− cosφ)− r

h
(1− cos [hφ+ ∆φ2])

]
, (13)

where ∆φ2 is given in Eq. (9). The Hamiltonian can be divided into a time independent

term 〈H〉 and a time dependent perturbation H1 = H−〈H〉. Strong perturbation to particle

motion occurs only when parametric resonances are excited by the time dependent term [11].

The locations of the parametric resonances in the phase space are determined by the tune

of the unperturbed Hamiltonian system. Since the “equivalent time-averaged” Hamiltonian

of Eq. (13) depends sensitively on the parameter ∆φ0, the final beam distribution also

sensitively depends on the relative phase ∆φ0.
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FIG. 6. Poincare surfaces of section (bottom plots) and the final beam distribution obtained

from numerical simulations (top plots) for two different values of the relative phase difference,

∆φ0 = 180◦ and 245◦. These calculations were carried out under the same conditions as those

of Fig. 5. Beam diffusion (or dilution) occurs only when the central region of bucket becomes

stochastic.
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The significance of the large amplitude oscillation in the MS beam width σ2 observed

in Fig. 2 can be understood easily by viewing the Poincaré surfaces of section of these two

dynamical systems shown in the lower plots of Fig. 6. Since the initial phase-space area of

the beam is small due to electron cooling, the final beam distribution depends on the actual

chaotic region that overlaps with the initial phase-space. The beam will evolve into a final

distribution as shown in the upper plots bounded by invariant tori. Viewing the Poincaré

surface of section, we find that the topology of the chaotic region depends sensitively on the

parameters ∆φ0, and fm2.

Figure 7 shows the evolution of the phase-space distribution during the secondary rf

phase modulation, where the first frame corresponds to the initial phase-space distribution,

and a time lapse of 2.92 ms in each succeeding frames. The large amplitude oscillation

shown in Fig. 2 arises from the forced oscillation similar to that of the frame 2 in Fig. 7.

The period of each oscillation shown in Fig. 5 corresponds to the period of the coherent

synchrotron motion, i.e., two times the modulation period in this case. The maximum σ2

corresponds to the time when particles diffuse into the maximum of the dominant parametric

resonance. As particles gradually fill the chaotic sea of overlapping parametric resonances,

the corresponding oscillatory amplitude in σ2 will decrease and reach an equilibrium value.

The final equilibrium phase-space areas of the beam shown in the upper plots of Fig. 6 are

given by the phase-space areas of chaotic region.

The experimentally measured evolution of a beam distribution as a function of rf pa-

rameters in a storage ring reveals the particle diffusion mechanism along the separatrices

of the dominant parametric resonances. A smooth uniform beam distribution requires not

only a chaotic region in phase space formed by overlapping resonances, but also the chaotic

sea bounded by invariant tori so that the beam distribution can be stabilized. The bunch

evolution depends sensitively on rf parameters: the ratio of rf voltages r, the modulation

frequency fm2, the modulation amplitude A2, and the relative phase ∆φ0. We find that the

evolution of the bunched beam can be divided into a fast process that is related to parti-

cle diffusion along the dominant parametric resonances, and a slow process where particles

diffuse inside the chaotic sea.

From our analysis, we find that a linear growth of σ2 with time (see e.g., the left plot

of Fig. 3) can be identified as a diffusion process in a complete chaotic region in the phase

space. On the other hand, if the phase space possesses a layer of chaotic sea with invariant

tori embedded inside, then σ2 will show characteristics of anomalous diffusion similar to

the right plot of Fig. 3. However, if stable islands still exist in the chaotic background as

shown in the lower right plot of Fig. 6, the evolution of σ2 will be strongly oscillatory. Our

experiment, with numerical simulations, has systematically verified these conditions. The

12



understanding of the signature of the beam phase-space evolution can be used to diagnose

the sources of emittance-dilution mechanisms in high brightness beams and space charge

dominated beams.
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FIG. 7. Plots of diffusion process for fm2 = 1400 Hz, A2 = 100◦, ∆φ0 = 245◦, r = 0.11, and

h = 9. Frame numbers are numbered in chronological orders from 1 to 6 in time steps of 2.92 ms.

The fast diffusion process is induced by two overlapping 2:1 parametric resonances.
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Because of the weak damping of the electron cooling system, the rf phase modulation by

a secondary rf system can provide a chaotic dynamical system, where the attractors evolve

into non-intersecting attracting curves, which depend sensitively on the value of the damping

decrement λ and the intrinsic diffusion coefficient D. Such systems can also be detected by

our beam measurement tools.

2. Systematic numerical study of parametric dependence of particle diffusion

Figure 8 shows the final mean square beam width, obtained from numerical simulations

of 4000 particles with Eqs. (1) and (7), as a function of the relative phase ∆φ0 and the

modulation amplitude A2 with fm2 = 1200 Hz and fsyn = 719 Hz. Since the initial phase

space area of the beam is small and the chaotic region moves with the relative phase ∆φ0 and

the amplitude A2, the final beam width will peak at the relative phase and the modulation

amplitude when the chaotic region overlaps with the initial phase-space area. The optimal

modulation amplitude for the induced phase-space dilution occurs at a relative phase of 60◦

or 300◦ and the modulation amplitude of A2 = 100 ∼ 150◦, where the Bessel functions

J1(A2) and J2(A2) are large (see appendix A).

To determine the sensitivity of the phase space dilution on the modulation frequency, we

perform systematic tracking calculations using Eqs. (1) and (7) with rf parameters r = 0.1,

A2 = 100◦, and fsyn = 720 Hz. Figure 9 shows the calculated σ2 of the final beam distribution

as a function of the modulation frequency fm2 and the phase difference ∆φ0. Note that the

final beam width depends sensitively on the modulation frequency and the relative phase.

The sharp peaks of strong beam excitation are located near the first, second, third and fourth

harmonic resonances.
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FIG. 8. The parameters used in tracking are the synchrotron frequency fsyn = 719 Hz,

fm2 = 1200 Hz, and r = 0.11. The final beam size is plotted as a function of the modulation

amplitude A2 (in degree) and the relative phase φ0 (in degree).

3. Dependence on the ratio of harmonic numbers

The ratio of the harmonic numbers h = h2/h1 was chosen to be 9 in our experiments.

To understand the dependence of the final beam emittance on the parameter h, we perform

multiparticle numerical simulations for various harmonic ratio h with parameters r = 1/h,

fsyn = 720 Hz, fm = 1400 Hz, and A2 = 100◦. Our results show that the entire bucket

area can become chaotic for h ≤ 7. When the entire bucket area becomes chaotic, the beam

bunch will not be bounded by invariant tori, and particle loss becomes inevitable.
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FIG. 9. The averaged equilibrium mean square beam size is plotted as a function of modulation

frequency fm2 and modulation phase ∆φ0. The parameters for the rf systems are fsyn = 720 Hz

with a modulation amplitude A2 = 100◦, rf voltage ratio r = 0.1, and h = 9.

4. Frequency spectra of experiemental data

Experimental data also show the sensitivity of beam diffusion mechanism on the modu-

lation frequency. Figure 10 shows the FFT spectra of the MS beam widths of all measured

data with a modulation amplitude of 150◦. A direct response line is visible in our data.

Furthermore, the quadrupole and the octupole modes arising from the dominant paramet-

ric resonances are particularly strong when the modulation frequencies are driven at 2fsyn

and 4fsyn. We note also that when the beam is driven into chaotic sea, the data show

characteristic strong low frequency response.
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the chaotic sea, the quadrupole and octupole modes arise from strong parametric resonances.
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C. Observation of the octupole mode

Our data show that the dominant excitation of synchrotron motion occurs between the

first and third harmonics of the synchrotron frequency. However, we also note in Fig. 4

that a sharp peak appears near the modulation frequency of 2700 Hz, about four times of

the synchrotron frequency, in all modulation amplitude except for A2 = 200◦ [12]. The

experimental data shown in Fig. 4(b) indicate a substantial beam blow up at a modulation

frequency of fm2 = 2700 Hz.

To study the characteristics of the octupole mode, we performed multi-particle tracking

calculations. Our numerical simulations shown in Fig. 9 indicate that the phase difference

∆φ0 must be about 60◦ or 300◦. Figure 11 shows the the calculated Poincaré surface of

section with various relative phase between the two rf systems, where the chaotic structure

indeed arises from overlapping 4:1 parametric resonances.

Figure 12 shows the evolution of the beam bunch in the action of large octupolar exci-

tation. Note that particles stream along the separatrices of the 4:1 parametric resonances

before they diffuse into the chaotic sea. The large octupole response shown in Fig. 10 at the

modulation frequency of 2700 Hz reflects this process. The low-frequency response arises

from the process where particles diffuse gradually into the chaotic sea.

We have also performed many tracking calculations at modulation frequencies higher

than 2700 Hz. We find that there is no significant beam dilution for modulation frequencies

at or higher than 3600 Hz, which is about the fifth harmonic of the synchrotron frequency.

Such results were also confirmed in our experimental measurements.
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FIG. 11. The Poincaré surfaces of section for the modulation frequency of 2700 Hz with different

relative phases. The rf parameters in the calculation are A2 = 100◦, fm2 = 2700Hz, fsyn = 685 Hz,

and r = 0.1. Note that the chaotic structure arises mainly from the overlapping resonances of 4:1

parametric resonances.
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FIG. 12. The evolution of the bunch distribution showing the diffusion process that particles

stream along the separatrices of the 4:1 parametric resonances. The rf parameters in the calculation

are A2 = 100◦, fm2 = 2700Hz, fsyn = 685 Hz, and r = 0.1. They eventually diffuse into the chaotic

sea. The octupole mode of excitation arises from these resonance structures.
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D. Phase Modulation on the Primary Rf Cavity

Phase modulation on the primary rf system is much more sensitive to the beam than

on the secondary rf system, because the perturbation is much stronger [8]. Therefore, the

modulation amplitude scan could not cover the entire 2π parametric space. The effect can be

seen in the FFT spectra of the beam bunch centroid shown in Fig. 13. In this case, our data

showed that particles were driven along the separatrix orbit and escaped the bucket at the

unstable fixed point. Based on our experiments, it is advisable to modulate the secondary

rf cavity for controlled bunch beam dilution. 
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FIG. 13. An example of the FFT spectra for averaged center position in the presence of the

primary rf phase modulation. The modulation amplitude was about A1 = 4◦, the modulation

frequency is applied from fm1 = 1400− 2500 Hz, with h2 = 9, r = 0.1. Note that the dipole mode

is highly excited, and furthermore, the coherent driving oscillations, where the response frequency

is equal to the driving frequency, are clearly visible.

21



V. CONCLUSION

In conclusion, our experimental data show that the linear growth of σ2 with time arises

from the diffusion process in a complete chaotic region in the longitudinal phase space. If

the phase space exhibits a layer of chaotic sea with invariant tori embedded inside, σ2 will

show characteristics of anomalous diffusion. On the other hand, if stable islands remain in

the chaotic background as shown in the lower right plot of Fig. 6, the evolution of σ2 will be

strongly oscillatory. Our experiment, and numerical simulations, have systematically verified

these conditions. The understanding of the signature of the beam phase space evolution can

be used to diagnose sources of emittance-dilution mechanisms in high brightness beams

and space charge dominated beams. The final phase space area of the beam is determined

essentially by the chaotic region in the phase space bounded by invariant tori.

We have experimentally measured the evolution of beam distribution as a function of rf

parameters in a storage ring. These parameters are the ratio of rf voltages r, the modulation

frequency fm2, the modulation amplitude A2, and the relative phase ∆φ0. We have found

that the evolution of the bunch beam can be divided into a fast process that is related

to particle diffusion along the separatrices of dominant parametric resonances, and a slow

process where particles diffuse inside a bounded chaotic sea.

We have also observed, for the first time, the octupole excitation. The corresponding

phase-space evolution for the octupole excitation has been clearly measured. Particles stream

through the separatrices of the 4:1 parametric resonance, and then diffuse into the chaotic

sea. The signature of the beam signal can easily be identified.
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APPENDIX A: PROPERTIES OF THE TIME DEPENDENT HAMILTONIAN

Without damping and the random noise terms, the Hamiltonian for synchrotron motion

with an rf phase modulation to the secondary rf system is

H =
1

2
νsδ

2 + νs

{
1− cos(φ) +

r

h
[1− cos(hφ+ ∆φ2)]

}
= 〈H(δ, φ)〉+ ∆H(θ), (A1)

where

〈H〉 =
1

2
νsδ

2 + νs

{
1− cos(φ) +

r

h
[1− J0(A2) cos(hφ+ ∆φ0)]

}
(A2)

∆H = −2
νsr

h

[
cos(hφ+ ∆φ0)

∞∑
k=1

J2k(A2) cos(2kνm2θ)

− sin(hφ+ ∆φ0)
∞∑
k=0

J2k+1(A2) sin((2k + 1)νm2θ))

]
, (A3)

Jk is the Bessel function of the order k. Since the time averaged Hamiltonian 〈H〉 is θ-

independent, we will expand the Hamiltonian in the action-angle coordinates of 〈H〉. Defin-

ing the action coordinate as

J =
1

2π

∮
δ(φ)dφ, (A4)

we express 〈H〉 as a function of J , and obtain the synchrotron tune Qsyn = ∂〈H〉/∂J of an

averaged double rf system, where Qsyn is a sensitive function of ∆φ0 at small action J [9].

Defining the generating function,

F2(φ, J) =
∫ φ

−φ̂
δ(φ)dφ, (A5)

we obtain the conjugate phase coordinate as ψ = ∂F2/∂J . Now we can expand ∆H in

action-angle coordinates of the time-averaged Hamiltonian as

∆H =
∑
n,m

Gn,m(J) cos(nψ −mνmθ + χn,m), (A6)

wherem and n are integers, and Gn,m and χn,m can be obtained from the Fourier expansion of

∆H. When the modulation amplitude A2 is not large, the perturbation depends essentially

on two dominant terms, i.e. ∆H ≈ G1,1 cos(ψ − νmθ + χ1,1) + G1,2 cos(ψ − 2νmθ + χ1,2),

where G1,1 ∝ J1(A2) and G1,2 ∝ J2(A2). Thus the effective perturbation will be peaked

at a modulation amplitude A2 ≈ 100 − 150◦, where the values of J1 and J2 functions are

maximum.
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The perturbation ∆H of Eq. (A6) may contain many overlapping resonances where sta-

tionary phase conditions are encountered at a modulation tune νm = nψ̇/m ≈ nQsyn/m.

Overlapping resonances generate bounded chaotic regions in the phase space shown, for

example, in Fig. 6.

1. Symmetry of the Poincaré surface of section

Since the Poincaré surface of section is obtained by plotting the phase space point at

νmθ = constant (Mod 2π), the Poincaré surfaces of section for dynamical systems with

parameters ∆φ0 and 2π −∆φ0 are related by shifting νmθ → νmθ + π and φ → −φ. Thus

the effect of beam dilution for the rf systems with ∆φ0 and 2π −∆φ0 will be identical. For

example, the Poincaré surfaces of section for ∆φ0 = 140◦ and 220◦ shown in Fig. 11 obey the

symmetry condition. Similarly, the final mean square bunch width width shown in Fig. 8

have similar symmetry property.

2. Effects of power supply ripple

In many beam manipulation, it is very difficult to suppress the power supply ripple. The

effect of power supply ripple on the rf phase modulation can be represented by

∆φ2 = [A2 +Aripple sin(νrippleθ + χripple)] sin(νm2θ) + ∆φ0

= A2 sin(νm2θ) + ∆φ0 +
1

2
Aripple cos[(νm2 − νripple)θ − χripple]

−1

2
Aripple cos[(νm2 + νripple)θ + χripple]. (A7)

Thus the power supply ripple produces modulation tunes νm2±νripple, and the beam spectrum

will have 60 Hz sidebands around the dominant harmonics. This is evidently shown in the

FFT spectra of experimental data in Figs. 10 and 13.
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