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Abstract

If supersymmetric partners of the known particles have masses at the

multi-TeV scale, they will not be directly discovered at planned future col-

liders and decouple from most observables. However, such superpartners also

induce non-decoupling e�ects that break the supersymmetric equivalence of

gauge boson couplings gi and gaugino couplings hi through supersymmetric

analogues of the oblique corrections. Working within well-motivated theo-

retical frameworks, we �nd that multi-TeV scale supersymmetric particles

produce deviations at the 1� 10% level in the ratios hi=gi. Such e�ects allow

one to bound the scale of kinematically inaccessible superpartners through

precision measurements of processes involving the accessible superparticles.

Alternatively, if all superpartners are found, signi�cant deviations imply the

existence of highly split exotic supermultiplets.
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I. INTRODUCTION

Supersymmetric particles are often assumed to have mass on order of or below the
TeV scale if supersymmetry (SUSY) indeed plays a role in the solution of the gauge hier-
archy problem. Otherwise, �ne-tuning of various parameters in the low-energy theory is
required [1], undermining the motivation for the introduction of low-energy supersymme-
try. The prospects for discovering and studying some supersymmetric particles (sparticles)
at present and future colliders are therefore promising, particularly at the Large Hadron
Collider (LHC) at CERN [2] and proposed high energy linear e+e� colliders [3{5].

It is, however, a logical possibility that only part of the sparticle spectrum will be seen at
planned future colliders, with some number of superpartners of ordinary matter and gauge
�elds beyond the discovery range. In fact, such scenarios are realized in a wide variety of
models, and are often found in theories designed to solve the supersymmetric 
avor problem,
i.e., the problem that low-energy constraints are violated for generic sfermion masses and
mixings. These models may be roughly divided into two categories. In the �rst class of
models, which we will refer to as \heavy QCD models," the gluino and all the squarks are
heavy. Such may be the case in models with gauge-mediated SUSY breaking [6], where
strongly-interacting sparticles get large contributions to their masses, and also in the no-
scale limit of supergravity models [7]. These models solve the SUSY 
avor problem, since

avor-blind sfermion masses result from the proportionality of sfermion masses to gauge
couplings and charges. A similar spectrum may also be predicted in other models, for
example, grand-uni�ed models with non-uni�ed gaugino masses and heavy gluinos [8], in
which the gluino drives the squark masses up through renormalization group evolution. In
a second class of models, the �rst and second generation squarks and sleptons are very
heavy with masses O(10 TeV), while the third generation sfermions are at the weak scale
[9{12]. We will call these \2{1 models." Such models are motivated by the desire to satisfy
low-energy constraints from, for example, K0 � �K0 mixing and � ! e
, without the need
for sfermion universality, sfermion alignment, or small CP -violating phases. At the same
time, the extreme �ne-tuning problem arising from very massive third generation sfermions
is alleviated. It should be noted, however, that some increased level of �ne-tuning must
typically be tolerated, both in these models [9,13] and in those of the �rst category [14].

Given the many possibilities for supersymmetric particles beyond the reach of the LHC
and proposed e+e� colliders, it is well worth considering what experimental implications such
heavy states may have. In most experimentally accessible processes, such states decouple,
and their e�ects rapidly decrease with increasing mass scale. Here, however, we study
e�ects with the opposite behavior, that is, which grow with increasing supersymmetric mass
splittings. Such e�ects rely on the fact that the interactions in supersymmetric theories are
tightly constrained. For example, SUSY implies the relations

gi = hi ; (1)

where gi are the standard model gauge couplings, hi are their supersymmetric analogues,
the gaugino-fermion-sfermion couplings, and the subscript i = 1; 2; 3 refers to the U(1),
SU(2), and SU(3) gauge groups, respectively. Unlike other relations, such as the uni�cation
of gaugino masses, these relations hold in all supersymmetric models and are true to all
orders in the limit of unbroken SUSY. However, SUSY breaking mass di�erences within

2



super�elds with standard model quantum numbers lead to corrections to Eq. (1) that grow
logarithmically with the superpartner masses. Deviations from Eq. (1) are thus unambiguous
signals of SUSY breaking mass splittings, and by precisely measuring such deviations in
processes involving accessible superparticles, bounds on the mass scale of the kinematically
inaccessible sparticles may be determined.

The corrections to Eq. (1) are highly analogous to the oblique corrections [15,16] of
the standard model. We will therefore refer to them as \super-oblique corrections" and
parametrize them by \super-oblique parameters," one for each gauge group. As is the case
for oblique corrections, we will �nd that super-oblique corrections are 
avor-independent
and are enhanced for large heavy particle sectors. Furthermore, the simple nature of the
corrections allows one to study them in a model-independent fashion using only TeV-scale
parameters. As examples, we will calculate the size of these corrections in the two classes
of models described above. In both cases, we �nd substantial contributions to all three
super-oblique parameters. Such corrections may be measured through a variety of processes,
depending on what sparticles are available for study. Tests of the SU(2) relation g2 = h2 with
charginos have been studied [17], as has the possibility of testing and looking for deviations
in the U(1) relation with selectrons [18]. Soft SUSY breaking e�ects on hard supersymmetric
relations, i.e., relations between dimensionless couplings such as Eq. (1), were also noted in
Ref. [19], where such e�ects were calculated for the speci�c case of squark widths. A general
classi�cation of possible observables at e�e� and hadron colliders, as well as detailed studies
of representative examples incorporating the variety of experimental uncertainties will be
presented in an accompanying study [20].

We begin in Sec. II with a formal discussion of the 
avor-universal corrections to Eq. (1).
The analogy to the oblique corrections of the standard model is highlighted, and super-
oblique corrections and parameters are de�ned. In Sec. III 
avor-dependent corrections,
as well as other non-decoupling e�ects are discussed. In Sec. IV we estimate the size of
the super-oblique corrections in the heavy QCD and 2{1 models described above. The
(typically small) contributions of vector-like messenger and U(1)0 sectors to these deviations
are calculated in Sec. V. Our conclusions, as well as additional comments concerning possible
implications of measuring super-oblique corrections, are collected in Sec. VI.

II. SUPER-OBLIQUE CORRECTIONS

We would like to identify robust experimental signatures of as-yet-undiscovered super-
symmetric particles at future colliders. If only the standard model particles are available
to us and we are only able to probe momentum scales below sparticle thresholds, broadly
speaking, two approaches are possible. The �rst is to look for their virtual e�ects in low-
energy processes. Unfortunately, in the models discussed in Sec. I with sparticle masses
>� O(1� 10 TeV), such e�ects are often well below experimental sensitivities. This is just a
statement of the decoupling theorem [21] for heavy superpartners from low-energy phenom-
ena.

The second approach is to adopt some model dependent assumption such that the values
of the low-energy couplings may be interpreted as signatures of heavy sparticles. For exam-
ple, if one assumes grand uni�cation boundary conditions for the gauge coupling constants,
their well-measured values at low energies are sensitive to sparticle thresholds. Threshold
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corrections have been extensively studied both with renormalization group techniques that
incorporate leading logarithm e�ects [22] and through explicit one-loop calculations with
�nite corrections [23]. Such experimental signatures are, of course, model dependent and
are obscured by other e�ects, such as GUT scale threshold e�ects.1

In this study, we will consider scenarios in which some, but not all, superpartners are
discovered. As noted in Sec. I, such scenarios may be realized at future colliders in a variety of
models. If this is the case, what may be learned about the heavy, inaccessible superpartners?
It is well-known that the decoupling theorem does not apply if the heavy particle masses
break symmetries [21]. In the present case, the heavy sparticle masses are predominantly
invariant under standard model symmetries.2 However, these masses violate supersymmetry,
and in fact, the heavy superpartners give rise to non-decoupling corrections in processes
involving the light superpartners. There are a variety of non-decoupling e�ects that may be
considered. We will concentrate here on a set which we will call \super-oblique corrections,"
for reasons detailed below. These corrections are selected as particularly important, because
they are universal in processes involving gauginos, enhanced by a number of factors, and
may be measured at colliders in a variety of ways. Other non-decoupling e�ects will be
described in Sec. III.

For simplicity, let us begin by neglecting the superpotential Yukawa couplings and as-
suming both R-parity (RP ) conservation [27] and 
avor conservation. (The implications
of relaxing these assumptions are the topic of the following section.) With these assump-
tions, in processes involving standard model particles or the light superpartners, the heavy
superpartners appear at the one-loop level only through renormalizations of gauge boson
and gaugino propagators. These renormalizations are equivalent in the limit of exact SUSY.
However, since the sparticles have SUSY breaking masses, the corrections from the heavy
sparticle loops are di�erent for gauge bosons and gauginos, and the e�ects are proportional
to ln(M=m), whereM (m) is the characteristic heavy (light) superpartner mass scale. These
non-decoupling e�ects are similar in origin to the logarithmically-divergent loop corrections
to the Higgs boson mass in supersymmetric theories [28]. In addition, they are process inde-
pendent, up to small O(p2=M2) corrections, where p is the momentum of the gauge bosons
or gauginos, and can be absorbed into the gauge couplings gi and gaugino couplings hi.

It is instructive to draw an analogy between these e�ects and the oblique corrections

1Note, however, that it is possible that certain processes probe momentum scales above sparticle

thresholds, even though no sparticles have been directly discovered. By extrapolating the low-

energy couplings up to the characteristic momentum scales of such processes, the presence or

absence of intermediate sparticle thresholds may be determined, independent of GUT assumptions.

The possibility of such e�ects has been discussed, for example, in Refs. [24,25].

2Sfermion masses may break SU(2), but this breaking is typically suppressed by the left-right

mixing (mfermion=msfermion)
2. Contributions of sfermions to the SU(2) oblique parameters therefore

may usually be neglected [26], and are especially small in the scenarios we are considering, since

the sfermion masses are at the multi-TeV scale.
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[15,16] of the electroweak sector of the standard model.3 In the standard model, heavy
particles with isospin breaking masses enter low-energy observables dominantly through
the vacuum polarization functions of the electroweak gauge bosons. More speci�cally, SU(2)
multiplets with custodial SU(2) [30] breaking masses, such as the (t; b) multiplet, renormalize
the propagators of the (W;Z) vector multiplet di�erently, leading to explicit custodial SU(2)
breaking in the vector multiplet at the quantum level, and introducing non-decoupling e�ects
that grow with the mass splitting. The supersymmetric non-decoupling corrections may be
described analogously with the following replacements in the previous sentence:

� SU(2) multiplets! supermultiplets

� custodial SU(2) breaking masses! soft supersymmetry breaking masses

� (t; b) multiplet! ( ~f; f) supermultiplet

� (W;Z) vector multiplet! (gauge boson; gaugino) vector supermultiplet

� custodial SU(2) ! supersymmetry

Motivated by the strength of this analogy, we will refer to the SUSY breaking e�ects of the
heavy superparticles as \super-oblique corrections." As is the case for the oblique corrections
of the standard model, the super-oblique corrections provide a unique opportunity to probe
the scale of the heavy sector at low energies.

Let us investigate this analogy further. The oblique corrections of the standard model
may be described in terms of the three parameters S, T , and U [15]. The latter two are
measures of custodial isospin breaking, with the di�erences of the mass and wavefunction
renormalizations of the W and Z (more correctly, W 3) at p2 = 0 from heavy particles given
by T and U , respectively. Below, we will de�ne super-oblique parameters that are measures
of the splitting of gi and hi. Such coupling constant splittings are results of di�erences in the
wavefunction renormalizations of gauge bosons and gauginos. The super-oblique parameters
we de�ne are therefore most similar to U , and will be denoted by eUi, where the subscript i
denotes the corresponding gauge group.

One might also hope that measureable supersymmetric analogues to S and T exist,
especially since these are typically more sensitive probes of new physics in the standard
model. The S parameter is a consequence of the extra U(1) gauge group, and is not a measure
of custodial SU(2) breaking. There is therefore no analogous e�ect in supersymmetry. The
analogue to T is a di�erence in the mass renormalizations of gauge bosons and gauginos. In
our case, there is no mass renormalization of the gauge bosons due to the heavy superpartners
if their masses are standard model gauge invariant.4 On the other hand, gaugino masses
may receive contributions from heavy sparticle loops if these loops contain R-symmetry

3This analogy was previously noted by L. Randall [29].

4By mass renormalization here we mean the mass shift at p2 = 0, i.e., the part which is indepen-

dent of wavefunction renormalization. Note, however, that the physical masses mW and mZ are

renormalized by wavefunction renormalization.
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breaking e�ects. If there were no tree level gaugino masses, or these masses were somehow
known, the loop-generated gaugino masses [31] would be a probe of the mass splitting
between components of a supermultiplet, providing a probe analogous to T , parametrized
by three new super-oblique parameters eTi. However, in a general softly broken SUSY theory,
arbitrary gaugino masses already exist at tree level, and there is no tree level mass relation
between the gauge bosons and the gauginos. (In contrast, custodial SU(2) symmetry enforces
the relation mW = mZ cos �W at tree level in the standard model.) The gaugino mass
renormalizations therefore may be absorbed into these tree level terms, yielding no useful
low-energy observables corresponding to T , unless one makes some assumptions about the
tree level gaugino masses.

The non-decoupling SUSY breaking e�ects may also be pro�tably understood in the
language of renormalization group equations (RGE's). Above the heavy superpartner scale
M , SUSY is not broken, and we have hi = gi. Below M , where the heavy superpartners
decouple, light fermion loops still renormalize the gauge boson wavefunction (and thus,
gi) but heavy sfermion loops and sfermion-fermion loops decouple from gauge boson and
gaugino wavefunction renormalization, respectively. (Gauge loops still renormalize both
wavefunctions in the non-Abelian case.) Since not all loops from the supermultiplet decou-
ple simultaneously, supersymmetry is broken in the gauge sector, and therefore the gauge
couplings gi and gaugino couplings hi start to evolve di�erently.

The one-loop evolution of the gauge couplings between the heavy and the light super-
partner scales gives

1

g2
i
(m)

� 1

g2
i
(M)

+
bgi
8�2

ln
M

m
; (2)

where bgi is the one-loop �-function coe�cient of the e�ective theory between the heavy
and light mass scales, with the heavy superpartners decoupled. For the gaugino couplings,
because SUSY is broken, the RGE's will depend on both gauge couplings gi and gaugino
couplings hi. However, because the deviations of hi from gi are small, the contributions
from this di�erence to the RG evolution are higher order e�ects and hence negligible. In
addition, because hi � gi, the Ward and Slavnov-Taylor identities still hold approximately
for the gaugino couplings, and the primary e�ect of the decoupled sparticles is to modify the
one-loop �-function coe�cient of the gaugino coupling RGE. Approximating hi � gi in the
RGE's, the gaugino couplings at the scales of the light and heavy sectors are thus related
by

1

h2
i
(m)

� 1

h2
i
(M)

+
bhi
8�2

ln
M

m
: (3)

The one-loop �-function coe�cient bhi is obtained by subtracting the entire contribution of
whole supermultiplets that contain heavy superpartners. Substituting the supersymmetric
boundary condition gi(M) = hi(M), straightforward manipulations yield

hi(m)

gi(m)
� 1 +

g2
i
(m)

16�2
(bgi � bhi) ln

M

m
: (4)

To parametrize the non-decoupling e�ects of heavy superpartners, we de�ne the super-
oblique parameters
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eUi � hi(m)

gi(m)
� 1 � g2

i
(m)

16�2
(bgi � bhi) lnR ; (5)

where i = 1; 2; 3 denotes the gauge group, and R =M=m. As noted above, these parameters
are supersymmetric analogues to the oblique parameter U [15], with one for each gauge
group. Note that, because bhi < bgi, the coupling hi is more asymptotically free than gi,
hi(m) > gi(m), and the parameters eUi are always positive. This statement is true at the
leading logarithm level irrespective of whether the heavy sparticles are scalars or fermions.
We may also de�ne another set of parameters that are deviations in the ratio of ratios, which
we denote by the two-index variables

eUij � hi(m)=hj(m)

gi(m)=gj(m)
� 1 � eUi � eUj

� 1

16�2

h
g2
i
(m)(bgi � bhi)� g2

j
(m)(bgj � bhj)

i
lnR : (6)

These linear combinations of the super-oblique couplings are useful, as they are probed by
branching ratio measurements, which are sensitive to hi=hj.

In fact, the decoupling scales for the gauge and gaugino couplings are not identical when
threshold corrections at the decoupling scale are taken into account. The �nite threshold
corrections slightly lower the decoupling scales for the gaugino couplings relative to those
of the gauge couplings, which slightly reduces the deviations of hi from gi at low energy
relative to the leading logarithm analysis. However, these e�ects may be absorbed into an
e�ective heavy scale M 0, with R = M 0=m. The �nite corrections and the resulting shift in
R are calculated in the Appendix.

III. OTHER NON-DECOUPLING CORRECTIONS

In the discussion above, we have examined a set of non-decoupling corrections to the
gaugino couplings that are universal in that they apply to all gaugino couplings. We have,
however, neglected the superpotential Yukawa couplings and have also assumed RP and

avor conservation. Such e�ects lead to additional non-decoupling corrections, including

avor-speci�c gaugino coupling corrections. In addition, couplings that do not involve gaug-
inos also receive corrections (even in the absence of Yukawa couplings and RP and 
avor
violation). Let us now consider each of these e�ects in turn.

In the presence of Yukawa couplings, new 
avor-dependent non-decoupling radiative
contributions are possible. For example, in the minimal supersymmetric standard model,
matter �eld wavefunctions receive corrections from loops involving Higgs bosons and Hig-
gsinos, Higgs and Higgsino wavefunctions are corrected by loops involving fermions and
sfermions, and new contributions also appear in the vertices. These contributions grow log-
arithmically with the heavy mass in the loop. Such e�ects spoil the approximate Ward and
Slavnov-Taylor identities for the gaugino couplings | if a gaugino coupling is renormalized
by a Yukawa operator involving heavy superpartners, the diagrams involving the heavy �eld
decouple and the cancellation of divergences is spoiled in the e�ective theory. The one-loop
RGE's of the gaugino couplings will then also depend on Yukawa couplings, and the univer-
sal gaugino coupling hi is split into di�erent couplings h

f

i
for each gaugino-f - ~f vertex. These
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Yukawa coupling contributions to eUi are of the opposite sign to the universal corrections
discussed above. Of course, such e�ects are typically suppressed by small Yukawa couplings
and are only relevant for processes involving the Higgs, bottom, and top quark supermulti-
plets. Note that the RGE's now become dependent on all of the di�erent gaugino couplings.
(See, for example, Appendix B of Ref. [32].) However, such corrections from di�erences in
the couplings are higher order e�ects, and may be neglected here.

An interesting case in which Yukawa couplings could be important is in theories with
RP violation. In the minimal supersymmetric standard model, lepton and baryon number
are not accidental symmetries of the low-energy theory, but are put in by hand when one
imposes RP conservation. RP -violating terms include Yukawa couplings of leptons �LLE,
lepton doublets to quarks �0LQD, and the di�erent quark singlets �00UDD, where genera-
tional indices have been suppressed. Current bounds on individual couplings allow rather
large couplings �, �0, and �00 for certain generational indices. (See, for example, Ref. [33],
where present constraints on �0333, the only coupling with three third generation indices, are
analyzed.) In addition, these bounds are often signi�cantly weakened for heavy superpartner
masses, and so, in the scenarios we are considering, may be extremely poor. Consequently,
important negative and 
avor-dependent Yukawa contributions to eU f

i
could arise in RP -

violating models. Of course, RP violation also allows the lightest supersymmetric particle
to decay, leading to non-standard supersymmetric signals, which modi�es the strategies for
measuring such super-oblique parameters.

In the absence of 
avor conservation, 
avor mixing matrix elements will appear at the
gaugino-fermion-sfermion vertices. In this case, if a sfermion in one generation belongs
to the heavy sector and a sfermion in another generation belongs to the light sector, as
may be the case, for example, in 2{1 models, heavy sfermion loops may appear in the
matter wavefunction and vertex renormalizations of the gaugino couplings of the light sector
through 
avor-violating interactions. Such e�ects also contribute to the violation of the
Ward identity for gaugino couplings. However, in such models, 
avor mixings between the
heavy and the light sectors are naturally suppressed by m=M . Therefore, the e�ects of these

avor-violating loop corrections should be small. Note, however, that such mixings may
be measured or bounded by experiment [34], and such e�ects have implications for gaugino
coupling measurements [20].

Up to this point, we have only discussed deviations of the SUSY relation between the
gauge couplings and the gaugino couplings. In supersymmetric theories, there are also D-
term quartic scalar couplings, which arise from SUSY gauge interactions, and are therefore
proportional to g2

i
in the SUSY limit. After the heavy superpartners decouple, the relations

between the quartic scalar couplings and the gauge couplings also receive non-decoupling
corrections (which can be viewed as super-oblique corrections from the wavefunction renor-
malization of the auxiliary D �elds), and also possibly the 
avor-dependent corrections
discussed above. However, such deviations are likely to be more di�cult to investigate ex-
perimentally: the couplings of four physical scalars are extremely challenging to measure,
and other probes of D-terms, such as in Higgs decays and SU(2) doublet sfermion splitting,
require ambitious measurements of other parameters, such as tan�, the ratio of Higgs ex-
pectation values. Although such measurements may be possible in certain scenarios, in the
rest of this study, we will concentrate on the super-oblique corrections between the gauge
couplings and gaugino couplings, which enter generically in all processes involving gauginos,
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and which appear much more promising experimentally.

IV. NUMERICAL ESTIMATES IN THEORETICAL FRAMEWORKS

In Sec. II, we discussed super-oblique corrections in the general context of models with
heavy and light sectors with arbitrary particle content. In this section, we will investigate
what size corrections may be reasonably expected. For concreteness, we will consider the two
well-motivated classes of models described in Sec. I, namely, \heavy QCD models," in which
the heavy sector includes all colored superpartners, and \2{1 models," in which the heavy
sector consists of the �rst two families of sfermions. We will estimate the contributions of
the heavy sectors to the parameters eUi and eUij in these two frameworks, treating all heavy
sector particles as degenerate | non-degeneracies within the heavy sector typically only lead
to higher order e�ects. Discussion of additional contributions to eUi in models that contain
vector-like multiplets at some high mass scale, e.g., in gauge mediation and U(1)0 models,
is deferred to Sec. V. Note that while the results of this section are presented to serve as
benchmarks, it is important to keep in mind that much larger e�ects may be possible from,
for example, exotic particles.

A. Heavy QCD models

We �rst consider models with all strongly-interacting sparticles in the heavy sector.
This category includes models in which the sfermion and gaugino masses are dominated
by a 
avor-independent term that is a function of the low-energy gauge couplings. The
hierarchy between the strong and electroweak gauge couplings is then translated into a mass
hierarchy between colored and non-colored particles. Examples include the no-scale limit
of minimal supergravity [7], in which scalar masses are determined only by gaugino loops,
models with non-universal gaugino masses and a heavy gluino [8], in which squark masses
are enhanced by gluino loop contributions, and gauge mediation models [6], in which the
gaugino and sfermion masses are determined by gauge loops involving vector-like messenger
supermultiplets at the � O(100 TeV) scale.

In these models, minimization of the Higgs potential implies, given the constraint of the
Z boson mass, that the Higgsino mass parameter � is naturally of the order of the gluino
mass. Thus, typically the Higgsinos and one Higgs doublet should be included in the heavy
sector. However, the contributions of these particles to eUi and eUij are small, and the primary
impact of the scale of � is on what experimental observables may be available to probe the
super-oblique corrections.

Assuming that the heavy sector consists of all squarks and the gluino, we present in
Table I the �-function coe�cients and the resulting parameters eUi from Eq. (5).5 Inclusion

5The contribution of a (component) �eld j with spin Sj to the �-function coe�cient bi is b
j

i
=

N
j

i
ajT

j

i
, where N

j

i
is the appropriate multiplicity; aj = 1

3
; 2
3
;�11

3
for Sj = 0; 1

2
; 1, respectively; and

T
j

i
= 0; 1

2
; 2; 3, or 3

5
Y 2 for a singlet, a particle in the fundamental representation of SU(N), an

SU(2) triplet, an SU(3) octet, or, for i = 1, a particle with hypercharge Y = I �Q, respectively.
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TABLE I. The �-function coe�cients and parameters eUi in the heavy QCD models. R �M=m

is the ratio of heavy to light mass scales.

Gauge Group Gi bgi bhi bgi � bhi
eUi

SU(3) �7 frozen �7 �6:7%� lnR

SU(2) �
1
2 �

7
2 3 0:80%� lnR

5
3
U(1) 11

2
33
10

11
5

0:29%� lnR

of the Higgsinos and one Higgs doublet in the heavy sector would slightly enhance eU1 andeU2. We have chosen the grand-uni�cation normalization for the hypercharge U(1); of course,eU1 is independent of this choice. For simplicity, we assume gi(m) = gi(MZ) in our numerical
estimates, which is su�cient for m=MZ

<� 3. We also have

eU21 �
1

16�2

�
3g22(m)� 11

5
g21(m)

�
lnR � 0:50%� lnR : (7)

The parameters eUi and eU21 are logarithmically dependent on R =M=m; a typical value for
this ratio in heavy QCD models is R � O(10).

In these models, the gluino and the squarks are in the heavy sector and are decoupled.
The coupling h3 is therefore not renormalized belowM , and by convention, we take its value
below M to be frozen, with h3(Q < M) = h3(M) = g3(M). By assumption, the gluino and
squarks are inaccessible at colliders, and so the parameter eU3 may be measured only through
their virtual e�ects. Such measurements are likely to be extremely di�cult, as they require
an understanding of process-dependent QCD corrections. Note, however, that if the gluino
is light, then bg3 � bh3 = 4. Hence, the sign of eU3 could o�er an indirect test of the O(GeV)
gluino scenario [35] if both gluinos and squarks are not observed at the LHC.

In the expressions above, we have treated all gaugino couplings as equivalent. In fact,
as discussed in Sec. III, the various gaugino couplings may be signi�cantly di�erentiated by
Yukawa couplings. In this case, the gaugino-Higgsino-Higgs couplings hH

i
are split from the

other gaugino couplings by non-decoupling corrections from the heavy t and b squarks. The
corresponding parameters eUH

i
are therefore diminished by the e�ects of the t- and b-quark

Yukawa couplings and may be large and negative. For the remaining couplings, we have
explicitly con�rmed by comparison with the complete set of one-loop RGE's for heavy QCD
models contained in Ref. [32] that the additional decoupling e�ects not included in Eq. (5)
are negligible.

B. 2{1 models

Models with heavy �rst two generation scalars and light third generation scalars, Higgs
�elds, and gauginos have been discussed in Ref. [9], with explicit examples given recently in
Refs. [10{12]. These models exploit and are motivated by the fact that the most stringent

avor-violating constraints may be satis�ed by taking the sfermions of the �rst two families
very heavy, while �ne-tuning concerns may be alleviated by taking the other sparticles light,
since the Higgs sector couples (at leading order) only to the sfermions of the third family
and the electroweak gauginos. Note, however, that the heavy scale propagates to the light
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TABLE II. The parameter eUi in the 2{1 models.

Gauge Group Gi bgi bhi bgi � bhi
eUi

SU(3) �
13
3

�7 8
3

2:5%� lnR

SU(2) �
1
3

�3 8
3

0:71%� lnR
5
3U(1)

158
30

78
30

8
3 0:35%� lnR

�elds via hypercharge D-terms and two-loop e�ects, leading to a strongly model-dependent
upper limit on the heavy scale M [9,13]. Typical values of R � 40� 200 may be taken in
these models.

The gluino could, in principle, belong to either sector. For de�niteness and motivated
by gaugino mass uni�cation, we will assume that all gauginos are in the light sector. The
resulting parameters eUi are given in Table II. Since the decoupled sector consists of complete
multiplets of a grand uni�ed group, the di�erences bgi � bhi are equal for all i, and the
expressions for eUij are simpli�ed:

eU32 �
1

16�2
8

3

h
g23(m)� g22(m)

i
lnR � 1:8%� lnR ; (8)

eU31 �
1

16�2
8

3

h
g23(m)� g21(m)

i
lnR � 2:2%� lnR ; (9)

eU21 �
1

16�2
8

3

h
g22(m)� g21(m)

i
lnR � 0:35%� lnR : (10)

We see that the parameters eU3, eU32, and eU31 are enhanced by the strong coupling and are
therefore promising observables to probe.

Variants of 2{1 models may give alternative mass patterns, such as, for example, light
and degenerate left-handed sleptons of the �rst two generations, and heavy right-handed
selectrons and smuons [36]. A generalization of our results to these cases is straightforward.
A reduced heavy sector diminishes bgi � bhi and, thus, the corrections

eUi and eUij . On the
other hand, the existence of light selectrons and electron sneutrinos more than makes up
for this setback, as it opens up the possibility of high precision probes of the electroweak
super-oblique parameters at e�e� colliders that are inaccessible if these sleptons are all heavy
[18,20].

V. VECTOR-LIKE (MESSENGER) SECTORS

The super-oblique parameters receive contributions from all split supermultiplets with
standard model quantum numbers. In many SUSY extensions of the standard model, there
are extra vector-like �elds which transform under the standard model gauge groups. These
vector-like �elds could have both SUSY preserving and SUSY breaking masses, and so
they can also contribute to deviations in the SUSY relations gi = hi at low energies. For
example, this is the case in the gauge-mediated SUSY breaking models, where the vector-like
messenger sector contains Dirac fermions with mass MV and complex scalars with squared
massesM2

V
(1�x). The low-energy ordinary sfermion spectrum is determined by MV and x,

and it is required that jxj < 1 in order to avoid tachyons and contradiction with experiments.
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More generally, irrespective of the mechanism that mediates SUSY breaking to the ordinary
sector, there could exist some exotic vector-like �elds at or above the weak scale with Dirac
fermions with massMV and complex scalars with squared massesM2

V
(1+x) andM2

V
(1+y).

The variables x and y represent the SUSY breaking e�ects. If SUSY breaking is mediated
through supergravity, x and y can be O(1) only when the vector-like �elds have masses
near the weak scale. If SUSY breaking is mediated through gauge interactions, x and y

may be O(1) only when the vector-like �elds are <� O(100 TeV); otherwise, through loop
corrections, they will generate SUSY breaking masses for standard model superpartners that
are too large.

We consider �rst the messenger �elds of gauge-mediated SUSY breaking models. Let bi
be the contribution of the entire vector-like supermultiplet sector to the appropriate one-
loop �-function coe�cient. For example, if the messenger sector contains n5 pairs of 5 and
5 and n10 pairs of 10 and 10 SU(5) multiplets, then bi = n5 + 3n10 for all i. If we naively
perform a leading logarithm calculation, thereby ignoring �nite pieces and decoupling all
loops at the mass of the heaviest particle in the loop, we �nd

� eULL
i
� g2

i
(MV )

64�2
bi

�
2

3
ln
p
1 + x� 1

3
ln
p
1� x

�
: (11)

As is evident from this expression, the leading logarithms ln(MV =�) have cancelled, as they
must, since in this case, the SUSY breaking is governed not by MV , but by x. The result is
therefore reduced to a �nite term, and we clearly must calculate the �nite pieces correctly.

For gauge couplings, the naive decoupling is correct: the scalar loops decouple at
MV

p
1� x and the fermion loops decouple at MV . (See the Appendix.) The contribu-

tion to the gauge couplings can be written as

�

 
1

g2
i

!
= � bi

8�2
1

2

"
1

3
ln
MV

p
1 + x

�
+ 2� 2

3
ln
MV

�
+
1

3
ln
MV

p
1� x

�

#
: (12)

For the fermion-sfermion loop contribution to the gaugino wavefunction renormalization, we
can apply the result in the Appendix. The Feynman parametrization integral of Eq. (A3)
becomes Z 1

0
d�2� ln

"
�M2

V
(1� x) + (1� �)M2

V

�2

#

= ln
M2

V

�2
� 1

2
� 1

x
+ ln(1� x)� 1

x2
ln(1� x) ; (13)

and so the contribution to the gaugino couplings is

�

 
1

h2
i

!
= � bi

8�2
1

2

" 
ln
MV

�
� 1

4
+

1

2x
+
1

2
ln(1 + x)� 1

2x2
ln(1 + x)

!

+

 
ln
MV

�
� 1

4
� 1

2x
+
1

2
ln(1� x)� 1

2x2
ln(1� x)

!#
: (14)

As expected, we �nd that the ln(MV =�) terms cancel in the di�erence between the gi and
hi evolutions given in Eqs. (12) and (14), and the �nal result is
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� eUi = g2
i
(MV )

16�2
bi

�
�1

4
+
�
1

6
� 1

4x2

�
ln
�
1� x2

��
� �g

2
i
(MV )

384�2
bix

2 ; for small jxj : (15)

The e�ect is very small for most of the range 0 � jxj < 1, and it is therefore unlikely that any
experimental measurement can be sensitive to super-oblique corrections arising from such
a messenger sector. Note, however, that this e�ect has a negative sign for small x relative
to the logarithmic e�ect discussed in Secs. II and IV. Its smallness is thus fortunate, in
the sense that such e�ects therefore cannot cancel the non-decoupling signatures of heavy
superpartners.

It is also straightforward to obtain the result for the more general spectrum of vector-like
�elds (x 6= �y):

� eUi = g2
i
(MV )

16�2
bi

�
�1

8
+

1

4x
+
�
1

6
� 1

4x2

�
ln(1 + x)

�
+ (x! y)

� g2
i
(MV )

16�2
bi

 
x+ y

12
� x2 + y2

48

!
; for small jxj and jyj : (16)

For x 6= �y, the linear term does not vanish and we have a larger e�ect. However, unless
there are many such heavy vector-like multiplets (large bi) with signi�cant mass splittings
among supermultiplet components (large jxj, jyj), the contributions to the super-oblique
corrections are small relative to the deviations discussed in Sec. IV. Note that in both the
case of vector-like messenger sectors and this more general case, large deviations are possible
only for jxj; jyj � 1. If a deviation is seen which cannot be due simply to the standard model
superpartners, the considerations stated above then strongly suggest that the masses of such
vector-like particles are below the O(100 TeV) scale.

VI. FINAL COMMENTS AND CONCLUSIONS

In this study we have considered low-energy softly broken supersymmetric theories that
contain a heavy sparticle sector that is beyond the kinematical reach of planned future
collider experiments. Sparticle spectra leading to such scenarios appear in certain limits
of the most simple supergravity model, but more importantly, are known to arise in many
other well-motivated frameworks for the soft SUSY breaking parameters, and especially
those that address the SUSY 
avor problem. Here, we have shown that the heavy sparticle
sector induces non-decoupling radiative corrections in the light sparticle sector, providing a
crucial window for the exploration of the heavy sector through precision measurements in
processes involving light sparticles.

The non-decoupling of SUSY breaking is analogous to the non-decoupling of SU(2) break-
ing in the standard model. Here we have considered a particularly important set of non-
decoupling e�ects, which are analogous to the oblique corrections of the standard model,
and which we therefore call super-oblique corrections. Such corrections arise from gauge
boson and gaugino wavefunction renormalization, and lead to deviations in the equivalence
of gauge boson couplings gi and gaugino couplings hi. These corrections are therefore most
closely identi�ed with the oblique parameter U , and we have parametrized them with the

13



super-oblique parameters eUi � hi=gi � 1. The super-oblique parameters have a number of
important features: they are model-independent measures of SUSY breaking, receive addi-
tive contributions from every split supermultiplet, and grow logarithmically with M=m, the
ratio of heavy to light mass scales.

The super-oblique parameters may be expressed simply in terms of ln(M=m) and group
theory factors. As examples, we have estimated the corrections from heavy superpartners
within speci�c theoretical frameworks and found typical values eUi � Pi ln(M=m), where
Pi = 0:3%; 0:7%; 2:5% for i = 1; 2; 3, and the logarithm varies between 2 and 5. The
hierarchy between the di�erent parameters results from their proportionality to the low-
energy gauge couplings, and the positive sign of the parameters is model independent at the
leading logarithm level. We also calculated the contributions of messenger sectors in models
of gauge mediation and possible exotic vector-like multiplets. Such contributions were found
to be typically very small, with substantial corrections only for highly split multiplets.

The e�ect of super-oblique corrections in the accessible sparticles is to modify gaugino
coupling constants. It is therefore not di�cult to identify observables that are formally
probes of such corrections. For example, the cross section of chargino production at e+e�

colliders provides one such observable [17], as the gaugino couplings h2 enter through t-
channel sneutrino exchange. Selectron production at an e+e� collider provides another such
probe [18]. In addition, if a particle has two or more decay modes, and at least one involves
gauginos, its branching ratios are also probes of the super-oblique corrections. Of course, all
such measurements receive uncertainties from a variety of sources, ranging from backgrounds
and �nite statistics to the errors arising from the many other unknown SUSY parameters
entering any given process. A classi�cation of possible experimental probes at e�e� and
hadron colliders, as well as detailed studies of promising measurements incorporating such
uncertainties, is contained in an accompanying article [20].

If super-oblique corrections are measured, the implications are many and varied, depend-
ing on what precision is achieved and what scenario is realized in nature. The implications
may be listed in increasing order of the precision of the measurements. If super-oblique pa-
rameters are constrained to be roughly consistent with zero, such tests provide quantitative
con�rmation that such particles are indeed supersymmetric particles. If bounds on eUi at the
level of Pi%� ln(M=m) are achieved, deviations from zero may be seen, providing evidence
of a heavy sector. Finally, if bounds at the level of Pi% are achieved, the heavy mass scale
may be constrained to within a factor of 3, providing a discriminant for model building, and
in the most optimal scenarios, setting a target for future collider searches. Alternatively, if
all superpartners are directly observed, deviations from gi = hi are indications of the exis-
tence of, for example, exotic matter with highly split supermultiplets, which are likely to be
below the O(100 TeV) scale. If supersymmetry is discovered, the super-oblique corrections
will therefore provide a crucial window on the physics above the TeV scale.
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APPENDIX: ONE-LOOP THRESHOLD CORRECTIONS AT THE HEAVY

SUPERPARTNER MASS SCALE

In this appendix, we calculate the one-loop threshold corrections at the heavy superpart-
ner scale. These �nite corrections are usually included only when one uses 2-loop RGE's.
However, since in our case ln(M=m) is not necessarily very large, it is not clear a priori that
the �nite pieces are negligible relative to the leading logarithm contributions. It is therefore
important that we consider these pieces in detail. This will be seen to be especially true
when we consider the contributions from vector-like messenger �elds in models of gauge-
mediated SUSY breaking, where the large logarithms cancel and the �nite pieces must be
treated carefully. This is discussed in Sec. V.

In calculating these corrections, we work in the SUSY preserving DR renormalization
scheme, since we want to preserve the relation gi = hi when SUSY is not broken.6 The
couplings measured at low energies should be converted into the same scheme before com-
parison.

We �rst consider the vacuum polarization of the gauge bosons due to the heavy scalar
loops, ���

H
(q) = (g��q2 � q�q�)�H(q

2). The couplings are measured at much lower energies
than the heavy scalar mass MS, so we set the external momentum q to zero. The vacuum
polarization is then given by the well-known result

�H(0) = ig2�4�dTR

Z 1

0
d�

Z
ddk

(2�)d
(1� 2�)2

(k2 �M2
S
)2

= �TR
3

g2

16�2

 
1

2� d

2

� 
E + ln 4� � ln
M2

S

�2

!
+O(4� d) ; (A1)

where here � is the renormalization scale. TR is de�ned by TR�
ab = tr T aT b and is 1

2
for

the fundamental representation of SU(N). We subtract the terms 1=(2� d

2
) � 
E + ln4� in

the DR scheme. The remaining term, ln(M2
S
=�2), vanishes when � = MS, implying that the

gauge coupling in the low-energy e�ective theory matches that in the high energy theory
at � = MS. Therefore, we decouple the heavy scalar loops at the scale of their masses in
calculating the low-energy gauge boson couplings. In doing so, there is no �nite threshold
correction at one-loop.

Now we turn to the low-energy gaugino couplings. The heavy loop of the gaugino wave-
function renormalization consists of a scalar and a fermion of masses MS and mf , respec-
tively. The one-loop diagram gives

6In fact, our calculation is the same as in the MS scheme, as we only have scalars and fermions

in the loop.
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�2H(q) = i(�i
p
2h)2�4�dTR

Z
ddk

(2�)d
i(6 k +mf)

k2 �m2
f

i

(k � q)2 �M2
S

= i2h2�4�dTR

Z 1

0
d�

Z
ddk

(2�)d
� 6 q +mf

[k2 + �(1� �)q2 � �M2
S
� (1� �)m2

f
]2
: (A2)

Setting the external momentum to zero, the contribution to the wavefunction renormaliza-
tion is

�Z2 =
d�2H

d 6 q

�����
6q!0

= i2h2�4�dTR

Z 1

0
d�

Z
ddk

(2�)d
�

[k2 � �M2
S
� (1� �)m2

f
]2

= �TR
h2

16�2

Z 1

0
d�2�

"
1

2� d

2

� 
E + ln4� � ln
�M2

S
+ (1� �)m2

f

�2

#
+O(4� d) : (A3)

For the fermion-sfermion loop, mf ' 0, and the Feynman integral reduces to

Z 1

0
d�2� ln

�M2
S

�2
= ln

M2
S

�2
� 1

2
= ln

0@MSe
�

1

4

�

1A2

: (A4)

In this case, there is a nonzero �nite correction, which implies that the decoupling scale of
the fermion-sfermion loop is at MSe

�
1

4 instead of MS.
7 Therefore, to take account of the

threshold corrections at the decoupling scale, we could replace the scale M in Eq. (3) by an
e�ective decoupling scale fM di�erent from that in Eq. (2).

To get an understanding of how large such shifts in the decoupling scale are, let us
consider theories with heavy sectors composed of scalars (and possibly gauginos) with mass
M . Including the one-loop threshold corrections, we have

1

h2
i
(m)

� 1

h2
i
(M)

+
bi

8�2
1

4
+

bhi
8�2

ln
M

m
� bhi
8�2

1

4
; (A5)

where bi is the one-loop �-function coe�cient for both gauge and gaugino couplings above
the squark scale. The deviation of hi from gi at low energies becomes

hi(m)

gi(m)
� 1 +

g2
i
(m)

16�2
(bgi � bhi) ln

M

m
� g2

i
(m)

16�2
(bi � bhi)

1

4

= 1 +
g2
i
(m)

16�2
(bgi � bhi)

�
ln
M

m
� 3

8

�
: (A6)

Here we have used the relation bi�bhi = 3
2
(bgi�bhi), valid since bi�bhi receives contributions

from heavy scalars and their fermionic partners, while bgi � bhi receives contributions only
from the fermionic partners. We can see that the deviation is slightly smaller than that
naively obtained by decoupling the heavy loop at the heaviest particle mass. However, as
we are interested in the case where ln(M=m) >� 2, the shift only introduces only a small
correction to the total deviation.

7In the heavy Higgsino-light Higgs case, we have
R 1
0 d�2� ln

(1��)m2

~H

�2
= ln

m
2

~H

�2
�

3
2
.
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