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Measurement of the W Boson Mass at the Tevatron

Eric Flattum

Fermi National Accelerator Laboratory

Batavia, Illinois 60510-0500, USA

(for the D� and CDF collaborations)

Presented are measurements of the W boson mass from the D� and CDF collaborations at the Tevatron from

the 1994-1996 run. The W events are produced in pp collisions at
p
s = 1:8 TeV. The W mass extracted from

W ! e� decays at D� is determined to be 80.45� 0.12 GeV; and fromW ! �� decays at CDF is 80.43� 0.16 GeV.

The world average W mass from the hadron collider measurements is 80.41� 0.09 GeV.

1. Introduction

The W boson mass is given, at lowest or-

der, in terms of the electromagnetic coupling

constant(�), the Fermi constant(GF ), and the Z

boson mass(MZ) by equation 1

MW =

 
��
�
M2

Z

�
p
2GF

! 1

2

1

sin �W
p
1��R

(1)

where cos �W = MW

MZ
and at lowest order �R is

zero. At higher orders of perturbation theory �R

depends upon the masses of the particles in the

W self energy diagrams. Thus, in the context of

the Standard Model [1] a precise measurement of

the top quark mass andMW provides a constraint

on the unobserved Higgs particle mass. Likewise,

in the event of new particles, �R is modi�ed by

the masses of these particles. Therefore, a precise

measurement ofMW provides a constraint on new

physics [2].

2. Overview

In pp collisions at
p
s = 1:8 TeV the W events

are mainly produced through quark-antiquark an-

nihilation. The initial momentum of the pp sys-

tem in the transverse plane is approximately zero.

Therefore, the sum of the momentum in the

transverse plane after the W is produced and de-

cays is also zero. The W events used to measure

the mass are only the events which decayed into

leptons(e�; ��). Thus, any momentum imbalance

in the transverse plane is attributed to the neu-

trino. The longitudinal component of the neutri-

nos momentum cannot be determined because of

the particles not observed along the beam line.

The W mass is extracted from a �t to the kine-

matic distribution of its decay products. For this

paper the mass is extracted from a �t to the trans-

verse mass(mT ). The transverse mass is given by

equation 2

mT =

q
2p l

T
/pT (1� cos�) (2)

where p l
T
is the charged lepton(l = e; �) trans-

verse energy(momentum), /pT is the missing

transverse momentum, and � is the angle be-

tween p l
T

and /pT in the transverse plane. In

practice what is measured is the angle and en-

ergy(momentum) of the charged lepton(~p l
T
) and

~uT , which is the vectorial sum of all the ener-

gies in the transverse plane except for ~p l
T
. The

missing transverse momentum is given by /~pT =

�(~uT + ~p l
T
) and is attributed to the neutrino.

The mT does not have a simple analytical form

and therefore a fast Monte Carlo is used to pro-

vide mT lineshapes as a function of the hypothe-

sized W mass. The fast Monte Carlo can be di-

vided into two parts: the theory section and the

detector simulation. The theory portion involves

the production and decays of the W . The ini-

tial pT of the W , due to gluon radiation, is given

by the calculation in reference [3]. Also included

are the decay of the W to leptons(W ! l�) [4],

radiative decays(W ! l�
) [5], and the indistin-
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guishable background(W ! �� ! l���).

The shape of the mT distribution is a�ected by

the detector resolutions. The resolutions in the

fast Monte Carlo are taken directly from data and

will be discussed in sections 4 and 5.

This paper presents measurements of the W

mass from D� [6] based on W ! e� decays and

from CDF [7] based in W ! �� decays.

3. Event Selection

The event selection for both analyses are

quite similar. Both require that p l
T
> 25 GeV,

/pT> 25 GeV and j�j< 1.0. Each analysis has

a series of quality cuts on the charged lepton

that improve the signal and remove backgrounds.

D� requires uT< 15 GeV where CDF has a cut

of 20 GeV. Based on 76 pb�1 of data D� ob-

tains �28,000 W and �2,200 Z events, and with

90 pb�1 of data CDF has �21,000W and �1,400
Z events.

4. Charged Lepton

One can see from equation 2 that in order to

model mT properly one needs to measure the mo-

mentum of the charged lepton(e; �) to a very high

precision. Similarly the resolution of the lepton

momentum has to be known in order to model

the observed mT spectrum.

4.1. D�

The energy of an electron1 is measured us-

ing the uranium-liquid argon calorimeter of the

D� detector. The functional form the energy re-

sponse has been measured at a test beam to be:
~E = � � E + � where ~E is the measured energy,

E is the true energy, and � and � are constants.

The electromagnetic decays of the �0 and J= are

used to constrain � and the Z resonance is used to

measure �. The error on the W mass due to the

uncertainty on the electromagnetic energy scale is

65 MeV and is dominated by the statistical error

on the Z.

The width of the Z resonance is used to mea-

sure the energy resolution of the electrons. Since

1The D� detector does not have a central magnetic �eld

and therefore electrons and positrons will be generically

referred to as electrons.

the natural width of the Z is so precisely deter-

mined any additional resolution on the mass is

due to the resolution of the leptons. The error on

the W mass due to the uncertainty in the electro-

magnetic energy resolution is 20 MeV.

4.2. CDF

The momentum scale of the muons is set using

J= ! �� decays. A sample of �250k events

is used to calibrate the central tracking chamber.

The simulation of the J= lineshape includes the

e�ects of B decays and QED corrections.

The momentum scale calibration needs to be

transferred from the low pT muons from the J= 

events to the high pT muons from the W decays.

To this end the mass of the dimuon sample is

binned in 1/pT . A systematic error is assigned

to accommodate a slight dependence in 1/pT . A

cross check using the � resonances and Z mass

is shown to be consistent within the errors. The

error on the W mass due to the uncertainty on

the momentum scale is 40 MeV.

5. Hadronic Recoil

The /~pT is determined from the charged lep-

ton momentum and ~uT , where ~uT is the sum of

all the calorimeter cells except those occupied by

the charged lepton. The hadronic energy in a W

event is assumed to have a symmetric and asym-

metric component. The symmetric component is

due to the energy 
ow from the spectator partons

in the interaction, calorimeter noise, and energy

from previous interactions. The asymmetric com-

ponent is due to the gluon radiation which results

in a nonzero pT for the W .

5.1. Hadronic Recoil Response

Since the pT of the Z can be measured from

the leptons (pZ
T
) directly and from the calorimeter

(uT ) one can use this to study uT . In this way the

response of the hadronic calorimeter is measured

with respect to the lepton momentum/energy re-

sponse. One de�nes uT = Rresp
Z

T
where Rres is

the hadronic response function.

In order to minimize the e�ect of the lepton res-

olutions a coordinate system is de�ned for which

an axis (�) is given by the angular bisector of the

lepton directions in the transverse plane. The sec-
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ond coordinate � is at a right angle to �. From

Z events the average of (~pZ
T
+ ~uT ) � b� is plotted

versus b� �~pZ
T
. The slope of this distribution is the

hadronic response.

5.1.1. D�

The response function used is motivated by a

study of Z events generated with the ISAJET [9]

Monte Carlo and put through a full detector sim-

ulation using the GEANT [10] program. The

functional form is given by Rres = �res +

�res ln p
Z

T
. This function is used to �t the dis-

tribution (~pZ
T
+ ~uT ) � b� versus b� � ~pZ

T
simultane-

ously for �res and �res. The �tted values are

�res = 0:69� 0:06 and �res = 0:04� 0:02 with a

correlation coe�cient of � = �0:979.
Once the recoil response has been measured the

hadronic resolutions are determined. The width

of distribution of (~pZ
T
+ ~uT=Rres) � b� is a mea-

sure of the hadronic resolution. The symmet-

ric component of the hadronic resolution is taken

fromminimum bias events scaled by a factor �mb.

The asymmetric component is parameterized by

srec
p
uT and is along �~pZ

T
. A �t is performed to

(~pZ
T
+ ~uT=Rres) � b� in bins of b� � ~pZ

T
for the pa-

rameters �mb and srec. The �t has a �2 = 10:3

for 8 degrees and we �nd srec = 49 � 14% and

�mb = 1:032�0:028 with a correlation coe�cient

of � = �0:60. A correction to �mb of 1:03� 0:03

is made for energy 
ow di�erences between Z and

W samples used in the analysis. The error on the

W mass due to the uncertainty on the hadronic

response and resolution is 40 MeV.

5.1.2. CDF

In a similar vein the hadronic response and

resolutions are determined for W ! �� data.

The hadronic vector uT is given by �uT =

(1� �) pZ
T
+ �. The value of � is measured from

the �-balance of Z events. The components of

the hadronic vector pZ
T
are smeared according to

their scalar ET (
P
ET ) with resolutions deter-

mined from minimum bias data. The resolution

parameter � is taken from Z and minimum bias

data. The value of � depends upon the instanta-

neous luminosity of the event. The instantaneous

luminosity is related to the
P
ET of the event

and therefore to the resolutions determined from

minimum bias data. The error on the W mass

due to the uncertainty on the hadronic response

and resolution is 90 MeV.

6. The W Mass
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Figure 1. A �t to the mT distribution of data (�)
from the D� detector, the Monte Carlo simula-

tion (|{), and backgrounds (- - -).

0

100

200

300

400

500

50 60 70 80 90 100 110 120

CDF(1B) Preliminary χ2/df = 158/139 (50 < MT < 120)

χ2/df = 62/69 (65 < MT < 100)

Mw = 80.430 +/- 0.100 (stat) GeV

KS(prob) = 52%

Fit region

Transverse Mass (GeV)

# 
E

ve
nt

s

Figure 2. A �t to the mT distribution of data (�)
from the CDF detector, the Monte Carlo simula-

tion (|{), and backgrounds (hatched).

Once the lepton momentum scale, the lepton

resolutions, the hadronic recoil scale and resolu-

tions have been measured the W mass can be
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extracted from the �t to mT
2.

Figure 1 shows the �t to the mT distribution

from W ! e� decays from the D� detector. The

W mass is 80:45 � 0:07 GeV where the �t has

a �2 = 77 for 59 degrees of freedom. Figure 2

shows the �t of mT for W ! �� decays from the

CDF detector. The W mass is 80:43� 0:10 GeV

where the �t has a �2 = 62 for 69 degrees of

freedom. Table 1 lists the uncertainties on the W

mass due to the various sources for the D� and

CDF measurements.

Table 1

A summary of the uncertainties for the D� and

CDF measurements. The units are in MeV.
D� CDF

W Statistics 70 100

Lepton Scale 65 40

Calorimeter Linearity 20 {

Lepton Resolution 20 25

Recoil Modeling 40 90

Input pW
T
, PDF's 25 50

Radiative Decays 20 20

Higher Order Cor. { 20

Backgrounds 10 25

Angle Calibration 30 {

Fitting { 10

Miscellaneous 20 20

Total Systematics 70 115

Total 120 155

6.1. Combined Results

Combining these W mass values with the pre-

vious measurements [11{13] from hadron collid-

ers yields a W mass of 80:41 � 0:09 GeV where

50 MeV has been used as the common uncer-

tainty.

2For an accurate measurement of the W mass a number

of issues such as backgrounds and e�ciencies have to be

addressed. For more information on this subject see ref-

erences [6,7]

7. Conclusions

The measurements of the W boson mass from

the D� and CDF collaborations at the Tevatron

are presented. The combined W mass from the

hadron collider experiments is 80:41� 0:09 GeV.

Using equation 1 one �nds �R = �0:0276 �
0:0058 which corresponds to a 4.7� deviation

from the LO prediction.
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