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ABSTRACT

We present the transverse momentum distribution of the Z-pairs for pp — ZZX
at supercollider energies. The full p;(ZZ) spectrum is obtained by matching the
low-py result (from soft gluon resummation to all orders in a,) to the high-py re-
sult (from the O(a,) perturbative calculation). We examine where the fixed O(a,)
perturbative calculation is unreliable. We also present a comparison of our result
with the Monte Carlo program PYTHIA. The results are significant for background

calculations to heavy Higgs boson searches at hadron supercolliders, as well as for

testing perturbative QCD.
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I. INTRODUCTION

The Standard Model (SM) has been amazingly successful in describing the strong and
electroweak interactions in high energy physics. However, the electroweak symmetry break-
ing mechanism remains a mystery and the experimental search for the neutral Higgs boson
(H) predicted by the SM is still a major challenge(1]. If the mass of the Higgs boson (my)
is heavier than the mass of the Z-boson (Mz), then the next generation of hadron super-
colliders will be the appropriate tools for discovering the Higgs boson. Due to the enhanced
couplings of a heavy Higgs boson to vector boson pairs and the distinctive experimental
signature, the decay mode H — ZZ or ZZ* — £+¢~,£*{~ (£ = e, u) is considered the most
promising channel for discovering the Higgs boson if 140 GeV< myg < 800 GeV[1]. The prin-
cipal production mechanisms for this channel at hadron colliders are the gluon fusion process
g9 — H — ZZ[2] and the electréwe;.k boson fusion process qqg — qqVV — qqH — qqZ 7
(V =W, Z)[3,4]. For a top quark mass of 150 GeV the gluon fusion process is dominant for
Higgs boson masses up to mg =~ 800 GeV, while the importance of the electroweak boson
fusion process increases as the Higgs boson mass becomes larger and is comparable to the
gluon fusion process when mpg 2 800 GeV.

The major background to the heavy Higgs boson signal is continuum ZZ production

from the subprocess

97— 22 (1)
which was first calculated in Ref. [5]. The production of Z-pairs in association with one or
two QCD jets has also been calculated[6,7]. Recently the complete O(a,) QCD corrections
to hadronic ZZ production have also been calculated[8,9]. The O(a,) calculation includes

the virtual gluon correction to Eq. (1) and the real emission subprocesses
94— ZZg, q9— ZZq, 39— Z23. (2)
If the mass of the Higgs boson is as heavy as 800 GeV, the width of the Higgs boson is
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so broad that a clear resonance structure is lost. In this case it is important to understand
and suppress the backgrounds as much as possible in order to definitively identify the heavy
Higgs boson. Tagging the spectator jets in the electroweak boson fusion process has been
suggested as a way to suppress the continuum ZZ background[10]. A recent study showed
that tagging a single low transverse momentum (pr) jet in the forward-backward region
may be a very effective way to enhance the signal-to-background ratio for the heavy Higgs
boson[4]. Although it may not be necessary to study the jet activities for a Higgs boson
if 2Mz < myg < 600 GeV due to the rather clear resonance in the Mzz distribution[11],
single jet-tagging would still be useful for singling out the electroweak boson fusion process
in order to study the HWW and HZZ couplings[4]. In the strongly interacting scenario
of the electroweak symmetry breaking[12], single jet-tagging would also be helpful to select
events from the longitudinally polarized vector boson scatterings[4].

The Z-pair from the decay of the Higgs boson populate the relatively low-p; region, i.e.,
pr(ZZ) is of order Mw for the electroweak boson fusion process and of order 20-40 GeV for
the gluon fusion process after soft gluon resummation[13]. The fixed order perturbative QCD
background calculations in Refs. [6-8], which have served as the basis for many background
studies, can predict the py(ZZ) behavior in the high transverse momentum region, but fail
to describe the spectrum in the relatively low-p;(ZZ) region. It is therefore imperative to
carry out a more reliable calculation for continuum ZZ production in the low-py region and
see quantitatively to what extent the O(a,) perturbative result is valid in this kinematical
regime.

In this paper, we calculate the p;(ZZ) spectrum for the process
p+p—2+Z2+X. (3)

In the low-py(Z Z) region, we carry out a resummation of soft gluon emission to all orders

in o, [13-19]. In the high-p;(ZZ) region, we use the fixed O(a,) perturbative calculation



for the spectrum. The low-py result is then matched to the high-pr result to obtain the
full pp(ZZ) spectrum. We find that the pp(ZZ) spectrum from the O(a,) calculation is
unreliable for pp(ZZ) < 25 (35) GeV at the LHC (SSC) energy. If one is interested in the
kinematical region of the ZZ invariant mass Mzz > 500 GeV, which may be relevant to
heavy Higgs boson searches, one has to require p;(ZZ) > 30 (45) GeV at the LHC (SSC)
energy in order to assure the validity of the O(e,) perturbative calculation. To see how
well a typical shower Monte Carlo program predicts the pp(ZZ) spectrum, we also present
a comparison with the Monte Carlo result from PYTHIA[20]. The results agree reasonably
well in the low-pr(ZZ) region, but PYTHIA significantly underestimates the spectrum in
the high-py(ZZ) region.

The remainder of this paper is orga.niz-gd as follows. In Sec. II we present the formalism
for calculating the pp(ZZ) distribution for hadronic Z-pair production and we describe
how to match the resummed result in the low-p, region to the O(a,) result in the high-py
region. Results and discussions for the pi(ZZ ) distribution at hadron supercolliders are
given in Sec. III. Summary and conclusions are given in Sec. IV. Details on extracting the

resummation coeflicients are presented in an Appendix.

II. FORMALISM FOR Pr(ZZ) DISTRIBUTION

The formalism for calculating the p;(ZZ) distribution for hadronic Z-pair production is
presented in this section. We first describe the soft gluon resummation techniques used to
calculate the low-p;(Z Z) spectrum. Later we discuss how to match the resummed result in

low-py region to the O(a,) perturbative result in the high-p; region.

A. Low-pr(Z Z) Distribution from Soft Gluon Resummation

In perturbative QCD at large and moderate values of pp(ZZ2), pp(Z22) X O(Mzz), the

cross section for hadronic Z-pair production can be computed by truncating the o, power



series expansion

dlo

W = o?a,(a; + az0, + azc? + .. D (4)

however, at low pr, pr <€ O(Q), the convergence of the perturbative series deteriorates.
Here and henceforth, py denotes the transverse momentum of the Z-pair, @ is the invariant
mass of the Z-pair, Mzz, and a and a, denote the electromagnetic and strong couplings,

respectively. In the limit p;/@ — 0, the dominant contributions (i.e., the leading logarithmic

contributions) to Eq. (4) have the form

d? . Qz Q2 Q2
dQ? ;rp% ~ ap: ln(p%) [bl + by a, In? (—%) + b3 a? ln4(ﬁ) +.. ] . (5)

The convergence of the series is therefore. governed by a,1n?(Q?/p?) instead of a,. The
double-logarithms come from soft and collinear gluon emissions. At sufficiently low pr,
a,1n?(Q?/p%) will be large even when a, is small. Thus, it would be meaningless to calculate
the low-py spectrum by truncating the power series at any given order of a,. One is forced
to include all the large logarithmic contributions to all orders in &, when calculating the pp
spectrum in this kinematic region. Fortunately, the coefficients b; of the leading-logarithm
approximation in Eq. (5) are not independent and it is possible to sum the series exactly[14] so
that it may be applied even when a, In*(Q?/p%) is large. This technique has been generalized
by Collins and Soper[15] to resum all terms in the perturbation series that are at least as
singular as 1/p2 when p; — 0 and their formalism has been applied to Drell-Yan lepton-
pair production[16], single vector boson production(17, 18], Higgs boson production[13], and
heavy quark-pair production[19]. Following the same procedure, the resummed formula for

hadronic Z-pair production can be written as

3o 0
W(resum)— Z &' )(Q )

q=u,d,s,...

ﬂ O} (6)

where



we)=em{- [0 9 a(EL) (e + Blala)]

o ¢
{(C ® fq/p)(“’a’ :; ) (C ® fq/p)(“’bv i;) + (“’a « “’b)} .
(7)

The factor W(b) is a Sudakov-like form factor, y is the rapidity of the Z-pair, S is the square
of the hadronic center of mass energy, and &gg)(Qz) is the lowest order parton-level cross

section for qg — ZZ production,

(@) =50 [0+ o0 [ (320 —2g) . @

3Q? 1+ G2

with @ = /1 — 4M%/Q?. Theright- and left-handed Z-boson-to-quark couplings are denoted

by ng".

giZq = —Qq tan fw ’
T3

aZq __
sin @ cos Oy

g- - Qq tan ow ’ (9)

where @, and T4 denote the electric charge (in units of the proton charge €) and the third
component of weak isospin of the quark ¢, and 6y is the Weinberg weak mixing angle. The

parton momentum fractions in the limit p;/Q — 0 are

[02 2
T, = €Y %, T, =e ¥ % (10)

and fo/p(%a), fz/p(xs) are the quark and anti-quark distribution functions inside the pro-
tons. The integration variable b is the impact parameter (conjugate variable to pr). The
parameters C;, C3, and Cj; are unphysical and arbitrary, corresponding to renormalization
and factorization scale choices. Following previous authors, our canonical choices for these

parameters are

Cl = C3 =2e '8 = bo, Cz

Il
|
-

(11)



where v, is Euler’s constant. The symbol ® denotes a convolution defined by

(feg)@)= [ 1wa(3) L. (12)

Y

The functions A, B, and C(z) have perturbative expansions in a,:
) = S A(") (_(:!_.:.)n ,
Alay) ,,2_—_:1 o
)=Y B® (i"-i>n 13
Bla)= 3> B0 (%), (13

Cla,a) =5(1—2) + . C(a) (2a_7r)"

n=1

Therefore once the power series expansion coeflicients for A, B, and C are known, the py
distribution in the low-py region can be calculated using Egs. (6) and (7).

The coefficients A(™), B(™, and C("~1) can be obtained by formally expanding Eq. (6)
in terms of a, to the first n terms and then comparing with the ﬁxec} nt® order perturbative
calculation in the asymptotic limit of small py. In this paper, we are working in perturbation
theory to first order in «, for large pr, thus we will truncate the series with A(*); B(t), and
C® = §(1 — z). Neglecting C*) will only affect the normalization at pr = 0 to O(e,)
and the distribution for pp # 0 to O(a?). This implies that our calculation includes the
resummation of next-to-leading logarithms to all orders in «,, but the total integrated cross
section is accurate to zeroth order in a,.

To extract the coefficients A(*) and B(}), one formally expands the resummed result of
Eq. (6) to first order in a,(x) and gets the asymptotic result for low pr at a fixed renormal-
ization scale u. The parton distribution functions are evaluated at a fixed factorization scale

M. The resulting asymptotic expression is



o

W dpdy T =

P @) 5 o pi{ [4® ln(f—;) + BY [fyyp(wa) farolas) + (a = o))
+[foso(@a) (Paz ® faro) (26) + Faro(2a) (Pa ® fus) (28) + (2a > @)
+[fq/p(z0)(P¢Iy ® fa/r) (zs) + fi/p(ma)(qu ® fy/p) (2b) + (20 & mb)]} .

(14)

The parton splitting functions are

Pu(e)=} (= + (1= 2F).

P (z)-.—-ém(l + zz) (15)
AR + ’

where the “+” distribution is defined by

[ da fu@h(e) = [ do f(=)(h(=)  h(1)). (16)

Starting with the O(a,) perturbative calculation of hadronic Z-pair production in
Ref. [8], taking the limit of p — 0, and comparing with the asymptotic expression in

Eq. (14), we find
AW =2Cr, BW=_3Cp, (17)

where Cr = 4/3 is the color factor for the quark-gluon vertex. These coefficients are identical
to those in the Drell-Yan process[16—18] since the physics of the initial state soft and collinear
gluon emissions are the same in the two cases although the Feynman diagrams and the
kinematics in the ZZ case are much more complicated. Details on the derivation of A(*) and

B() are given in the Appendix.



The b-space Fourier transform in Eq. (6) can be simplified by using the identity

d?b . © bdb
@n) e*?r W (b) =_/0 = Jo(bpr) W(b), (18)

where Jy(z) is the zeroth order Bessel function. Using this identity and the parameters given
in Eq. (11), the resummed formula in Eq. (6) for low py hadronic Z-pair production can be

rewritten as

dao' A(o) 2 1 oo
—_— = . — bdbJo(bpr) W(b 19
T arg T = Y Q) 55 [ b Iben) W), (19)

where

W(b):exp{—/;qg i‘f_ a(q?) Cr [21n(__q_;_) _ 3]}

i q? 2w

b2 b2
x { faspl@argg) fasolsy 73) + (22 o ) } (20)

B. Full pr(ZZ) Spectrum

Having obtained the formula for the low-p distribution, we now discuss the calculation
of the high-p, distribution. At high p;, the pr spectrum can be ;eﬁably calculated from
conventional O(a,) perturbation theory[6-8]. The cross section is

do(pp — ZZX) (pert)= 3 / dza dzy fi/p(Tay M?) firp(zs, M?) d6D(ij — ZZX), (21)

Li=a,d8,9

where dé(1) is the partonic cross section obtained by calculating the Feynman diagrams at
O(a,) in perturbation theory, fi;/, are the parton distribution functions, and the sum is
over all possible partons contributing to the three subprocesses q§ — ZZg, qg — ZZq, and
dg — ZZg. The squared matrix elements for these subprocesses are given in Ref. [8]. It is
straightforward to calculate d?c/dQ?dp% or do/dp? via numerical Monte Carlo integration
methods.

We now have formulas for the low-ps region from the soft gluon resummation and for the

high-py region from the O(«a,) perturbative calculation. In the low-py region, the resummed

9



result is an accurate representation of the p spectrum. As pr gets large, however, the non-
leading terms, i.e., those terms which are less singular than 1/p% and were not resummed,
become important and need to be included. These non-leading terms can be estimated to
first order in a, by using the difference between the perturbative and the asymptotic formulas

and the following matching treatment was proposed{17, 18] for the pr spectrum

d’o d’c d’c
_49 _9 L7 : 22
407 dph (resum) + 107 dgh (pert) Q% dph (asym) (22)

Notice that the perturbative and the asymptotic contributions cancel each other in the limit
pr — 0 to give the resummed result. This matched result extends to a quite large-py
region, but as p, gets even larger, eventually the basic argument for large-log resummation
becomes invalid and the fixed O(a,) result represents the more accurate py spectrum. Thus
in principle, one should switch from the matched result to the perturbative result around
some value p*t® by some procedure. Also notice that the resummed and the asymptotic
results cancel each other to first order in a, so the perturbative term in Eq. (22) should
dominate at large-py, as one would hope. Unfortunately, although it is formally of O(a?),
the difference between the resummed and the asymptotic results may be much larger than
the perturbative result in the large-py limit. This is because the resummed and asymptotic
calculations are valid only in the low-p; region and they do not exhibit the correct high-
pr behavior, especially after convolution with the parton distribution functions which were
evaluated at the z values given by Eq. (10) corresponding to py = 0. This also makes the
switching necessary in practice.

The boundary line, p**®, above which the perturbative result is more accurate than

the matched result can be estimated by the condition

zQ’

a.(ph)In? % ~ O(1) (23)

which follows from Eq. (5). To a good approximation, we find that pP*tt =~ Q/3. However,

there does not exist a well prescribed procedure derived from first principle for the switching;
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the procedure has to be chosen by trial and error according to the numerical outcome. In

practice, a function

1
1+ (pr/pRet)t’

has been introduced by Kauffman[13] to smoothly switch from the matched formula to the

f(pr) =

(24)

perturbative formula according to

d’c d*o d*c do
0o (full) = 107 dph (pert) + f(pr) 0Tk (resum) — 10T ok (asym)| . (25)

The functional form of f(py) was chosen to minimize the error introduced by the switching.

As py — 0, the high power (pr/pFotch)*

insures that f(py) — 1 quickly so that the matched
result is obtained. As pp — oo, the high power (pr/pE*t)* also insures that f(pp) — 0
quickly so that the perturbative result is recovered. The error introduced by the match-
ing procedure is of O(a?)[13, 18]. Equation (25) will serve as our formula for the full pp
distribution.

Before carrying out numerical calculations, some remarks are in order. It has been
pointed out by Parisi and Petronzio[14] that the resummed expression Eq. (19) is ill-defined
when b > 1/Agcp because confinement sets in and «, diverges. Several procedures have
been proposed in the literature{15-17] to cut-off the divergence and parameterize the non-

perturbative effects. In this paper we follow the procedure used by Collins et al.[15] and
Davies et al.[16]; we replace W(b) in Eq. (20) by

W(b) — W(b,) e~ S~ (26)

where

R - | (27)

N

cuts off large values of b at some by, and S,,(b) parameterizes the large-b dependence
controlled by nonperturbative physics. In principle exp[—Snp(d)] can be measured, but in

practice one can approximate it with a simple Gaussian parameterization,
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bmaz
Sm®) =8 [0+ atn(22229)| (28)
where according to Davies et al.[16]
g1 =0.15 GeV?, g, =04 GeV?,  bpes = (2 GeV)™L. (29)

The g, and g; are obtained by fitting Drell-Yan data. We will take these values as our
standard choice and will study the uncertainty arising from different choices in the next
section.

Some care needs to be taken when numerically evaluating the resummed result in
Eq. (19). For a very low-p; value, integrating over a few periods of the Bessel function
Jo(bpr) will cover a large b-range. In this case the exponentially damping factor exp(—Snp)
sets in quickly and the integral converges-rapidly. However, for large py, many periods of
the Bessel function may still be in the small b-region and one must integrate over many more
periods in order to get a reliable result. To improve the efficiency of our numerical programs,
we employ the methods of Ref. [18], namely, we numerically integrate Eq. (19) over the first
15 or so periods of the Bessel function and then use an asymptotic e;cpa.nsion for the Fourier

transform[21].

. P;(ZZ) DISTRIBUTION AT HADRON SUPERCOLLIDERS

In this section we calculate the pp(ZZ) distributions at the supercollider energies,
namely, 15.4 TeV for the LHC and 40 TeV for the SSC. We also compare our results with
results from the shower Monte Carlo program PYTHIA and we discuss the theoretical un-
certainties in our calculations.

The numerical work for this paper was done using the one-loop expression for a, with
N; = 5. The QCD scale A; is obtained by evolving a,(¢?) from Ny = 4 to Ny = 5 such
that a,(q?) is a continuous function of ¢?; the b-quark mass is taken to be my = 5 GeV and

the four-flavor QCD scale A4 is determined by the choice of parton distribution functions.
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We work in the MS scheme[22] for renormalization and factorization and set the two scales
to be equal 4 = M = @, where @ is the invariant mass of the Z-pair. For most of our
numerical presentations, we use the parton distribution functions from Harriman, Martin,
Roberts, and Stirling (HMRS Set B)[23], we will however, compare these results with results
from Morfin and Tung distribution functions (Set B1)[24].

Figure 1 shows the calculated differential distributions d’¢/dQ dpr at the LHC for @ =
200, 500, and 800 GeV versus pp. The four curves shown are the perturbative, asymptotic,
resurnmed, and full matched results. The full matched curve represents the resummed result
in the region py < p**® = @/3 and smoothly transforms to the perturbative result at higher
pr. At very low py, the perturbative result diverges and becomes significantly different from
the resummed result below p; = 25, 30,.and 40 GeV for Q@ = 200, 500, and 800 GeV,
respeﬁtively. Figure 2 is the same as-F'.ig; “1 except it is for the SSC energy. In Fig. 2 the
perturbative result diverges from the resummed curve below p;y = 35, 45, and 60 GeV for
Q = 200, 500, and 800 GeV. The Q-dependence of the minimal-p; value below which the
perturbative calculation is invalid is a reflection of the large-log térms In*(Q?/p%). From
this observation, based on our numerical results, we approximate an empirical linear relation

between Q and p§** below which the perturbative result will not be reliable,

1
i =Loa, (0)
where
k=40, pr = 20 GeV, for the LHC, (31)
and
k=24, py = 26 GeV, for the SSC. (32)

This empirical relationship between p§* and @ gives a rough estimate of the kinematical
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region where the O(a,) perturbative calculation of Z-pair production is invalid and it also
can be implemented into the Monte Carlo perturbative calculation as a cut.

Figure 3 gives the py distributions integrated over @ for the LHC and SSC in parts a)
and b), respectively. The resummed, perturbative, and full matched results are shown in
the figure. To assure that the Z-pairs are produced in the central region within the detector

coverage, in Fig. 3 we have imposed a cut on the Z-pair rapidity
l¥W(ZZ)| < 2 and Mzz <2 TeV. (33)

Also shown in Fig. 3 is the py distribution generated by the shower Monte Carlo program
PYTHIA[20]. Shower Monte Carlo programs use the Sudakov form factor as a weight to
generate the soft gluon radiations based on a hard scattering matrix element. These pro-
grams have been widely used in‘ebJ’:perimental simulations. In the low-p; region, the results
agree reasonably well, however, at p; > 100 GeV, the PYTHIA result falls off sharply and
significantly underestimates the high-py spectrum. The discrepancy at high p; occurs be-
cause PYTHIA starts generating soft gluon radiation from the lowest order ¢qg — ZZ matrix
element which has p;(ZZ) = 0. Thus it is very inefficient at producing gluons in the high-py
region. On the other hand, our result for the high-py region is based on the 2 — 3 matrix
elements of Ref. [8].

We now discuss the theoretical uncertainties in our calculations. First of all, the error
introduced by the matching procedure in the intermediate-p; region is of O(a?)[13,18], which
is at the few percent level. Secondly, higher order contributions from C(), 4(3), B(3), etc. in
Eq. (13) have been ignored. Neglecting those may introduce an error of about 30%(8, 25].

Another source of uncertainties at low pp is from the non-perturbative treatment, namely,
the parameters g1, g2, and bmqep in Eq. (28). The parameter b, is a value above which
perturbative QCD breaks down. Davies et al.[16] took by = (2 GeV)™?, which is near

the lowest value allowed for the factorization scale in the parton distribution functions.
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The parameters g; and g; are then determined by fitting Drell-Yan data at V§ = 27 and
62 GeV. To study the sensitivity of our results to these parameters, we fix .. and change

the standard choice of g; and g, in Eq. (29) by factors of 2 and 1/2, which gives

g1 = 0.300 GeV?, gz = 0.8 GeV? | (34)
and

g1 = 0.075 GeV?, gs = 0.2 GeV?. (35)

Figure 4 compares the resummed results for the differential distribution d?¢/dQ dpy at the
SSC for Q = 200 GeV using these parameters. We find that at p; ~ 2 GeV, the deviation
from the result of the standard choice is about 15%, while at the peak region py ~ 10 GeV,
the deviation drops to about 2%. Since we are interested in the relatively large-p, region,
the uncertainty from the non-perturbative parameterization does not affect our previous
discussion.

Next we examine the uncertainty from the choice of parton distribution functions. Fig-
ure 5 compares the d?c/dQ dp; distribution at the SSC for @ = 200 and 800 GeV for the
HMRS Set B and MT Set Bl parton distribution functions. We see that the result from
MT is higher than that of HMRS by about 20% near the peak value for Q = 200 GeV,
while they tend to agree better at larger py. The difference between HMRS and MT also

becomes much smaller for @ = 800 GeV. This uncertainty is mainly due to our ignorance of

the parton distributions in the small = region.

IV. CONCLUSIONS
We have calculated the transverse momentum distribution for hadronic Z-pair produc-
tion at hadron supercolliders. The full pp(ZZ) spectrum is obtained by matching the re-
summed result at low p;p(ZZ) to the perturbative result at high py(ZZ). We find that
the perturbative @(a,) calculation is invalid for pr(ZZ) < 25 (35) GeV at the LHC (SSC)
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energy. In heavy Higgs boson searches, a minimum cutoff on M;; may be needed in order
to suppress the ZZ+ jet backgrounds. However, in order to make the O(a,) background
calculation reliable, an increasing cutoff on p; is also necessary. We have shown that to avoid
large logarithms of the form In(p/M%;) that spoil the O(a,) perturbative calculation, we
need to impose, e.g., pr(Z2Z) > 45 GeV for Mz; > 500 GeV, and pr(ZZ) > 60 GeV for
My, > 800 GeV at the SSC energy.

We have also compared our results for the pp(Z Z) distribution with shower Monte Carlo
results from PYTHIA. We find that they agree reasonably well in shape for pp(ZZ) <
100 GeV, however, PYTHIA significantly underestimates the rate for large pr(ZZ). The
discrepancy at large pp(ZZ) is easily understood since PYTHIA starts generating the ZZ
events from the ¢¢ — ZZ matrix element with zero p;(ZZ2).

Our results are not sensitivé t;the non-perturbative parameterization since we are
mainly interested in rather large py, where the perturbative contribution is dominant. Dif-
ferent choices of the parton distribution functions give about 20% uncertainty at the peak
pp region while the difference tends to be smaller at larger py values.

Since the pr(Z Z) spectrum is entirely governed by QCD radiations and the ZZ produc-
tion rate at supercollider energies is sizable, our results could also provide a good test of

perturbative QCD at a scale of order 200 GeV.
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APPENDIX: EXTRACTION OF RESUMMATION COEFFICIENTS

In this appendix we discuss the derivation of the coefficients A(*) and B(") in Eq. (17).
We begin by examining the asymptotic expression in Eq. (14) which can be viewed as a con-
volution of the parton distribution functions with the asymptotic partonic differential cross
section, d35" asym/ dQ?dp?.dy, summed over the 2 — 3 real emission subprocesses q§ — ZZg,
g9 — ZZq, and g§ — ZZg. We first observe that the terms proportional to the Altarelli-
Parisi splitting functions are proportional to 1/p% and are divergent as pr — 0. These
terms are mass singular terms and will give pure 1/¢ collinear poles in the dimensional reg-
ularization scheme[26]. These poles must be factorized into the MS[22] definition of the
parton distribution functions. Putting the Altarelli-Parisi splitting terms aside, deconvolut-
ing Eq. (14), and using the variable transformation dQ?dy = Sdz,dzs, one easily obtains the
following expression |

d a.asym

=59
=R o

() (1)
pr [A ln( )+ B%)]. (A1)

When integrating over dp?, dimensional regularization will be used to regulate the
In(Q?/p3)/p% and 1/p% singularities as py — 0 in the above expression. In n = 4 — 2¢

dimensions, the integral of the previous equation is

. _ 4z a, . dp?
a“ym(qq—»zz.q)—f(ﬁﬁ{—)% 5@ [ s [A“’l( )+B<l>], (A2)

where p is a mass parameter introduced to keep the coupling constant dimensionless and
&gg)(Q’,e) denotes the lowest order cross section for ¢q¢ — ZZ in n = 4 — 2¢ dimensions.

Performing the dp? integration, we find,

1 4rp*\° « A g
ABsym( - — hatl .\(0) 2 _
o (93 — ZZg) ) ( 0 ) 7 (Q%¢€) [— ——| + finite terms. (A3)

The 1/€? and 1/€ pole terms in Eq. (A3) are the remaining pole terms after the mass factor-

ization for the real emission subprocess g — ZZg. Therefore, to extract the coefficients A1)
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and B(Y), one may start with the O(a,) perturbative formula for the real emission subprocess
in Ref. [8]. The infrared and collinear poles can be extracted by taking the limit pr — 0.
After factorizing the pure collinear 1/€ poles into the parton distribution functions, one
can compare the remaining poles with the asymptotic expression in Eq. (A3) to obtain the
coefficients. Alternatively, since the remaining pole terms for the real emission subprocess
g3 — Z Zg will exactly cancel the soft pole terms from the one-loop virtual diagrams, one can
start with the formula for the one-loop virtual correction. Here we will give the derivation
according to the latter approach. The pole terms from the one-loop virtual correction to the

process q§j — ZZ have been calculated[8,9] and according to Eq. (12) of Ref. [8],

aviets - [(1—¢) {4np®\° a, . 2 3 )
a"“t(qq —Z2Z) = I‘((l — 25)) ( Q,: ) o 032’(622, €)Cr [-—25 - ;] + finite terms. (A4)

By using the fact

1 T(l-e)
T(l—¢) T(1-2¢)’

(A5)

to first order in € and by requiring the cancelation of the pole terms between the virtual

expression Eq. (A4) and real emission expression Eq. (A3), we finally obtain the result
AW =20, BW=_-30F, (A6)

with CF = 4/3.
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FIGURES

FIG.1. The differential distribution d?c/dQ dpy versus py for the LHC center of mass energy,
VS = 15.4 TeV. Parts a), b), and c) are for Q = 200, 500, and 800 GeV, respectively. The

perturbative, asymptotic, resummed, and full matched results are shown.

FIG. 2. Same as Fig. 1 except the center of mass energy is for the SSC, V'S = 40 TeV.

FIG. 3. The Z-pair transverse momentum distribution. Parts a) and b) are for the LHC and
SSC center of mass energies, respectively. The resumrned, perturbative, and full matched results
are shown. Also shown is the result from the Monte Carlo program PYTHIA. Kinematical cuts of

Eq. (33) have been imposed here.

FIG. 4. The differential distribution d’c/dQ dpy versus py at Q = 200 GeV for the SSC center
of mass energy. Results for three sets of the non-perturbative parameters g; and g3, corresponding

to Egs. (29), (34), and (35), are shown.

FIG. 5. The differential distribution d*c/dQ dpy versus p; at Q = 200 and 800 GeV for the
SSC center of mass energy. Results from the HMRS Set B and the MT Set B1 parton distribution

functions are shown.
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