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Cosmological constraints from lensing statistics and supernovae on the cosmic
equation of state
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We investigate observational constraints from lensing
statistics and high-z type Ia supernovae on flat cosmological
models with nonrelativistic matter and an exotic fluid with
equation of state, p; = (m/3—1)p,. We show that agreement
with both tests at the 68% confidence level is possible if the
parameter m is low (m < 0.85) and 0.24 < Q0 S 0.38 with
lower values of Q0 corresponding to higher m. We find that
a conventional cosmological constant model with Q,,0 ~ 0.33
is the best fit model of the combined likelihood.

PACS number(s): 98.80.Hw

I. INTRODUCTION

Flat cosmological models with a cosmological con-
stant are currently the favorite candidates to describe
the dynamics of the universe. These models are theo-
retically appealing because A helps to reconcile inflation
with dynamic estimates for the matter density parame-
ter (Qm0). Further, they fit nicely some observational
data, as for instance those coming from the classical
magnitude-redshift test, where Snela are used as stan-
dard candles, and also from the favored location of the
first acoustic peak of the cosmic microwave background
radiation (CMBR) angular power spectra. [1,2]

Historically, Einstein himself was the first one to in-
clude a A-term in the general relativity field equations
in order to make them compatible with a static universe.
Several times A was introduced in cosmology but later
on discarded when improved data became available. The
preliminary results from Snela almost excluded A, so it
is curious to note that this time better data is supporting
A instead of rejecting it [3,4]. From the aesthetic point of
view, if compared, for instance, to the Einstein-de Sitter
models, A-models seem ugly. A new parameter is intro-
duced in the theory and in order to dominate the dynam-
ics of the universe only in recent times, this parameter
should have a very small value (A < 107%% ¢m~2), which
is 50 to 120 orders of magnitude below the estimate given
by quantum field theory. In fact, in part to alleviate this
problem dynamical-A models were originally suggested.
There are also observational motivations for considering
dynamical A models instead of the constant one. For in-
stance, in these models the COBE-normalized amplitude

of the mass power spectrum is in general lower than in
the conventional constant-A model, in accordance with
observations [8]. Further, the distance to an object with
redshift z is smaller than the distance to the same object
in a constant-A model (assuming the same value of Q,,,0).
So, constraints coming from lensing statistics are weaker
in these models [5,20].

The dynamical-A models present in the literature can
schematically be divided in three types: scalar field
[6-11], x-fluid [12-16] and decaying-A laws [18-21]. A
phenomenological decaying-A law model in which A de-
creases as A o« @™ [here a is the scale factor of the
Friedman-Robertson-Walker (FRW) metric and m is a
constant (0 < m < 3)] was suggested in Refs. [19-21]. It
was observed that the Einstein equations for these models
are the same if instead of a A-term, it would be consid-
ered (beside matter and radiation) a x-fluid with equa-
tion of state, p, = (% — 1) p,. In spite of the similarity
at the level of Einstein equations, these two phenomeno-
logical models are different. For instance, in the case of
a decaying A-term, matter is created as a result of the
decaying vacuum, while in the exotic fluid description
the x-component is conserved. In this sense the last ap-
proach is more conventional and closer to the description
of dynamical-A in terms of a scalar field evolving in a
potential and interacting with other matter fields only
through gravity.

In previous work [19,21], as a first approximation,
it was assumed that the x-component is smoothly dis-
tributed. We were motivated by the fact that if the x-
component clumps on scales ~ 10 — 20 h~!Mpc it would
be detected by dynamical measurements and this is not
observed. Another concern is that if the perturbed pres-
sure is negative (as is the background one), the fluid
sound velocity would be imaginary, small scales would
grow exponentially and the system would be highly un-
stable [17,13,9]. However, as observed in Refs. [14,9,15],
the fact that the background pressure is negative not
necessarily implies imaginary sound speed. Furthermore,
Caldwell et al. [9] (see also Ref. [10]) pointed out that the
smoothness assumption is gauge dependent. However, if
for instance A is modeled by a scalar field, perturbations
will only give an appreciable effect at large scales. For
scales well inside the horizon, smoothness is a good ap-
proximation. [16].

In this paper we shall deal with two cosmological tests:



gravitational lensing statistics and the Snela magnitude
redshift test. The strongest observational support for an
accelerated universe comes from Snela. This test can
be considered the main motivation for introducing some
kind of exotic matter with negative pressure. The cos-
mological constant is the simplest possibility, but not the
unique. On the other hand, most lensing statistics anal-
ysis give lower values for A and we find interesting to
compare the predictions of these two important tests.
Here we consider the special case where the exotic com-
ponent is a x-fluid with constant equation of state and
that is smooth on scales smaller than horizon. We show
that agreement with both tests at the 68% confidence
level is possible if the parameter m is low (m < 0.85)
and 0.24 < Q.0 S 0.38 with lower values of €,,0 corre-
sponding to higher m. The best fit model of the com-
bined likelihood has m = 0 (cosmological constant) and

This paper is organized as follows. In Sec. II the basic
field equations and distance formulae are presented. In
Sec. III we obtain constraints on the models from lensing
statistics. Constraints from high redshift Snela are ob-
tained in Sec. IV. We also present a combined likelihood
analysis of both tests in this section. In Sec. V our main
conclusions are stressed out.

II. FIELD EQUATIONS AND DISTANCE
FORMULAE

In this paper we consider spatially flat, homogeneous,
and isotropic cosmologies with nonrelativistic matter and
an exotic x-fluid with equation of state, p, = (% — 1) py
(or equivalently a time-dependent A term such that
A o a™™). Since we are mostly interested on effects
that occurred at redshift z < 5 we neglect radiation. We
consider that nonrelativistic matter and x-fluid are sep-
arately conserved (p,, o< a=% and p, oc a™™).

The Einstein equations for the models we are consid-
ering are:

(g)2zs%wggc§)?+nwﬂg(%0” (21)
and
Z: —%Qmng (%0)3 @;—””QMHS (“)", @2

where Q,,0 = 1 — Q0 is the matter density parameter
and Hj is the present value of the Hubble parameter.

In the next sections we shall use two concepts of cos-
mological distances, the angular diameter distance and
the luminosity distance. In this section we briefly present
their definitions and show some expressions we use in our
computations.

Consider that photons are emitted by a source with
coordinate r = r{ at time ¢; and are received at time tg

by an observer located at coordinate = 0. The emitted
radiation will follow null radial geodesics on which 6 and
¢ are constant. The comoving distance of the source is

defined by:
e [
noat)’

that in flat space is equal to r1. The present value of the
scale factor times the comoving distance, gives the proper
distance, d(0, z), between the source and the observer. In
our case it reduces to the following expression,

(2.3)

1/Z dy
0 VoL +9)?+ (1= Qo)A + )™
(2.4)

d(0,2) = cHy~

The luminosity distance of a light source is defined in
such a way as to generalize to an expanding and curved
space the inverse-square law of brightness valid in a static
Euclidean space, dr(0,2) = (#)1/2 = riao(l + 2),
where £ is the absolute luminosity and F is the mea-
sured flux. For flat models, d(0,2) = agr: and dy, can
therefore be written as dr,(0,2) = (1 + 2)d(0, 2).

The angular diameter distance is defined as the ratio
of the source diameter to its angular diameter, i.e., it is
the distance that would be attributed to the light source
if it were in a Euclidean space, d4(0,2) = a(t1)r1. It is
convenient to write the angular diameter distance for our
models, between the redshift z; and zg,

da(zr,zs) =
cHy™ ! /ZS dy
1425 )2y QoL+ 9)° + (1= Qo)A + )™

(2.5)

III. CONSTRAINTS FROM LENSING
STATISTICS

We start defining the following likelihood function, [25]

Ny N Ny,
Liens = H(]- _pi) Hpj Peg- (31)
i=1 Jj=1 k=1

Here Np, is the number of quasars that have multiple im-
age, Ny is the number of quasars that don’t have, p; <1
is the probability that quasar i is lensed and plck is the
configuration probability, that we shall consider as the
probability that quasar k is lensed with the observed im-
age separation. To perform the statistical analysis we use
data from the HST Snapshot survey (498 high luminous
quasars (HLQ), the Crampton survey (43 HLQ), the Yee
survey (37 HLQ), the ESO/Liege survey (61 HLQ), The
HST GO observations (17 HLQ), the CFA survey (102



HLQ) , and the NOT survey (104 HLQ) [22]. We consid-
ered a total of 862 (z > 1) high luminous optical quasars
plus 5 lenses.

The differential probability, dr, that a line of sight in-
tersects a galaxy at redshift zy, in the interval dzr from
a population with number density ng is,

d differential light travel distance cdt
T = =

~ 1/ngma2,

(3.2)

mean free path

where a., is the maximum distance of the lens from the
optical axes for which multiple images are possible. It
is a function of the angular diameter distance between
observer and lens, lens and source, observer and source
and it also depends on the lens model.

We use a singular isothermal sphere (SIS) as the lens
model. Hence,

da(0,21)da(2L,25)
Qq,
dA (0, 25)

Qer =

and the bending angle is oy =

" il

5 (225Km/s
nent velocity dispersion. We assume conserved comov-
ing number density of lenses, ng = no(l + z)% and a

Schechter [30] form for the galaxy population. So,

[ L\"“ L\ dL
=/ n. (L) exp( L*) @
and we take n, = 1.4 + 0.17 k310~ 2Mpc™ and a =
—1.0 £ 0.15 [32]. The division of the luminosity func-
tion by galaxy type is taken from Marzke et al. [31],
ne = 0.61 £ 0.21 h310~2Mpc 2 for early type galaxies
and ns = 0.79 £ 0.26 h310~2Mpc ™~ for spirals [26]. As
a conservative approach biased pro higher values of Q4
we do not consider lensing by spiral galaxies. We assume
that the luminosity satisfies the Faber-Jackson relation
[29], L/L* = (0y)/07)7, with v = 4 and take of} = 225
Km/s.
The total optical depth (7), obtained by integrating
dr along the line of sight from 0 to zg, can be expressed
analytically,

Amr(ZL)? o~

)? with o) standing for the one compo-

(3.3)

r(as) = 55(da(0,25)(1 + 25))* (cHg ),

(3.4)
where F = 167r3ne(cH0_1)3(a|*| /o) T(1+a+4/v) ~ 0.026
measures the effectiveness of the lens in producing mul-
tiple images [23].

It is important to include two corrections to the optical
depth: magnification bias and selection function due to
finite resolution and dynamic range [25].

Since lensing increase the apparent brightness of a
quasar and since there are more faint quasars than bright
ones, there will be over representation of lensed quasars

in a flux limited sample. The bias factor is given by

[24-26]
B(m, z) = M¢ B(m, z, My, M>) (3.5)
where
B(m7 z, M17 MQ) =
dN,\ " (M2 dM dN,

Since we are modeling the lens by a SIS profile, My = 2,
and we use My = 10* in the numerical computation.

We use the following expression for the quasar lumi-
nosity function [26]

_ _\-1
Ny (10-@"“—’") + 10—b(m—m>) , (3.7)
m
where
mo + (2 + 1) for z <1,
m=< mg for 1<2z<3, (3.8)
mo —0.7(z—3) for z >3,

and we assume a = 1.07, b = 0.27 and mg = 18.92. The
magnification corrected probabilities are
pi = 7(2i)B(m;, 2:) (3.9)

Finally we have to consider the selection function due
to finite resolution and dynamic range. It can be shown

that the selection function corrected probabilities are:
[25]

! .fdapc(o)B(m7Z7Mf(0)7M2)

. = 1
pi(m,2) =p B(m, 7. Mo, M) (3.10)
and
! Di B(m7z7Mf(0)7M2)
= pes(0) (2 , 11
P =p (9)( ) L (3.11)
where [34]
F zs da(0, 21)da(z1, 25) \°
. 0 — 1 3 ) b
pe(9) T(ZS)/O (1+21) ( cHo=1d4(0, zs)
o\ 2 1
) ()
c cHy " dz,
3(at1+3)
’7/2 dA(07ZS) 0
T(a+1+2) | daler,zs) SW(‘%ﬂ)z
X exp da(0,25) 0 L ier, (312)

da(zr, 2s) S <g_ﬂ)2 9

c



1+ f
=1

and

f = f(6) = 10°44m®) (3.14)

To simplify computation we use two selection functions,
one for the HST observations and another one for all the
ground based surveys [33]. Using more accurate selection
functions for each ground based observations separately
have little statistical effect.

Recently Falco et al. [27] observed that statistical lens-
ing analysis based on optical and radio observations can
be reconciled if the existence of dust in E/SO galaxies is
considered. In our computation we assume a mean ex-
tinction of Am =0.5 mag as suggested by their estimates.

By expressing Li.ns as a function of the parameters
m and Q,,0 we obtained the maximum of the likelihood
function (£]?2%) and formed the ratio | = Liens/LR2%. Tt
can be shown that with two parameters, the distribution
of —2In! tends to a 2 distribution with two degrees
of freedom [28,25]. In two dimensions the 68%(1c) and
95.4% (20) confidence levels are where the likelihood is
60.7% and 13.5%, respectively, of the peak likelihood.

™~ m
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FIG. 1. Contours of constant likelihood (95.4% and 68%)
arising from lensing statistics.

In Fig.1 we plot contours of constant likelihood (95.4%
and 68%) in the two parameter space (m, Q,0). The
maximum of the likelihood occurs for m ~ 2.4 and Q,,,0 =
0. The same approach when applied to constant A models
(since m = 0 we now have only one degree of freedom)
gives: Qa < 0.76 (or Q0 2 0.24) at 20, 1 2 Qo 2 0.39
at 1o with a best fit at ,,0 ~ 0.62. For comparison,
without considering extinction, in the case m = 0, we
get: Qa S 0.55 at 20, that is slightly more conservative

than Kochanek’s [25] 4 < 0.66 at 20. For the same case
(m = 0) if we had considered a mean extinction of Am
= 1 mag we would obtain Q, < 0.91 at 20.

FIG. 2. Contours of constant number of multiple images as
a function of the parameter space.

In Fig.2 contours of constant number of multiple im-
ages as a function of the parameters m and 2,0 are dis-
played for the case in which Am = 0.5 mag extinction is
considered. Comparing the two figures we see that the
1o contour of Fig. 1 corresponds roughly to the contour
in Fig. 2 where 9 multiple images are expected. For the
best fit model in two dimensions the predicted number
of multiple images is ~ 5.3.

The results obtained in this section are more accurate
than those presented in Ref. [21]. We now took into ac-
count magnification bias in the configuration probabil-
ity and considered the selection function due to finite
resolution and dynamic range. In the present approach
extinction is also considered, so the constraints are less
restrictive with respect to A than those obtained in Ref.
[21] .

IV. CONSTRAINTS FROM HIGH-REDSHIFT
TYPE IA SUPERNOVAE

There are two major ongoing programs to systemati-
cally search and study high-z supernovae. Although the
very preliminary results indicated a low value for the
cosmological constant ( Qx < 0.51 at the 95% confi-
dence level) [3], more recent analysis with larger sam-
ple of supernovae, now points to a different direction.
Now the data indicate an accelerated expansion such that
Qp ~ 0.7, Qo ~ 0.3 and strongly supports a flat Uni-



verse. [1,4].

In this section we update the constraints on the equa-
tion of state obtained by Silveira & Waga [21], where the
first data from the Supernovae Cosmology Project was
used [3]. We now consider data from the High-z Super-
novae Search Team. We use the 27 low-z and 10 high-z
Snela (we include SN97ck) reported in Riess et al. [1] and
consider data with the MLCS [36,1] method applied to
the supernovae light curves. The results for spatially flat
models that we present here, are similar to those obtained
by Garnavich et al. [35].

Following a procedure similar to that described in
Riess et al. [1], we determine the cosmological parame-
ters m and Q,,0 through a x? minimization neglecting
the unphysical region €2,,,0 < 0. To simplify computation
we fix the Hubble parameter to Ho = 65.2 km/s Mpc ™!
[1], but the results are independent of this choice for Hy
[1,35]. We use

2 (Q ) i (/J/P(zia QmOa"n) - /J/O,i)2 (4 1)
m0, M) = . .
Xsne 0 P 0"2‘0!1. + 0-12”'

where

tp = 5logdr, + 25, (4.2)

is the distance modulus predicted by each model, pg is
the observed (after corrections) distance modulus, o, its
uncertainty and o, is the dispersion in galaxy redshift
due to peculiar velocities. Following [1] we use o, =

s 200;“;/ * and for high-z Snela with z not derived from

emission lines in the host galaxy, we add 2500 km/s in
quadrature to 200 km/s (see Table 1 in [1]).

FIG. 3. Contours of constant likelihood (95.4% and 68%)
arising from lensing statistics (dashed lines) and type Ia su-
pernovae are shown.

In Fig.3 contours of constant likelihood 95.4% (20) and
68% (1lo) arising from the Ax?2,, analysis are displayed
together with those from lensing (dashed lines). For
Snela the peak of the likelihood is located at m ~ 1.1 and
Qo = 0. If we fix m = 0 we get Q0 = 0.25 £ 0.08 (10)
(for comparison Riess et al. obtained Q,,0 = 0.24 £0.1).
From the figure it is clear that there is a region in the
parameter space (the region inside the triangle with ver-
tices (m ~ 0.85,Q,0 = 0.24), (m = 0,0 =~ 0.32) and
(m = 0,20 ~ 0.38)) such that all points are inside the
1o (68%) confidence region of both tests.

In Fig. 4 we display contours (95.4% and 68%) of the
combined (lensing plus Snela) likelihood. For the com-
bined x? analysis we used x?,, = Ax2,. — 2Inl, with
U = Liens/LP2% as defined in Sec. IIL. Although the
peak of the likelihood for each test separately occurs at
Qmo = 0, the maximum of the combined likelihood oc-
curs at m = 0 (cosmological constant) and 2,0 ~ 0.33.
Note that best fit models of the combined likelihood are
in accelerated expansion (go < 0). Models with m = 2
(cosmic strings [12]) and any value of Q,,¢ are at more
than 99% c.l. away from the peak of the likelihood.
We observe that if, for instance, we take h = 0.65 and
Qph? = 0.02, the CMBR first acoustic peak (£peax), for
models with m and ,,¢ inside the 1o allowed region in
Fig 4, will have £peax values between ~ 215 and 230, (see
Fig. 4 in Ref. [16]), that are close to the current best
values for £peax Obtained from CMBR data [2]. Models
with parameters m and 2,0 in this region are in agree-
ment with the current CMBR data as well. Constraints
from observations of clusters suggest Q0 > 0.14 [37]. In
Fig. 4 we display this constrain as a dotted line. Models
above this line are preferred.

m
e D<=[§- 1px

FIG. 4. Contours of combined likelihood (95.4% and 68%)
arising from lensing statistics and type Ia supernovae are
shown.



V. SUMMARY

We have studied observational constraints from lens-
ing statistics and high-z Snela on spatially flat cos-
mological models whose matter content is nonrelativis-
tic matter plus an exotic fluid with equation of state,
Pz = (B — 1)p,. Using a lensing approach, where ex-
tinction is considered, and that takes into account mag-
nification bias and the selection function due to finite
resolution and dynamic range in the configuration prob-
ability, we obtained the 68% and 95.4% confidence level
on the parameters m and ,,0. The present results up-
date those obtained by Silveira & Waga [21]. We also
update the Snela constraints on the equation of state
obtained in Ref. [21], where the first data from the Su-
pernovae Cosmology Project was used. We considered
data from the High-z Supernovae Search Team, the 27
low-z and 10 high-z Snela reported in Ref. [1]. We used
data with the MLCS method applied to the supernovae
light curves. We showed that agreement with both tests
at the 68% confidence level is possible if the parameter
m is low (m < 0.85) and 0.24 < Qo S 0.38 with lower
values of €,,0 corresponding to higher m. We observed
that best fit models of the combined likelihood are in
accelerated expansion (go < 0). We obtained that a con-
ventional cosmological constant model with Q,,0 ~ 0.33
(Qa0 ~ 0.67) is the best fit model of the combined likeli-
hood.
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