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Abstract

The matrix elements of the four quark operators needed to predict

many weak interaction processes can be evaluated using the large
N limit of quantum chromodynamics. At leading order in the large
N. expansion, the weak matrix elements of four quark operators
factorize into independent matrix elements of two quark operators.
a common approximation being used today. At next leading order,
the weak matrix elements acquire the leading scale and scheme de-
pendence expected for these matrix elements in full QCD. We will
discuss methods to evaluate these matrix elements which involve
matching perturbative QCD calculations at short distance to non-
perturbative hadronic matrix elements at long distance.

The large N. expansion for quantum chromodynamics was formulated by 't
Hooft [1] and has been used by many authors to study nonperturbative effects
in QCD. The large N, expansion is based on 't Hooft’s observation that the
perturbation series could be reorganized by considering the limit, a; — 0, N, —
oc,as * N. — fized. The leading order of this expansion involves only planar
diagrams of quarks and gluons, and all diagrams with internal quark loops
are suppressed. This approximation is very similar to the quenched version of
QCD used in many lattice computations where quark loops are also suppressed
while allowing nonplanar gluon interactions. The large N, limit of QCD is
nonperturbative as all orders of a,* N, must be included at the leading order of
the large N. expansion. The theory is expected to be a theory of hadronic bound
states with color confinement and dynamical chiral symmetry breaking. From
the topology of diagrams contributing to the large N, limit of QCD, the theory is
expected to consist of infinite towers of weakly-interacting, color-singlet mesons
with all spins and flavors dictated by the quark substructure. The scattering
amplitudes are order 1//N, and can be viewed as tree diagrams of the effective
meson theory. Higher order diagrams in the large N. expansion involve the
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insertion of internal quark loops or nonplanar gluon interactions. At the meson
level. the higher order diagrams correspond to a systematic loop expansion of
the effective meson theory. The topological structure of these diagrams is very
suggestive of an hadronic string picture for large N. QCD.

The theoretical description of many weak processes requires knowledge of
the hadronic matrix elements of weak currents and chiral densities. In addition,
nonleptonic weak decays usually require the knowledge of four quark operators
constructed from products of these currents and densities. The large N, expan-
sion can be used to analyze the leading behavior of the matrix elements of these
operators. The weak operators are usually written in terms of the products of
color singlet bilinear operators,

0; = (YT:) (YT :0) . (0.1)

At leading order (LO) of the large N, expansion, the hadronic matrix ele-
ments factorize. Each color singlet bilinear operator couples independently to
the hadrons in the external states.

(03) factorizea = (($Ti00))((¥T%)) (0.2)

Higher order terms in the large N, expansion involve both factorized and non-
factorized contributions to the weak matrix elements. Next leading order (NLO)
terms include the addition of internal quark loop contributions to the factorized
matrix elements and the generation of leading nonfactorizing contributions to
the weak matrix elements. These are both one loop diagrams in the effective
meson theory.

At NLO, the nonfactorized amplitudes have a particularly simple structure in
the effective meson theory. The matrix element may be written as a momentum
integral over a two current correlation function,

<Oi>nonfactom'.26d = /dk Arzri(k: _kpl e -PN) (03)

where £ is the momentum flowing through the color singlet bilinear operators
and pq, ..., py are the momenta of the external hadrons. We can use our knowl-
edge of these two current correlation functions to evaluate the NLO contribu-
tions to weak matrix elements [2]. If all the external states are at low energy, the
low momentum part of the integral requires only the low energy behavior of the
two current correlation function. However, many experiments directly measure
these current correlation functions. For meson external states, the lowest en-
ergy contributions are summarized in terms an effective chiral Lagrangian. The
parameters of the effective chiral Lagrangian are nonperturbative quantities in
QCD and have been determined by systematic phenomenological analysis [3].
At higher loop momenta. additional hadronic states must be included such as
the vector and axial-vector mesons. In principle, the full intergral can be ob-
tained from the complete tree-level correlation function of the LO meson theory.
However, the high momentum behavior can also be obtained through the use
of operator product expansion,



Arr (k,—kipi, . pnM) — Crirp.0,(k) * (O;)(p1;- -, pN) (0.4)

where the coefficient function, Cr r;,0,, can be computed using the large V.
version of perturbative QCD, PQCD. It is a remarkable fact that all of weak
mixing processes are nonleading in the large N, expansion. This implies that
the coefficient function begins to receive contributions only at NLO. Therefore,
the NLO calculation of the current correlation function requires only knowledge
of the L.O operator matrix element of the operators appearing in Eq.(4). and
these are determined from parameters of the L.O effective meson theory.

Since we are able to establish the precise behavior of the integrand appearing
in Eq.(3) both at low energies and at high energies, we can hope to estimate
the full integral by interpolating the results at moderate momentum scales. Of
course, the accuracy of this interpolation can be improved by including more
states or higher derivative terms in the low energy effective meson theory or
by computing higher order terms in the PQCD expansion of the short distance
theory. In principle, the matching between the effective meson theory and the
PQCD expansion of the short distance theory can be improved to arbitrary ac-
curacy. Comparisons with the conventional definitions of weak matrix elements
require knowledge of the particular regularization schemes. NDR or HV, used
to define the weak operators in PQCD. Hence, a second short distance match-
ing must be made between the integral expression of Eq.(3) and the particular
scheme used to reqularize the short distance behavior. This second matching
can be done purely at the quark level as it depends solely on the short distance
physics. Using this short distance matching, the high momentum part of the in-
tegral of Eq.(3) can be properly subtracted to obtain the full NLO contribution
to the weak matrix elements in any renormalization scheme.

This method can be applied to any of the conventional four quark operators
used to analyze nonleptonic weak interactions, (J1,Q2, -, Qg -, s, --. At
NLO in the large N, expansion, the weak matrix elements computed by the
above method will have the appropriate scale and scheme dependence. These
matrix elements can be used with any other analysis of the physical short dis-
tance physics which determines the physical coefficient functions. Scale and
scheme dependence will properly cancel between the coefficient functions and
the operator matrix elements, at least to NLO in the large N, expansion. The
precision of the NLO weak matrix elements determined through these methods
depends on a number of factors:

e the phenomenological determination of the effective meson theory

— chiral Lagrangians - O(p?), O(p*), O(p°), ...
— inclusion of heavy states - vector mesons, scalars, ...

— models - effective NJL. models, chiral quark model. ...
e the long distance - short distance matching conditions

e the short distance expansion of planar QCD



e the scheme dependent matching conditions of PQCD

The methods described above have been applied to a number of problems requir-
ing knowledge of hadronic matrix elements. Applications include the 7+ — 7°
electromagnetic mass difference, the A7 = 1/2 Rule in nonleptonic weak decays,
the By parameter in K — K mixing and the weak matrix elements needed for
determining €’'/¢ in the CP violating Kaon decays.

o™ — ¥ mass difference. This calculation involves the insertion of explicit
one photon exchange processes which have the same structure of the insertion
four quark operators in weak processes. The inserted vertex is nonlocal due
to the photon propagator and does not require the scheme dependent short
distance matching of the weak matrix elements. The matching between the long
distance meson physics and the short distance quark physics involving chiral
condensates is still required. Using the lowest order chiral Lagrangian, O(p?),
and the conventional short distance expansion gives an estimate of the mass
difference good to about 15%-20%. Here the matching between the long distance
physics of pointlike pions and the short distance quark physics is determined by
the scale where the integrands coincide. This matching occurs in the range of
600-800 MeV although the two different approximations to the integrand have
much different energy dependence. We are able to improve our knowledge of the
long distance physics by including the contributions of vector and axial-vector
mesons. The matching now becomes excellent at any scale above 600-800 MeV
and is related to the known meson saturation of the Weinberg sum rules. The
mass difference calculation is now good to about 5% [4].

oAl =1/2 Rule in Kaon decays. The CP conserving weak decays of Kaons
is known to obey the AT = 1/2 rule. The AT = 1/2 amplitude is enhanced from
the factorized matrix element and the A7 = 3/2 amplitude is suppressed. Part
of this enhancement/suppression can be explained in terms of the conventional
weak mixing [5] involving weak operators, ¢y and (), and a charm penguin
contribution related to the ()¢ operator. Using the large N. approach. the weak
matrix elements can be evaluated and additional enhancements/suppressions
are observed. Using an O(p?) chiral Lagrangian, Buras, Bardeen and Gerard [6]
were able to explain about 75% of the observed enhancement of the Al =1/2
amplitude and an additional suppression of the Al = 3/2 amplitude. Using an
O(p*) chiral Lagrangian, Hambye et al [7], claim to observe the full enhance-
ment of the Al = 1/2 amplitude. Using an extended NJL model to improve
the long distance approximation and the short distance-long distance match-
ing conditions, Bijnens et al [8] also claim to see the full enhancement of the
Al =1/2 amplitude. These calculations are sensitive to the precise method for
calculating the long distance contributions and the matching procedure used to
connect the long and short distance calculations. The present calculations do
not include the full scheme dependence arising from the short distance matching
conditions.

o K° — K° mixing, Br. The K° — K° mixing arises from loops involving the
top quark. Integrating out the top quark generates a unique AS = 2 four quark
operator. Perturbative QCD can be used to evolve the effective weak operator
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to a low energy scale. The large N. method can then be used to evaluate the low
energy matrix elements. A number of predictions for the By parameter have
been made using various approximations for the long distance meson physics:

O(p?) chiral Lagrangian [9] Bg ~0.7+0.

O(p?) chiral Lagrangian + vector mesons [10] By ~0.75£0.1

e ENJL model [8] Bx ~ 0.69 £ 0.1

O(p*) chiral Lagrangian [7] Bx ~ 0.6 £0.1.

e CP Violation and € /e. CP Violation observed at low energy is expected to
be generated by loop effects at a high mass scale. Top quark loops contribute to
CP violation through complex phases associated with the effective four quark
operators at low energy, particularly the operators (Jg and (Jg. In the chiral
Lagrangian approach, O(p*) terms are required for the g matrix element to be
nonzero. Leading terms in the nonfactorized amplitudes cancel infrared singu-
larities of the factorized amplitudes. The large N, expansion method has been
applied to these matrix elements, and the matrix elements of the electropenguin
operator, (Jg, were found to be suppressed by the nonfactorizing contributions
while the gluopenquin operator, QJg, may receive a modest enhancement [11].
Both of these effects tend to increase theoretical estimates of €'/e.

The large N, expansion permits a consistent evaluation of the weak matrix
elements for a number of important physical processes. The method combines
our knowledge of perturbative short distance processes with the nonperturba-
tive contributions contained in the effective meson theories or ENJL models
used to describe the long distance physics. At NLO the method is subject to
considerable improvement. The effective meson physics could be extended by
considering additional meson states or improved models which evolve the long
distance physics to higher energy scales. This could improve matching of the
long distance and short distance physics which is now at a rather crude level
for most processes. Also, the scheme dependence of the weak matrix elements
requires a specific calculation of the short distance matching of the momentum
integral of the current correlation function to particular regularization scheme
in PQCD. At this point, the method is restricted to NLO in the large N, expan-
sion as terms O(1/N?2) can not be controlled. At some point, an hadronic string
theory might be used to obtain a complete picture of the meson amplitudes at
higher order. Many of the issues discussed in this short talk will be covered in
more detail in other contributions to this conference.
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