?F Fermi National Accelerator Laboratory

FERMILAB-Conf-98/301

Software Management at Fermilab
Robert M. Harris

Fermi National Accelerator Laboratory
P.O. Box 500, Batavia, I1linois 60510

October 1998

Published Proceedings of CHEP ’98: Computing in High Energy and Nuclear Physics,
Chicago, Illinois, August 31-September 4

Operated by Universities Research Association Inc. under Contract No. DE-AC02-76CHO03000 with the United States Department of Energy

Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of
their employees, makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United States Government or any agency
thereof. The views and opinions of authors expressed herein do not necessarily state or reflect

those of the United States Government or any agency thereof.

Distribution

Approved for public release; further dissemination unlimited.

Copyright Notification

This manuscript has been authored by Universities Research Association, Inc. under con-
tract No. DE-AC02-76CHO3000 with the U.S. Department of Energy. The United States
Government and the publisher, by accepting the article for publication, acknowledges that
the United States Government retains a nonexclusive, paid-up, irrevocable, worldwide license
to publish or reproduce the published form of this manuscript, or allow others to do so, for

United States Government Purposes.

Fermilab-Conf-98-301
September 29, 1998

Software Management at Fermilab

Robert M. Harris
Fermilab Computing Division

Presenting for:

Dave Adams, Michael Aivazis, Jim Bellinger, Walter Brown, Glenn Cooper, Flavia
Donno-Raffaelli, Lynn Garren, Herb Greenlee, Robert Harris, Alan Jonckheere,
Robert Kennedy, Arthur Kreymer, Qizhong Li, Don Petravick, Ruth Pordes, Lars
Rasmussen, Elizabeth Sexton-Kennedy, Scott Snyder and Gordon Watts.

Abstract

We describe the structure and performance of a software management system
in wide use at Fermilab. The system provides software version control with Con-
current Versions System (CVS) configured in a client-server mode. Management
and building of software is provided by Software Release Tools (SoftRelTools)
originally developed by the BaBar collaboration. Support for SoftRelTools, the
heart of the system, is organized by the Fermilab computing division in close
communication with the end users: CDF, DO, BTeV and CMS. Unix Product
Support (UPS) is used to initialize environmental variables for multiple versions
of software on multiple platforms. Distribution of frozen releases is currently
handled by internally developed scripts, but will soon be performed by Unix
Product Distribution (UPD). At CDF the development version of the software
is also distributed daily and built in place on 18 different machines, with new
machines added weekly. Although primarily intended for UNIX platforms, in-
cluding Linux, the system is also supported for Windows N'T by DO.

This system handles the version control, management, building, and distri-
bution of code written in Fortran, C, and C++4. A single executable can call
routines written in all three languages. A distinguishing feature of the system is
its ability to allow rapid asynchronous development of package versions, which
can be easily integrated into complete consistent releases of the entire offline
software. Daily rebuilds of all the software, along with automatic mailings of
build errors to developers, test robustness and allow speedy integration.

This system has been used since January 1997 by CDF, D0 and BTeV for the
development and release of software for the next run of the Tevatron Collider.
At CDF it has been used by roughly 30 developers to make over a dozen frozen
releases of a million lines of software. DO0’s use is similar to CDF, and the
system is just beginning to be used by CMS. The cooperative maintenance and
management of SoftRelTools, led by the Fermilab computing division with the
active participation of CDF, D0, BTeV and CMS, is discussed as a model for
the sharing of common tools in High Energy Physics.

1 Configuration Management Working Group

In early 1996 the Fermilab computing division (CD) formed a group to plan for con-
figuration management in Collider Run 2, currently scheduled for Spring of 2000. The
group consisted of members of CD, and the CDF and DO experiments. Our charge
was to find and implement a common CDF /DO solution for software management
including the following: version control (code repository and history tracking), or-
ganization (packages and releases), building (tools to compile and link), distribution
(sending code to remote sites) and the flexibility to automate testing as necessary.
We believe this project was successful for three reasons. First, rather than reinvent-
ing the wheel, we adopted standard technology currently in use by HEP: CVS with
enhancements from SDSS has been used for four years, SoftRelTools from the BaBar
experiment [1] has been used for three years, and UPS/UPD from CD has been used
for seven years. Secondly, we work continually on supporting a common system for
all experiments. Finally, we listen to our users and tailor the system to their needs.

2 Archival and Version Control

2.1 SDSS-CVS

Concurrent Versions System (CVS) is widely used in HEP. Our configuration for the
use of CVS was first implemented by the Sloan Digital Sky Survey (SDSS). We run
CVS in client-server mode, with the repository on the server machine, and the client
setting the environmental variable CVSROOT to point at a special pseudo-account
on the server machine. To access the repository where SoftRelTools is kept at Fermi-
lab, the CVSROOT is set to cvsuser@cdfsga.fnal.gov: /usr/people/cvsuser/repository,
where cvsuser is the pseudo-account. The pseudo-account runs a restricted login shell,
CVSH, which only allows cvs commands so the user cannot inadvertently modify the
CVS repository directly through UNIX commands. The .rhosts file controls read
access, and a special script called check_access, invoked during cvs commit, controls
who has write access for a given package. Small modifications to CVS at the server
end trap the user’s host name and user name and insure proper history information.
Some of the advantages of this mode of using CVS are that local and remote access
are identical, a user does not need to have an account on the server machine to access
the CVS repository, and a user cannot accidentally delete or change the protection of
files in the CVS repository. Further information and support is available on request
from cvs-support@fnal.

2.2 Fermilab Experience with CVS

Our experience with CVS is that it is fast and reliable. Concurrent development is
quick and efficient, collisions among developers are rare. We use the loginfo script
to send e-mail to package developers whenever their package (cvs module) is modi-
fied. This keeps developers informed of changes and enhances the cooperative spirit
of code development. The same list of developers can receive build errors from the

2

Figure 1: Left: Production release consisting of packages pkgA and pkgB. Right:
A user’s test release and how it relates to the official release. Here pkgB is being
developed locally and other packages are taken from the official release.

3.2 Frozen and Development Releases

In frozen releases the software doesn’t change. They contain CVS tagged and exported
packages (e.g. V01-00-00 of pkgA) and each frozen release is numbered (e.g. 1.0.0),
as shown in Figure 1. In development releases the software changes daily. The
packages are checked out of CVS and updated daily, the packages are not tagged
and the release can be just called development without a number. Experiments at
Fermilab decide whether they want daily development releases or not. CDF has a
daily development release and frozen release roughly every two months. D0 has weekly
frozen releases. BTeV has a daily development release and frozen releases roughly
every three momths. Development has the advantage of daily integration. All software
is built together everyday, and problems are spotted and fixed quickly. Frozen releases
have the advantage of stability. Many frozen releases allow developers to go back to
working, but relatively recent software. This temporarily shields developers from
problems at some cost to the release manager.

3.3 Tools for Releases and Development

SoftRelTools comes with many tools for release managers and developers. For a
release manger, newver will export a tagged version of a package from the CVS
repository to the packages area and declare it to UPS. The command newrel -p will
create a production release from a list of package version numbers input by the release
manager. For developers, newrel -t will create a test release in the user’s area for
developing, compiling and linking code against a production release (a test release is
shown in Figure 1). The command addpkg will checkout a package from CVS and
add it to the test release for developing code, and depend will find other packages
that include files in your package and which may also need to be recompiled. Finally,
SoftRelTools provides the GNUmakefiles that build the software with GNU Malke.
All rules are defined, so the developer only needs to specify which executables to link.

3.4 Test Releases

The user environment for developing code is called a test release. In Figure 1, a test
release allows the user to develop a package (e.g. pkgB) in the context of a complete
production release. The user creates the test release using newrel -t, gets pkgB using
addpkg, and is able to change and rebuild pkgB locally. Any needed header files and
libraries of other packages that are needed to rebuild pkgB are then taken from the
production release, but all code for pkgB comes from the user’s test release. Figure 2
shows the actual commands a CDF user would type to develop the tracking package in
a test release. At CDF, the users changes would then appear in development releases
on 17 different machines the next morning, which brings us to error reporting.

% source ~cdfsoft/cdf2.cshrc (global initiaization)

% setup cdfsoft2 development (setup development) ﬁ:ig Orkr; k,'é)neE [rors g’;ﬁgfgs

% newrel -t development testrel (create test release) I(-Ji gﬁfz . ;a‘ "I\'lg:(le(ingMods gﬁggjeﬂchmks
% cd testrel (top level) - P e

% addpkg -h Tracking (checkout Tracking) TreckingBenchmarks
% cd Tracking/Tracking (Tracking headers)

% emacs Tracking.h (edit header file)

% cd ../.. (top |eVe|) = v Days All CDF Run 2 Software Builds

% depend -f Tracking.h (dependent packages?) 5

% addpkg -h TrackingMods ~ (yes, this one usesit!) 5

% gmake (compile and link all) =

% TrackingExample.exe (run to test changes) 2

% Vs Update -A Trmkl ng (COnCUrrent Changes'?) ° May Jun Jul Aug Sep Oct Nov Dec|Jan Feb Mar Apr May Jun Jul
% cvs commit Tracking (put back in cvs) wor 1068

Figure 2: Left: A session where a user develops the CDF tracking package in a test
release. Right: Above is a daily table constructed by the error reporter summarizing
the status of building CDF software, and below is the fraction of days in each month
in which all the CDF Run 2 software compiled and linked using SoftRelTools.

3.5 Error Reporting for Daily Builds

When a compilation or linking error occurs in development it appears in the daily log
file. At CDF these log files are collected for each platform (Linux, IRIX and OSF)
and scanned for errors by the SoftRelTools error reporter. Errors found within the
compilation (lib stage) or linking (bin stage) of a package are mailed to all developers
responsible for that package. As shown in Figure 2, a daily table summarizing which
packages had lib or bin errors on which platform is constructed by the error reporter
and posted on the WWW. The daily building and reporting of errors allows the
developers to realistically test their code in the actual full offline environment and
bugs are spotted and fixed fast, usually the same day they are caught and reported.
As shown in Figure 2, all CDF code builds without any error about 50% of the
time: the success rate for any single package is of course much higher. CDF also
runs the code and checks for changes in output daily, but this validation is not yet a
part of SoftRelTools. CDF finds that daily rebuilding forces them to do integration
continually and makes it much easier to produce a frozen release.

3.6 Additions to SoftRelTools by FNAL

SoftRelTools is not a static product. Over the last 21 months the following features
were added to SoftRelTools by Fermilab (abridged list):

Support for Linux, OSF, Solaris and NT operating systems.

Support for the KAI compiler and its updating of archives all at once.
Reporting build errors and constructing summary tables.

New commands depend, Inkpkg, newpkg, and setcompiler.

Refresh mechanism to trigger full rebuilds of libraries.

Selective builds of sub-packages and single executables.

Target for test executables, which is not built by default.

Experiment flag for experiment-dependent parts of SoftRelTools.

Over the next year the following requested changes may be added to SoftRelTools
(abridged list):

Allow gmake from subdirectories in addition to top level of releases.

Implement gmake debug, and other options recognizable by SoftRelTools.

Full support for a hierarchy of sub-packages within packages (CMS request).
Unification of UPS configurations among experiments.

Add new targets like validation, clean for single packages, etc.

Support for shared libraries and automatic link-ordering (PackageList from BaBar).
Improve test release accuracy when removing files.

Clean up OS flavor and experiment dependence. Make more modular.

3.7 Software Management on NT

Our system, although desinged for UNIX, was modified by D0 to work under Windows
NT [2]. The first version is complete and they are working on improvements. For
version control DO has been using CVS on NT for over a year. The CVS repository is
on a SGI server running UNIX, and PC’s running N'T can access the CVS repository
using cygwin32. For releases and building they needed to port SoftRelTools to use
the Microsoft C++ compiler under N'T. They use the UNIX on NT freeware solution,
cygwin32, and translate UNIX commands and switches to NT equivalents. They find
that simple make files translate successfully, but ones with weird UNIX commands
are more problematic. They also convert makefiles to IDE workspaces, allowing NT
developers to use the full NT GUI working environment, while release managers con-
struct releases on N'T under the bash shell using cygwin. For setup and distribution
UPS/UPD works under NT, although there are still a few oddities being investigated.
In the future they hope to have a production quality version of the system.

3.8 HEP-Wide Use of SoftRelTools

SoftRelTools, originating at BaBar, is now used and continually modified by CDF, DO,
BTeV, CMS, ATLAS and the Computing Division at Fermilab. BaBar and Fermilab
have agreed to diverge but we watch each other’s changes for ideas. ATLAS has a
modified version with significant structural changes [3], and it may be desirable to
merge these into a future HEP-wide common version of SoftRelTools. CDF, D0, BTeV
and CMS have access to the CVS repository at Fermilab where our SoftRelTools is
kept. CDF builds daily using the head of SoftRelTools, while DO updates it’s frozen
version of SoftRelTools frequently, BTeV seldom needs to modify its frozen version,
and CMS is just getting started with SoftRelTools. Each experiment is responsible
for testing changes, and there is an overal SoftRelTools coordinator at Fermilab who
tests global changes. CDF and DO are the most frequent modifiers, and we catch each
other’s bugs and benefit from each others improvements, additions and ports. In the
last 21 months there have been 777 cus commits by roughly 11 developers. We have
a mailing list, SoftRelTools@fnal.gov, which is quite lively and responsive.

4 Setup and Distribution
4.1 UPS/UPD

There have been significant efforts by the computing division to support package
management for the coming Tevatron run [4]. To setup environmental variables we
use UNIX Product Support (UPS) from the CD. This allows easy setup of special
environments with a single command (e.g. setup cdfsoft2 development). UPS provides
databases of packages, releases, versions and flavors, which is used by both UPS and
UPD. UNIX Product Distribution (UPD) installs packages on remote nodes via either
pull or push. UPD for run 2 became available recently. CDF and DO requested it and
are working towards using it. DO currently uses UPD to distribute to two sites and
in-house scripts for two other, in addition to four central sites. CDF currently uses
in-house scripts to distribute to 31 sites. Both experiments plan to use only UPD
soon.

4.2 Distribution at CDF

CDF wrote its own scripts to distribute all code needed for run 2. This includes
CDF software, CD software, and external packages like cern, geant, herwig, etc. We
now support 31 sites with at least one frozen release (23 Linux, 6 IRIX, and 2 OSF).
Development is being updated daily on 18 sites (12 Linux, 4 IRIX, and 2 OSF). The
largest demand is from Linux, and there we developed the simplest procedures for
distribution. For a frozen release the user sends mail to rharris@fnal.gov to get regis-
tered, logs in as root (in the future root access won'’t be necessary), pulls one script off
the WWW, and executes it. This gives the user everything, setting up all necessary
accounts, permissions, and software. For the development release the user logs into
the cdfsoft account (created by the previous script), fetches another script off the
WWW, executes it, and then tells cron to build the release daily by submitting a
pre-made cron job. If there are problems they are sent to our distribution manager,
who provides special assistance to distribution sites [5]. We remotely login to fix
site specific problems with the software, networking, and security. We automatically
add/remove packages from development on all machines. For Linux machines we op-
tionally provide the CDF software on compact disc, and Fermilab provides a specially
supported version of the Red Hat 5 release of Linux [6].

5 Lab-Wide Use of System

The combination of CVS and SoftRelTools is being used lab-wide and supported
by the computing division. SDSS, CDF, DO and the ZOOM project for C++ class
libraries all use SDSS-CVS, while BTeV uses vanilla CVS. All these projects use
SoftRelTools with the exception of SDSS. Table 1 summarizes the lines of code,
packages, releases and distribution sites for these Fermilab experiments. Significant
amounts of code, in many packages, rebuilt in multiple releases since January 1997,
have been distributed to multiple sites. Table 1 indicates that the system is working,

7

and that we have succeeded in implementing a common tool for the management of

software in high energy physics.

Project || Lines | Packages | Releases | Sites
SDSS || 2000 k 132 N/A N/A
CDF 700 k 69 13 + daily | 31

DO 1000 k 119 45 weekly 8

BTeV 15 k 3 6 + daily 4

ZOOM | 120 k 9 N/A N/A

Table 1: For each project we list the lines of code, number of packages, number of re-
leases and total number of distribution sites, all serviced by our software management
system. N/A indicates not applicable.

6 Conclusions

For run 2 software management, we have adopted tools that have been used succesfully
in HEP for years: CVS as used by SDSS, SoftRelTools originally developed by BaBar,
and UPS/UPD from the Fermilab computing division. We have implemented, tested,
and maintain a complete software management system at Fermilab. CDF, D0 and
BTeV use the system, and CMS is beginning to use it. Improvements to the system
are ongoing. New flavors of UNIX and some NT support, development tools and error
reporting, and improved setup and distribution with UPS/UPD have all been added.
HEP-wide efforts on SoftRelTools have been helpful. We welcome other experiments
to join the development and maintenance effort as we progress toward the goal of a
common software management system for all High Energy Physics. To join, question,
or comment, just send mail to SoftRelTools@fnal.gov.

References

[1] B. Jacobsen, “The BaBar Software Release Structure”, http://www.slac.
stanford.edu/BFROOT /dist /releases/current /SoftRel Tools/SoftRel ToolIntro.ps

[2] G. Briskin, D. Cutts, G. Watts and R. Zeller, “Software Release Tools on NT”,
these proceedings.

(3] L. Tuura, “Overview of ATLAS Software Release Tools”, these proceedings.

[4] E. Berman, “Software Package Management and Distribution for Run II”, these
proceedings.

[5] A. Kreymer, “Porting and Supporting the Fermilab CDF Run II Software under
Linux”, these proceedings.

(6] D. Yocum, “Linux Support at Fermilab”, these proceedings.

