
F Fermi National Accelerator Laboratory

FERMILAB-Conf-99/235-E

Online Monitoring in the Upcoming Fermilab Tevatron Run II

P. Canal et al.

Fermi National Accelerator Laboratory
P.O. Box 500, Batavia, Illinois 60510

September 1999

Published Proceedings of the 11th IEEE NPSS Real Time Conference,

Santa Fe, New Mexico, June 14-18, 1999

Operated by Universities Research Association Inc. under Contract No. DE-AC02-76CH03000 with the United States Department of Energy

Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States

Government. Neither the United States Government nor any agency thereof, nor any of

their employees, makes any warranty, expressed or implied, or assumes any legal liability or

responsibility for the accuracy, completeness, or usefulness of any information, apparatus,

product, or process disclosed, or represents that its use would not infringe privately owned

rights. Reference herein to any speci�c commercial product, process, or service by trade

name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its

endorsement, recommendation, or favoring by the United States Government or any agency

thereof. The views and opinions of authors expressed herein do not necessarily state or re
ect

those of the United States Government or any agency thereof.

Distribution

Approved for public release; further dissemination unlimited.

Copyright Noti�cation

This manuscript has been authored by Universities Research Association, Inc. under con-

tract No. DE-AC02-76CH03000 with the U.S. Department of Energy. The United States

Government and the publisher, by accepting the article for publication, acknowledges that

the United States Government retains a nonexclusive, paid-up, irrevocable, worldwide license

to publish or reproduce the published form of this manuscript, or allow others to do so, for

United States Government Purposes.

Online Monitoring in the Upcoming Fermilab Tevatron RunII 1

P. Canal1 J. Kowalkowski1 K. Maeshima1 J. Yu1 H. Wenzel2 J. Snow3 T. Arisawa4 K. Ikado4 M.
Shimojima5 G. Veramendi6

1Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, Illinois 60510, USA
2Institut für Experimentelle Kernphysik, Universität Karlsruhe, Engesserstr. 7, 76128 Karlsruhe, Germany

3Langston University, Langston, Oklahoma 73050, USA
4Waseda University, Tokyo 169, Japan

5University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
6Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

Abstract

We describe the online event monitoring systems using
ROOT [1] for the CDF and DØ collaborations in the upcoming
Fermilab Tevatron runII. The CDF and DØ experiments consist
of many detector subsystems and will run in a high rate large
bandwidth data transfer environment. In the experiments, it
is crucial to monitor the performance of each subsystem and
the integrity of the data, in real time with minimal interruption.
ROOT is used as the main analysis tool for the monitoring
systems and its GUI is used to browse the results via socket,
allowing multiple GUI client connections.

I. INTRODUCTION

The basic designs of the online event monitoring system for
both experiments are quite similar. The availability of physics
analysis tools, shared memory, a browser, a socket connection,
and GUI classes, makes ROOT an attractive choice for online
monitoring applications. In both experiments, multiple event
monitor programs are attached to the DAQ system, requesting
events with desired trigger types. Details of the DAQ systems
for both experiments are described in Ref. [2]. ROOT is used
as the main analysis tool for the monitor programs. The results
from the monitor programs are stored in shared memory in
ROOT object format. The main mode of accessing the results is
to browse the objects in shared memory with a ROOT GUI via
socket connections. In next two sections, we will describe in
more detail,the CDF and DØ online event monitoring systems.

II. CDF ONLINE EVENT MONITORING SYSTEM

The CDF online event monitoring programs are called
‘consumers’. The general definition of a consumer is a process
which receives events from the consumer-server [3] in real
time. A consumer can also be used for more than monitoring;
it could perform other tasks, such as real time calibration.
Detailed descriptions of the CDF DAQ system, event builder
and Level 3 trigger system, and consumer-server can be
found in References [2], [4], and Ref. [3], respectively. The
Consumer-server fetches events from the Level 3 system and

1Send questions/comments to maeshima@fnal.gov (CDF),
wenzel@fnal.gov (CDF) and Yu@fnal.gov (DO).

passes them to the consumers. Here, we will focus on the CDF
consumer framework.

A. CDF Consumer Framework

A schematic view of the framework with its elements is
shown in Fig. 1.

MEMORY

SHARED
CONSUMERS

Root-Trees

histos

messages

tables

DATA BASE

TEMPLATES

etc....

Schematics of CDF Consumers and Display Server

CONSUMER-2

CONSUMER-1

OR

LOCAL

Storage

TRIG. TABLE

WORLD

REST OF THE

Run Summary

histos

messages

tables

EVENTS

MEMORY MAP

fast socket

connection

DISPLAY

FILES

FILES

End of Run L

P

S

D

E

H

A

L

P

S

D

I

Y

C

E

S

P

T

T

H

R

A

P

A

R

E

V

AT

E

K

C

O

S

AC++ module

events

every "N"

+ ROOT

LOCAL

V

R

E

S I

Y
E

at "begin run"

start automatically

all the process here

W

W

W

R

Fig. 1 CDF Online Consumer Framework Architecture

The most important change from the way consumers
were run in CDF Run 1 to how they will be run in Run 2 is
that the display part and consumer part are separated. The
separation of two processes allows us to monitor the experiment
locally and remotely with less interruption. The task of the
consumer-monitor process is to analyze and monitor the event
data and to store the results into shared memory in the form of
histograms, tables, and warning messages. These results could
then be viewed by the display browser via a server in real time.
It is also possible to access the objects in the shared memory
directly, however, we plan to use servers as a normal mode of
operation. Results of the monitor are also stored as data files
periodically during a run, and also at the end of each run which
will be archived systematically. These files can be viewed via
a WWW server using the same display browser as described

above. They should be stored in such a way so that we can
readily access them, enabling us to do comparisons with the
current data. The display browser provides a GUI to view the
online monitored results conveniently, while also providing
some basic utilities to do comparisons with previously stored
results. The only parts of this framework that need to be run at
the experiment are the consumers and servers. By separating
the two tasks of monitoring and displaying, we remove the
CPU and BUS load associated with displaying graphics from
the machine which runs the consumers. Also, network traffic is
minimized by serving only small objects (ie. histograms) via
the net. During the data taking, multiple consumer processes
run in parallel, receiving event data with the desired trigger
types from the consumer-server. Different consumers can also
run on independent cpu’s on different platforms (tested on
ilix, linux, OSF). Communication between a consumer and
Run Control (A process which controls overall CDF DAQ
system) is handled using a commercial package called Smart
Sockets. The two types of communication that take place here
are: 1) The State-Manager in Run Control watches the state of
consumers. The consumers are started automatically via this
process. If for some reason, a consumer dies, Run Control will
send a message to start the consumer again. 2) Severe errors
detected by a consumer-monitor program which are in need
of immediate attention are communicated automatically via
this connection to the Error Handler part of the Run Control
process.

The consumer framework has three main components:
Consumers: In this framework consumers are written in
C++ using the CDF offline framework (called AC++) plus
ROOT modules which monitor and analyze objects in the event
stream. AC++ provides the connection to the CDF offline
reconstruction package. ROOT is used for event I/O and its
analysis tools. Things typically monitored by consumers are:
detector occupancies (dead/hot channels), trigger rate and logic,
luminosity, Level 3 reconstruction, physics objects, vertex
positions, etc... Specifics of each of the monitor programs are
determined and written in collaboration with the experts of
each subsystem and are beyond the scope of this paper. The
consumer framework provides a template consumer program
which includes the basic functions such as input/output,
connection to data base (calibrations, trigger-table), and basic
classes for the outputs. These base classes allow the server
to interpret the stored objects, hence enable us to browse
the monitored results efficiently. The template program
also provides common utility methods which are useful for
monitoring and some examples of how to use them. In the
steady state running condition, output format should remain
unchanged, however, for debugging purposes we will also
provide interactive operations of histogram handling controlled
via a text file or a GUI. There are 3 ways to input events to
consumers: 1) via consumer-server, 2) read disk files, and 3)
generate random events at input stage. 1) is used during the
data-taking, 2) and 3) are useful for developing programs and
debugging programs/subsystem purposes.
Display Server: The display server is a ROOT based program
that allows the display browser programs to connect to it as

a client and to access the information in the shared memory.
Since it needs access to shared memory it has to run on the
same machine as the consumers. Several display/viewer
programs can connect from anywhere in the world without
having any effect on the consumer itself. The server will handle
the requests, giving the process from the data-taking shift crew
the highest priority.
Display Browser: The display is a ROOT based program that
can run on the same or on a different machine with various
ways to connect:

� access shared memory directly when running on the same
machine. This option should be used just for debugging
purposes.

� connect to the Display Server via a socket connection.
This is the default way to access the information. The
browser should preferably run from a remote machine
so that all the CPU-load associated with displaying
graphics is transferred to the remote machine. The
graphic capability of a simple PC is more than adequate
nowadays.

� via the world wide web. There is a plug-in for the
Apache web-server which makes the server ROOT aware
and allows to access to ROOT files via a web browser
like netscape.

B. Use of ROOT in the CDF Online Monitoring
System
ROOT has been developed with high energy physics in

mind. Not only does it provide the physics analysis tools to
replace PAW (what we used on Run 1) but it also provides new
features like shared memory, socket connections, web server
connections and GUI’s which are more sophisticated than what
PAW provided. All these features have been programmed
using object-oriented design, and they all include examples
of how to use their functionality. We use all these features of
ROOT in the CDF consumer monitoring system. Although
shared memory is implemented for different architectures, we
have been working only in the Linux/Unix environment. The
classes know about ROOT objects so you can send histograms
or ROOT trees with a single command. Creating a data driven
client server architecture is relatively easy with ROOT. Other
aspects that are interesting for online purposes are the fact that
a ROOT daemon is provided which allows one to send root
objects over the net. There is also a plug-in for the Apache
web-server which makes the server ROOT aware and allows
access ROOT files via a web browser like netscape. The
CINT[1] interpreter and its debugging capabilities allow fast
prototyping to some extent. One needs to be aware that the
interpreter has its limitations. However, it is useful and, in
principle, not difficult to write programs which can be used
as a root macro and can also be compiled to form stand alone
programs. We have tested all the components of the CDF
consumer server framework and found them to work well. We
are currently developing the code that will be used in the final
experiment. An example of the CDF online consumer monitor

GUI in development together with some histogram displays is
shown in Fig. 2. The right hand histograms are from ADC data
taken recently at the CDF experimental hall in Run II format
from a portion of the central calorimeters. Left bottom plots
are from the Run I data converted to the Run II format. Data
were analysed by a consumer template program. The browser
displayed the histograms which were stored in shared memory.

Fig. 2 Example of CDF Online Consumer Monitor GUI in development
and some histogram display

III. DØ ONLINE EVENT MONITORING SYSTEM

The DØ experiment made a decision at the end of the
collider Run I in the mid 90s to convert all the existing
reconstruction code into C++. This decision affects not only
the offline reconstruction but also the entire online system,
including communication and controls packages. The DØ
online monitoring system consists of three major components:

� Data Acquisition System (DAQ)

� Monitoring Executables (EXAMINE)

� User Interface

These three components can then be further subdivided into
smaller components. These smaller components run on one
of the three operating systems - Windows NT, Linux, and
OSF1 - due to hardware specifications. Therefore the DØ
online monitoring system requires portability of software
across the operating systems and platforms. The DAQ consists
of front-end electronics, two levels of hardware triggers, a
software trigger, and data transfer system. Detailed description
of the DAQ systems for both experiments can be found in [2].
Figure 3 shows the logical data flow of the DØ online event
monitoring system architecture. The system is designed to
be fully expandable depending on the bandwidth the system
will encounter. A collector/router (C/R) can handle the data
being output from multiple level 3 nodes. C/R distributes data
to Data Logger (DL) that records the data into files based on
the trigger condition a particular event satisfied. This path is
tightly controlled to ensure proper normalization and weighting
of each event across all the L3 nodes. In other words, if any

of the DL has a problem in writing out an event to a file, all
other DL must stop and the deliberate clogging of the data path
must be transferred to L3. The C/R also sends all events it sees

Fig. 3 DØ Run II Online Event Monitoring Architecture

to the Data Distributor (DD) that assigns event buffers and
passes the events based on the selection conditions transferred
to it by the connected monitoring processes. This path is
uncontrolled, because it is desired to continue taking data even
if a monitoring process is in a stalled state. It is this path where
the event monitoring occurs. Therefore, the entire monitoring
system involves, starting from L3, four separate software
processes, excluding the GUI, running on three different
operating systems and platforms. The executables of the DØ
online monitoring run on a farm of PC’s operating under Linux
while the GUI is most likely to run on a Windows NT.

A. The Executable - EXAMINE

The executable portion of the DØ online monitoring
system is called an EXAMINE, the name inherited from the
monitoring programs of the previous run. There are multiple
EXAMINEs running on Linux PC servers depending on
the purpose the EXAMINE serves. The EXAMINE can
be, however, categorized into two large categories. The
first is detector performance monitoring which would be
mostly geared towards physical quantities that would provide
information for detector hardware diagnostics. The second is a
global monitoring EXAMINE. This EXAMINE performs full
reconstruction of the events to provide information concerning
physics objects reconstructed based on algorithms. In other
words, this EXAMINE would let the user know how many
electrons, muons, or jets have been produced during the
run. Therefore, this EXAMINE allows users to obtain an
overall quality of the data being taken. This EXAMINE also
provides an online real-time event display functionality for

more instructive information in an event-by-event basis. An
EXAMINE makes an event selection request via a Run Control
Parameter (RCP) file editable by the user. It then transfers
the selection conditions - whether by the trigger bit numbers,
trigger names, stream numbers or stream names - to the DD,
where it makes a connection to the DD via a client-server
package, DØM̃E, based on an ACE communication protocol.
This request causes the DD to assign an event buffer that
is controllable in an RCP file, and at the same time it starts
up three separate threads for event transfer communication
between the DD and itself. When this process finishes, it starts
another buffer whose queue depth is RCP controllable, to store
events transferred from the DD to ensure a guaranteed event
presence in the buffer for processing independent of the whole
analysis process.

The diagnostic histograms are booked and filled in
EXAMINE in ROOT format. The EXAMINE also starts up a
separate thread for histogram display, interacting with the GUI
to allow uninterrupted access of histograms by the user. It also
puts histograms in a shared memory for updated accessibility
of the histograms while they get filled during the computation.
The interaction between EXAMINE and GUI must also allow
creation of new histograms, reset of the existing histograms,
and deletion of existing histograms while the EXAMINE is
running. This would be a bit tricky due to the asynchronous
nature of EXAMINE, because the memory might be deleted
before the main computational process completes its work,
causing conflicts and memory leak. However, we believe we
could solve this difficulty.

B. Use of ROOT in the DØ Online Monitoring System

While ROOT provides a global framework not only for
physics analysis tools (PAT) but also for I/O, data packing,
Monte Carlo, and GUI, the DØ only uses the PAT and
GUI portion of the ROOT, together with minor socket
communication. The monitoring executables unpack raw data,
reconstruct each event to the level required by individual
programs, define and fill necessary histograms, and provide
event displays. Figure 4 shows a prototype GUI window
built using existing GUI classes provided by ROOT on the
IRIX platform. The top portion of the GUI acts as a process
registry. While the bottom portion of the GUI acts as histogram
control. The main communication protocol to be used for the
messaging between the GUI and the EXAMINE executable is
CORBA. When a GUI starts up, it does not have any associated
processes with it and it first inquire for existing processes to
the process registry, a name server to allow, users to attach
to a pre-existing process that the user is interested in. This
would allow maximally efficient use of computational power
and more effective sharing of event statistics. The GUI also
provides an ability of starting up a new EXAMINE process on
a least used node in the Linux server nodes. The EXAMINE
processes are registered to a process registry by the version
numbers of governing RCP file. It is this scheme that allows
users to parasitically attach to existing processes to access
the histogram from shared memory. The histogram control
allows various monitoring tools for more effective use of given

Fig. 4 A Prototype of the DØ EXAMINE GUI

information accessible in histograms. It allows for users to
access individual histogram one at a time, viewing a snap
shot of the histogram. It also allows the users to select and
cycle through one or more histograms continuously, updating
the histogram every time it is repeatedly displayed It allows
a continuous updating of the selected set of histograms with
a selected update frequency. It would allow comparisons of
the given histograms to a reference set, distinguished by the
names of the histograms rather than a traditional histogram ID
numbers. Complex histogram operations between the current
and the reference set are generic functionality of ROOT as
a physics analysis tool and the EXAMINE exploits these.
The EXAMINE also send out an alarm to the users for any
abnormality found from the comparisons.

IV. SUMMARY

This paper has described CDF and DØ online monitoring
systems in the upcoming Fermilab Tevatron RunII using
ROOT. We have tested the components of the monitoring
systems using test programs and they work well. We are
currently developing the full scale software programs to be
used in the upcoming RunII experiments.

V. ACKNOWLEDGMENTS

We would like to thank all the people who are contributing
to this work. Special thanks to Rene Brun, Fons Rademakers,
Frank Chlebana, Stu Fuess, Dorota Genser, Geri Goeransson,
Jerry Guglielmo, Frank Hartmann, Kuni Kondo, Kevin
MacFarland, Pasha Murat. Larry Nodulman, Jim Patrick, Tony
Vaiciulis, Margaret Votava, D0 and CDF online groups, and
Fermilab Computing Division Online and Database Systems
department.

VI. REFERENCES

[1] Rene Brun, Fons Rademakers, http://root.cern.ch/Welcome.html.
[2] Margaret Votava, et al, ”Data Acquisition Systems at Fermilab”,

Abstract 188, IEEE rt99.
[3] Makoto Shimojima, et al, ”Consumer-Server/Logger system for

the CDF experiment”, Abstract 127, IEEE rt99.
[4] Christoph Paus, et al, ”Event Builder and Level 3 Trigger at the

CDF Experiment”, Abstract 104, IEEE rt99.

