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1 Purpose and Structure

Several years ago, the two major collider experiments at Fermilab (D@ and CDF)
decided that new software development for Run II will be largely done in C++.
The run is slated to start in 1.5 years, an aggressive time frame for a major change
in development language and style. If despite the transition each experiment (and
sometimes multiple groups within an experiment) were to develop each needed mod-
ule, the C++ strategy would not be advantageous. Thus it was deemed useful to
have a library development group specifically responsive to Run II needs. This Fer-
milab Physics Class Library Task Force (ZOOM) would also expand the core of
C++ expertise available for Fermilab physicists to draw upon.

C++ differs from Fortran in that the potential for common use of routines and
libraries is greater. But this potential is not realized automatically. Unless coordina-
tion issues are considered from the start, utilities produced by one group generally do
mot meet the needs of other groups—and each group ends up creating independant
software.

To help increase code sharing, the centralized ZOOM task force must:

e Actively pursue outside (commercial and free-ware) packages. If ZOOM can
verify that package X meets some needs in a sensible manner, then people can
gravitate to that and not expend valuable development time.

e Act as a core for joint develpment of packages needed by both experiments.

e Develop relevant packages of sufficiently high quality as to overcome the natu-
ral reluctance of highly skilled physicists to rely on code developed by others.
This means more extensive design thought and testing work than might be
practical for some groups.

e Participate in cooperation with HEP groups outside the FNAL community,
to acquire tools suitable for the Fermilab efforts. Of particular concern are
areas where standardization is important, and thus a single product is more
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valuable than two, even discounting any savings in effort. We must bring the
ability to contribute some packages and the willingness to accept others from
the HEP community.

ZOOM is answerable to the Run IT Steering Committee, representing CDF, D@,
and the Computing Division. As implied above, the mission is to acquire, adapt, or
(if necessary) develop modules that will be of use to both experiments. The products
are organized into “packages” each of which contain—for a given platform—a library
for linking with user code, and its sources (if not commercial) and build scripts.
Multiple versions of the library may be present: for example, builds can be done
with or without C++ exception handling enabled.

The ZOOM software, including sources and documentation, can be found on
links from the homepage www.fnal.gov/docs/working-groups/fpcltf/fpcltf.html. In
addition, directory trees containing source and binary libraries are kept on the D@,

CDF, and central Computing Division systems, so Run II users and others can link
to the built libraries. ZOOM documentation is mostly html-based.

2 Foundations for the Libraries

2.1 Code/build Management

The ZOOM software is required to work on a specific set of compiler/system com-
binations designated by the Run II committee as being applicable for the Run II
collaborations. The current platforms include KAI under SGI IRIX and under Linux
(and soon under OSF/1), and Visual C4++ on NT. Most ZOOM libraries also work
with g+4, but this is no longer a supported compiler and will not be until it catches
up to the C++ standard. Similarly, vendor compilers will be added to the list of
supported platforms as they come into sufficient compliance that the ZOOM code
can work without distortion. Most vendors are moving rapidly in this direction.

Code and build management for ZOOM is via SoftRelTools (SRT), a CVS-based
product also in use by CDF and D@][1]. SRT is an HEP-wide product: Babar was
a developer, and although the Babar version of SRT is distinct from the FNAL
version, efforts are underway to reconcile those differences. ATLAS also uses SRT
for its code management [2].

2.2 Portability

Because ZOOM intends to avoid the ”Fortran in C++4” style of coding, and to take
full advantage of the benefits of C+4, we take the following attitude when it comes
to use of language features: We assume compilers support the ANSI C++ standard.
Although we do not go out of our way to stretch the edges of the language, we
will strongly avoid using inferior code design to accomodate deficiencies in specific
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compilers. In cases where useful compilers do not meet the standard, we provide
clean accomodations without distorting the intended code.

These accomodations form the basis of a portability strategy. For example, the
standard libraries and headers may appear in non-standard ways on a platform;
ZOOM provides links on such platforms so that user and ZOOM code will find
the expected files at known places. The ZMutility package provides for this, for
instance:

#include "ZMutility/iostream"
That package also provides various definitions and tricks to provide portability across
all the supported platforms. This takes advantage of a mechanism in SRT called DE-
FECT defines. For example, on a given architecture, DEFECT NO _VIRTUAL COVARIANCE
is checked, and if necessary defines are done so that the code will compile on systems
that do not support covariant return types. The ZOOM code gets this portability
by adding a single line:

#include "ZMenvironment.h"
User code can also take advantage of this, whether or not any other ZOOM packages
are used.

The attitude toward not watering down our use of C++ features is modified in
the case of packages adapted from or shared with outside HEP groups. Since com-
monality is sometimes of prime importance, and since others have already designed
those packages, for such packages ZOOM adheres to their coding and language stan-
dards. Three examples: For HepTuple, we avoid any code that will cause fundmen-
tal problems with re-unifying our version with Babar’s. ZOOM’s version of CLHEP
does not go beyond features in the original CLHEP code, so that ZOOM changes
may safely be fed back. And the new C++ StdHep package will avoid language
features that would limit its availablitly in the whole HEP community.

Non-Run II or non-SRT users (including those CDF or D@ members not using
SRT or on not-yet-supported platforms) can still use ZOOM code. The code is
kept in the CVS repository cvsuser@cdfsga.fnal.gov:/usr/people/cvsuser/repository.
Mirrors of all code and documentaion are at /afs/fnal.gov/files/reports/working-
groups/fpcltf/Pkg. A source code browser is available via the ZOOM home page.

2.3 Exceptions

It was immediately recognized that ZOOM ought to have a uniform way of dealing
with anomalous situations. This mechanism had to deal with two needs: Some of
our users disable C4++ throw/catch exceptions, so ZOOM exceptions must have the
option of relating to or avoiding C++ exceptions. And our user base is sophisticated
enough to use hooks for associating handlers with particular exceptions, potentially
dealing with and/or ignoring some set of anomalous conditions.

The ZOOM Exceptions package supports a hierarchical class structure of excep-
tions. Each ZOOM package—other than those intended for use outside the ZOOM
environment, such as CLHEP—defines its tree of ZMexception-derived classes, and
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copes with anomalous conditions by ZMthrow-ing the appropriate ZMexception.
The user can hook pre-supplied or user-written handlers and loggers to particular
exceptions (or subtrees of exceptions), and control whether an exception is ignored.
If a ZMexception is not ignored, then either that object is thrown as a normal C++
exception or, if those are not enabled, the job is aborted.

The package provids a ZMerrno stack analogous to errno in Unix: The user code
can examine the last (or the last-but-n) exception, find out what type it is and its
position in the tree, look at its additional associated data, and so forth.

Although the Exceptions package was written for ZOOM packages to define and
ZMthrow ZMexceptions, users can and have used the same package to define their
own custom exception hierarchies.

3 The ZOOM Packages

The current ZOOM packages are:

CLHEP, a uniform version for Run II users. This has eliminated the situation
of several CLHEP versions floating around CDF and D@, and provides a version
known to compile on all our supported platforms and a means of being responsive to
Run II needs. ZOOM CLHEP is “stand alone”—no features specific to the ZOOM
environmend or additional language constructs are used. It is fully usable wherever

CLHEP can be used.

We wish to avoid divergent versions of CLHEP. To this end, all ZOOM modi-
ficatiosn are fed back as proposed changes, and the CLHEP editors’ comments are
heeded. To make feedback smooth, all enhancements other than true bug fixes
respect backward compatibility with our snapshot of the original CLHEP behavior.

ErrorLogger is a common framework for message logging and error statistics.

HepTuple deals with histograms and n-tuples. This package is intended for
joint use by Run II and Babar. The interface is on top of a choice of “manager.”
Histograms and n-tuples can be accumulated and read back. HepTuple features are
a superset of those in HBOOK, which may be used as the manager. Another option
is to use the “lighter-weight” Histoscope manager, which does not require ZEBRA.
Histoscope has been augmented: Column-wise and disk-resident n-tuples are now
supported, the read-back speed is much greater than for HBOOK, and an enhanced
column-wise n-tuple browser is being developed.

LinearAlgebra deals with matrices, decomposition and solving, eigen-analysis,
etc. It has a coherent way of treating specialized matrices, and is low overhead for
small-matrix computations. The core of this C++ has been in use at the FNAL
Accelerator division for quite a few years.

SIunits [3] provides dimension and units checking for physical calculations, at
no runtime cost in time or memory. It also provides a comprehensive list of constants
of nature.
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PhysicsVectors deals with 3-vectors, 4-vectors, rotations, and Lorentz trans-
formations. In comparison to the CLHEP Vector sub-package it has the concept of
different coordinate views of a vector (e.g. v.phi() = PI/3), pseudorapiditiy as a
substitute for 8, all standard forms for rotations including Euler angles, specialized
classes such as LorentzBoost for efficiency, and a number of HEP methods that our
collider users wanted such as deltaR(). It also has been subjected to an extensive
testing suite.

ZMtools is a grab-bag of portable tools. It currently has a portable ZMtimer
class, and ZMspline will be added soon.

ZMutility and Exceptions are foundations for all packages, described above.

4 CLHEP and ZOOM

Each CLHEP sub-package is either “validated” or merely “present” in in the ZOOM
version. Present packages are vetted for compilation on our supported platforms,
but ZOOM does not make other changes, and does not look at the quality of the
package. Validating a sub-package means ZOOM takes repsonsibility for testing for
proper behavior, and adding enhancements our users want. It also commits that
ZOOM will not later produce or recommmend a different product for the same niche

as this CLHEP subproduct.

Z0OOM is tightly involved with two sub-packages of CLHEP: Random, where we
are validating the existing package, and StdHep, which we hope to contribute as a
new package to CLHEP.

4.1 CLHEP Random

The ZOOM-validated CLHEP Random has general enhancements including a few
feature additions requested by CDF and D@ users, minor bug fixes, the usual
CLHEP porting to Run II platforms, and semantics extensions that are natural
to C++. For example, constructors for HepRandom distributions now accept argu-
ments representing default values for the parameters of the distribution.

We have expanded the set of distributions to include all those listed in table 28.1
of Review of Particle Physics [4], adding Binomial, Poisson, x-squared, Student’s
t, and the Gamma distribution. (We will be adding Multivariate Gaussian, which
appears in the new edition.) Also, an efficient form of Landau, Vavilov, and spin-1/2
Vavilov distributions will be added; the Vavilov distribution should be much faster
than the CERNLIB version.

We have included a number of additional random engines. These include Dual-
Rand, used on ACPMAPS and in Edinburgh for Lattice QCD; RandHurd, a fast
generator based on interconnected shift registers; Ranshi, a huge-seed engine based
on simulating a collection of spinning balls; Mersenne Twister which is a fast huge-
seed method with excellent mathematical grounding; and a double-precision version
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of the familiar Ranlux engine. Time performance of these CLHEP engines has been
evaluated by Sverre Jarp [5].

Finally, we have run the Marsaglia DIEHARD test suite against each engine,
posting the results on the web, to present data on their randomness properties are.
Still to come is independant verification that each distribution class gives the correct
distribution.

4.2 StdHep

The StdHep package is meant as an implementation of a standard way to describe
particle events. It incorporates the system of assigning ID numbers to each particle
type in section 31 of [4], and the HEPEVT standardized event structure. It also deals
with interchange of data among the formats used by the popular event generators
(e.g., ISAJET, Pythia, QQ, Herwig, DPMJET, Jetset, ...).

Here, the crucial aspect is that the HEP community needs one (and not two)
such standards. So it is obviously right to do this as part of CLHEP. Fortunately,
a Fortran implementation exists; the documentation for this[6] defines and limits
the features needed in the C++ version. These include utilities for xdr I/O, event
display, transitions to various formats, particle properties and decay routines, tree
traversal of the decay chain, and boosts and rotations.

The principal implementor of the latest version of the Fortran package will be
the main coder of the C+4 package. The intent is to provide clean design and
natural semantics, taking advantage of C++ constructs. We also intend to consider
the issues of working in conjunction with newer C++ packages such as Geant4.

The aim is to feed StdHep into CLHEP for general HEP use.
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