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UNIFIED TREATMENT OF COLLECTIVE INSTABILITIES AND
NONLINEAR BEAM DYNAMICS

K.Y.Ng! and S.Y. Lee*'
!FNAL *, Batavia, IL 60510, 2Physics Dept., Indiana University, Bloomington, IN 47405

Abstract

Nonlinear dynamics deals with parametric resonances and
diffusion, which are usually beam-intensity independent
and rely on a particle Hamiltonian. Collective instabilities
deal with beam coherent motion, where the Vlasov equa-
tionisfrequently used in conjunction with abeam-intensity
dependent Hamiltonian. We address the questions: Arethe
two descriptions the same? Are collective instabilities the
results of encountering parametric resonances whose driv-
ing force is intensity dependent? The space-charge domi-
nated beam governed by the Kapchinskij-VIadimirskij (K-
V) envelope equation [1] is used as an example.

1 INTRODUCTION

Traditionally, the thresholds of collective instabilities are
obtained by solving the Vlasov eguation, the dynamics
of which comes from a wakefield-dependent Hamiltonian.
The unperturbed beam distribution is computed using the
unperturbed part of the Hamiltonian H, which takes care
of the mean field and potentia -well distortion. The pertur-
bation distribution is obtained by solving the Vlasov equa-
tion that involves the perturbation Hamiltonian AH;. The
Vlasov eguation is often linearized so that the modes of
collective motion can be described by a set of orthonor-
mal eigenfunctions and the corresponding complex eigen-
values givetheinitial growth rates. A H; may have atime-
independent component, for example, thepartinvolvingthe
nonlinear magnetic fields, that gives rise to the dynamical
aperturelimitation. It may also haveatime-dependent com-
ponent, which includes the effects of wakefields and pro-
duces coherent motion of beam particles. The harmonic
content of the wakefields depends on the structure of ac-
celerator components. If one of the resonant frequencies of
thewakefieldsisequal to afractional multipleof the unper-
turbed tune of Hy, aresonanceis encountered and coherent
particle motionisintroduced. Thismay resultin arunaway
situation such that collectiveinstability isinduced.
Experimental measurements indicate that a small time
dependent perturbation can create resonance islands in
the longitudinal or transverse phase space and profoundly
change the bunch structure[2]. For example, a modul ating
transverse dipole field close to the synchrotron frequency
can split up a bunch into beamlets. Although these phe-
nomena are driven by beam-intensity independent sources,
they can aso be driven by the space-charge force and/or
the wakefields of the beam which are intensity dependent.
Once perturbed, the new bunch structure can further en-
hance the wakefields inducing even more perturbation to
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the circul ating beam. Experimenta observation of hystere-
sisincollectivebeam instabilitiesseemsto indicatethat res-
onance islands have been generated by the wakefields.

For example, the Keil-Schnell criterion [3] of longitudi-
nal microwave instability can be derived from the concept
of bunching buckets, or islands, crested by the perturbing
wakefields. Particlesin the beam will execute synchrotron
motion inside these buckets leading to growth in the mo-
mentum spread of the beam. In fact, the collective growth
rate is exactly equal to the angular synchrotron frequency
inside these buckets. If the momentum spread of the beam
ismuch larger than the bucket height, only asmall fraction
of the particles in the beam will be affected and collective
instabilitieswill not occur. Thismechanism has been called
Landau damping.

Asaresult, we believe that the collective instabilities of
abeam can a so be tackled from a particle-beam nonlinear-
dynamics approach, with collective instabilities occurring
when the beam particles are either trapped in resonance is-
lands or diffuse away from the beam core because of the
existence of a sea of chaos. The advantage of the particle-
beam nonlinear dynamics approach is its ability to under-
stand the hysteresis effects and to calculate the beam dis-
tribution beyond the threshold condition. Such a procedure
may be able to unify our understanding of collective insta-
bilitiesand nonlinear beam dynamics. Here, the stability is-
sues of a space-charge dominated beam in a uniformly fo-
cusing channel are considered as an example [4].

2 COLLECTIVE-MOTION APPROACH
Gluckstern et. al. [5] have studied the collective beam sta-
bilities of a space-charge dominated K-V beam in a uni-
formly focusing channel. They showed that the (1,0) mode
isstablefor any amount of envel ope mismatch and tune de-
pression 7. The (2,0) mode becomes unstable at zero mis-
match when 1 < 1/4/17 = 0.2435 and aso when the mis-
match islarge. Thisis plotted in Fig. 1 with the stable re-
gion enclosed by the red solid curve. The stability regions
of the (3,0) and (4,0) modes, enclosed by the blue dashes
and the magenta dot-dashes, respectively, are also shown.
These latter two modes become unstable at zero mismatch
when the tune depressions are less than 0.3859 and 0.3985,
respectively. They found that the modes become more un-
stable as the number of radial nodes increases. Among all
the azimuthals, they a so noticed that the azimuthally sym-
metric modes (¢,0) are the most unstable.

3 PARTICLE-BEAM APPROACH
We want to investigate whether the instability regions in
Fig. 1 can be explained by nonlinear parametric resonances.
The particle Hamiltonian describing an azimuthally sym-
metric oscillating beam core of radius R is[6]
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where y and p, are the particle's transverse coordinate
and canonical momentum, ./ (27) the unperturbed parti-
cle's betatron tune, and « the normalized space-charge per-
veance, which is related to the tune depression by n =
V1+k2 — k. Here, only the situation of zero angular mo-
mentum is discussed [4]. For a weakly mismatched beam,
the envel operadiuscan bewrittenas R= Ry+A R cos @0,
where Q. istheenvelopetuneand 6 the‘time’. Theparticle
Hamiltonian can be expanded in terms of the equilibrium
envelope radius Ry, resultingin H, = Hpo+AH,, where
the unperturbed Hamiltonian H ) isthesame as H,, with R
replaced by Ry. Thus, for a matched beam, AH,, = 0.

4 PARAMETRIC RESONANCES

For a mismatched beam, particle motion is modulated by
the oscillating beam envelope. The perturbation Hamilto-
nian AH,, obtained from Taylor’s expansion, can be ex-
panded as a Fourier seriesin the action-angle variables [6].
Parametric resonances occur when the phase is stationary.
Focusing on the n:m resonance, we perform a canonical
transformation to the resonance rotating frame (1, ¢):

(Hp) = Ep(Ip) — %Qelp + hnm(Ip) cosngy . (2)
with the effective x-dependent resonance strength given by
(m+ 1D)M™uk

hnm, - 27TR(2) |G7”n(lp)| ) (3)

where M =1 — Ruin/ Ry is the envelope mismatch. The
n stable and unstable fixed points can be found easily. Be-
cause particles are affected only by resonances when they
arejust outsidetheenvel ope core, their tunes are essentially
the tune inside the beam envelope. At zero mismatch, the
thresholdfor then:m resonance can thereforebe derived by
equating theratio of particleto envelopetunestom/n, i.e,
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Figure 1: Beam stability versus particle tune depression and en-
velope mismatch: stability region for Gluckstern’s (2,0) mode en-
closed by red solid curve, the (3,0) and (4,0) modes by blue dashes
curve and magenta dot-dashes. Overlaid are first-order resonances
shown as solid and second- and higher-order resonancesas dashes.

Inparticular, for the 6:1 resonance, x >8/+/17=1.9403, or
tune depression 1 < 1/4/17 = 0.2425, which agrees with
Gluckstern’sinstability threshold for the (2,0) excitation.

Trackings have been performed for particles outside the
envel ope core using the 4th-order symplecticintegrator [7].
The Poincaré surface of section are shownin PlotsA, B, C,
D, E, F of Fig. 2 correspondsto PointsA, B, C, D, E, Fin
Fig. 1. Theinnermost torusisthe beam envelope. The sec-
tions are taken every envelope oscillation period when the
enveloperadiusisat aminimum. In Plot A, with (n, M) =
(0.20,0.30), particles that diffuse outside the beam enve-
lope, will encounter the 6:1 resonance, which is bounded
by a very thin layer of tori. Thisregion istherefore on the
edgeof instability. However, thelast good toruswill be bro-
ken if n isfurther decreased, which correspondsto Plot B,
aclose-up plot with (, M) = (0.10,0.15). Particles that
diffuse outward from the beam core will wander easily to-
wards the 2:1 resonance along its separatrix. This region,
wheren < 0.2, is therefore very unstable. This explains
thefront stability boundary of the (2,0) modeof Gluckstern,
et. al. Particlesin Plot C with (n, M) = (0.44,0.25) see
many parametric resonances, first 10:3, then 6:2, 8:3, 10:4
and after that a chaotic layer going towards the 2:1 reso-
nance. These resonances are separated by thin layers of
good tori. Thisregion ison the edge of instability. Plot D
with (n, M) = (0.30,0.10) shows the 6:2 resonance well
separated from the 10:4 resonance with awide area of good
tori. Note that the 2:1 unstable fixed points and separatri-
ces are not chaotic at al. Thisregion will be very stable.
Plot E, with (n, M) = (0.50,0.60), is a very large mis-
match although the tune depression is moderate. The 2:1
unstable fixed points and separatrices are very chaotic, and
are very close to the beam core. Thus particles can easily
diffuse towards the 2:1 resonance, making this region un-
stable. Finaly, Plot F, with (n, M) = (0.90, 0.10), iswith
small space charge and small mismatch. The beam enve-
lopeis surrounded by good tori far away from the 2:1 sep-
aratrices. Thisregionisvery stable.

Since the 4:1 resonance is a strong one, its locus ex-
plains the front stability boundaries of Gluckstern’s (3,0)
and (4,0) modes aso. The deep fissures of the (2,0) mode
near n = 4.7 and 5.3 are probably the result of encounter-
ing the 10:3 and 6:2 parametric resonances. The width of
the fissures should be related to the width of the resonance
islands, which can be computed in the standard way. In
genera, afirst-order resonance island, likethe 4:1, ismuch
wider than a higher-order resonance island, likethe 6:1.

Wetried very hard to examine theregion between the 4:1
and 10:3 resonances with amoderate amount of mismatch.
Wefound thisregion very stableunlessitisclosetothe10:3
resonance. We could not, however, reproduce the dits that
appear inthe (4,0) mode of Gluckstern, et. al.

5 CONCLUSIONS
We have now an interpretation of the collective instabili-
tiesin the plane of envel ope mismatch and tune depression
through the particle-beam nonlinear-dynamics approach.
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Figure 2: Poincaré surface of section in particle phase space (y, p).

Plot A is with (n, M) = (0.20,0.30), Plot B (0.10, 0.15), Plot C

(0.44, 0.25), Plot D (0.30, 0.10), Plot E (0.50, 0.60), Plot F (0.90, 0.10), corresponding, respectively, to PointsA, B, C, D, E, Fin Fig. 1.
Thelast 5 are close-up plots, showing only up to the unstable fixed points and internal separatrices of the 2:1 resonance.

Because of theexistence of noisesof al typesintheaccel er-
atorsand theK-V equationisfar from redlistic, some parti-
cleswill diffuse away from the K-V distribution. Although
these particles may encounter parametric resonances once
outside the beam core, an equilibrium will be reached if
these resonances are bounded by invariant tori. It may hap-
pen that the island chains outside the beam envelope are so
closetogether that they overlap toformachaotic sea. When
thelast invariant torus breaks up, particlesleaking out from
the core diffuse towards the 2:1 resonance, which is usu-
ally much farther away from the beam envelope, to form
beam halos. As particles escape from the beam envel ope,
the beam intensity insidethe envel ope becomes smaller and
the equilibriumradius of the beam core shrinks. Thusmore
particleswill find themselves outside the envelope. Asthis
process continues because no equilibrium can be reached,
the beam eventually becomes unstable.

So far, we have been able to explain the results of Gluck-
stern, et. al qualitatively. However, there are differences
guantitatively. To the lowest order, the Vlasov equation
studied by Gluckstern, et. al. doesinvolvethe perturbation
forceinduced by the perturbation distributionviathe Pois-
son’'s equation. In our nonlinear-dynamics approach, the
particle that escapes from the beam envel ope core, dways
sees the Coulomb force of the entire unperturbed beam
core, independent of any variation of the core distribution
due to the leakage of particles. Thisis mainly due to the
fact that we have been treating the envelope Hamiltonian
and the particle Hamiltonian separately. Thisleadsto ade-
pendency of the particleequation of motion onthe envel ope
radius, but not the dependency of the equation of motion of
the envel ope radius on the particle motion. Thisis a short-
coming in our approach, which weneed toimprove. Webe-
lieve that thisis also the reason why we have not been able

to compute the growth rates of the instabilities.

It ispossiblethat many collectiveinstabilitiescan be ex-
plained by the particle-beam nonlinear dynamics approach.
The wakefields of the beam interacting with the particle
distribution produce parametric resonances and chagtic re-
gions. Collective instabilities will be the result of parti-
cles trapped inside these resonance islands. The perturbed
bunch structure further enhances the wakefields to induce
these collective particle instabilities.
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