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Given a theory of CP violation, the mechanism for the violation typically involves 

heavy fields like the top quark in the Kobayashi-Maskawa model, the gluino/squarks 

in the minimal supersymmetric standard model, the right-handed gauge boson in the 

left-right models, or Higgs bosons in Higgs mediated models. At low energy (below 

the weak scale), the effect of these fields is carried by CP violating effective operators. 

One of the typical operators that can be significantly induced in most of the models 

is the chrome-electric dipole moment (CEDM) of the quarks. At even lower energies 

when these quarks are integrated out, many further interesting operators are in turn 

induced. 

Weinberg[l] studied one of these interesting operators 

Oa = +“b’&$J& , 

which can also be identified as the CEDM of the gluon itself[2], that provides a 

mechanism to generate the neutron electric dipole moment (NEDM). In Eq. (l), 9 

is the gauge coupling; GEY is the gluon field strength; EF = i+ppGaPo is its dual 

with col’s = +l; and f abc is the totally antisymmetric tensor of SU(3). Imposing the 

equation of motion for the sourceless gluon field, up to total derivatives, 0s is the 

unique purely gluonic gauge invariant CP violating operator of dimension 6. It is also 

interesting to note that the dimension 4 topological term, 

00 = ~~,G”“” , 

can provide an enormous contribution to the NEDM due to the nontrivial QCD B 

vacuum. There are many ways to avoid this so-called strong CP problem. There- 

fore we will not address the issue associated with 0s here[3]. Besides Os, it was 

also pointed out[l, 41 that certain dimension 8 purely gluonic operators can induce a 

NEDM. Earlier, Morozov[5] had investigated the renormalization group property of 

0s and the three independent CP violating gluonic operators of dimension 8: 
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O8,1 = g’~@p,G”““G~BGb”~ , 

08,~ = g4~~p,Gb”G~oGb”~ , 

Os,3 = g4fd”“de”@p,Gb~“Gc apG”a 

(3) 

Here d”” is the totally symmetric tensor of SU(3). 

The induction of 0s after integrating out the heavy quark with CEDM in the 

effective field theory has already been studied by several groups[6-91. Here we inves- 

tigate the effects caused by the induction of 0s. 

The higher dimensional operators are typically suppressed by additional powers 

of the heavy quark masses. However, unlike Os, which is suppressed by the QCD 

renormalization effect at low energy[5,6], one of the dimension 8 operator[5] is QCD 

enhanced[lO]. This enhancement can compensate the dimensional suppression which 

is not severe if the relevant scale is mb (or m,), but not Mw or higher. 

Suppose a CEDM of a heavy quark Q with mass m is first induced at a high 

energy scale A > m when particles with masses greater than A are integrated out 

from the low energy theory. At the renormalization scale p = i, the effect of the 

heavy particles can be summarized by the following Lagrangian 

L = -itrc G,,Gw + o( p - m - igC7sa. G)Q , (4) 

where C is the CEDM of the heavy quark. Here G,, = G$T” with T” the gauge group 

generators in the representation of the fermion, trc(T”Tb) = iP*; V. G = ullyG@” 

with cr,,,, = f[7,,,7”]; and ,P = 7,J” where P,, = ia,+gA, with A,, = A;T” the gauge 

connection. Assuming there is no other mass scales between A and m, one can evolve 

the theory from A to m via the standard renormalization group (RG) machinery. 

However, when p passes below m, we change the effective theory to a new one with 

the heavy quark Q removed from the particle spectrum[ll]. The new effective theory 

thus obtained involves an infinite tower of nonrenormalizable operators constructed 
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out of the field strength and its covariant derivative but with coefficients suppressed 

by inverse powers of the heavy quark mass. At the one loop level and to the first 

order in C, the relevant effective action is given by 

A& = -gCTr[7s( ,P - +v. G] (5) 

The symbol Tr denotes the functional trace including the space-time coordinates 

and other indices. The trace can be evaluated by the covariant derivative expan- 

sion method[lZ-141 The final expression for the off-shell effective action containing 

operators up to dimension 8 is 

A&p = &gC tr J d%.y, {y (In 11:~ i finite) (u G)* 

+A [-$T GD*o G + $(, . G)3] 

+A [g (+D,D,~. GD”D’cr . G 

-g2G,,G’“((r. G)‘) - ;g’(D*u . G)(o . G)? 

++g3(o. G)’ - &g%. GDp[D”G,,,r . G]]} . 

(‘3) 

The symbol tr is the trace over the Dirac indices and the g&uge group indices. 

The covariant derivative D, acting upon a matrix, M = M”T”, is defined as 

D,M = a,,M - ig[A,,M]. The ultra-violet divergent term in Eq. (6) comes as 

no surprise because the induced operator, Og, is of dimension four. However it should 

be interpreted as the operator mixing between the quark CEDM and the topological 

term in the QCD renormalization group evolution. In fact, the coefficient of the di- 

vergence in Eq. (6) implies the anomalous dimension 7~s = -2m, which agrees with 

Morozov’s result[5,3]. Besides the operators involving only the field strength, there 

are also operators containing the covariant derivatives. For instance, in the case of 

dimension 6, the Weinberg operator tr 7s(o. G)s is accompanied with the operator 

tr 7s~. GD’o. G. However, by imposing the equation of motion for the sourceless ex- 

ternal gauge field D,G”@ = 0 and the Bianchi identity D,Gp, + DpG,, + D,G,p = 0, 
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one can show, up to total derivatives, that all the latter operators can be expressed 

solely in terms of the field strength. For instance, the last term in Eq. (6) vanishes. 

Note that this result is true for the SU(N) case which has four independent, on-shell, 

dimension 8, CP violating gluonic operators when iV > 3. For SU(3), one can further 

express all these operators in terms of the chosen basis 00, Os, and Os,;[15] . The 

effective action can be written as, 

seff = SQCD + %&t quuh + 
J 1 

da1 Go, + 5 G,ios,i , 
;=I 1 

ca= c 
C C 

32rr’m’ CS,l = - 96+d’ 
cs,s = 0, C&3 = - 

64rr2m3 (8) 

We have not included the topological term in Eq. (7). Its effects as well as its impact 

on the NEDM have been studied in Ref. [3]. 

It is actually straightforward to generalize Eq. (6) to arbitrary semi-simple Lie 

groups even though we have assumed there is a single gauge coupling constant gin the 

derivation. Such a general formula is very useful, for example when the heavy quark 

Q carries both the electric dipole moment and chrome-electric dipole moment. In this 

case, besides generating the gluonic operators, one has also the photonic operators 

and the mixed photon-gluonic operators. Some of these mixed operators have been 

considered in the literature[l6]. The complete effective action involving not only 

the photon and the gluon fields strength but also their covariant derivatives will be 

presented including some technical details elsewhere[l5]. 

The induction of 0s from the the elimination of the quark CEDM in the effec- 

tive field theory has been studied before in Refs. [6,7]. Subsequently[lO], we have 

briefly discussed the dimension 8 operators. Here we will give more details on their 

phenomenology. The most interesting case where a CEDM may be induced at high 

energy is clearly through the b quark. We thus need to study the models in which 
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an appreciable CEDM of b quark is generated at the weak scale or higher. This is 

not what happens in the standard Kobayashi-Maskawa model of CP violation. How- 

ever, a significant CEDM for the b quark occurs in simple extensions of the standard 

model. Scenarios include charged Higgs exchange models, supersymmetric models, 

and left-right symmetric models, etc. The CEDM of the b quark occurs when the 

heavy particles, such as the top quark, the charged Higgs bosons, the gluinos and the 

bottom squarks, or the right-handed charged gauge bosons are integrated out at the 

high energy scale A. The effective Lagrangian has the general form: 

Letr(A) = ‘.. + Cb(A)ob(A) + CS(A)OS(A) + kCs,<(A)Os,i(A) > (9) 
i=l 

where O,(A) = -~g(A)&i7so~‘G,yb is the CEDM operator of the b quark defined at 

the scale A. The coefficient c,,(A) depends on details of the models of CP violation. 

In the following, we summarize the results that can be found in the literature. 

(i) In the minimal charged Higgs exchange model of CP violation[lS] with three 

Higgs doublets &, 4s and &,, the first two are responsible for the masses of the t-like 

quarks and the b-like quarks respectively, while the last doublet is mainly responsible 

for the electroweak breaking. The mass eigenstates H$ and Hz together with the 

unphysical charged Goldstone boson Hz are linear combinations of d:, & and 4,‘: 

$+ = xi=, UijH$(i = 1,2,3) where Uij is complex in general. In this model, we 

obtain[7,19] 

C:(A) = -$ &Im ( <4yg$>) ($-& (e-3- l”f$) ? 

with ~2 = m:/M&. 

(ii) In minimal supersymmetric model based on N = 1 supergravity, we have[20] 
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c,scsy(I) = !?(A)mb(A) (AVZ + Ct=nax)sin4cI 
8+ 4 b 

-2 + (1 + 2og)ln(1 + ?d , 

5 ! 

in which ~6 = m:/(mi - mi) with rn~ and m6 the gluino and sbottom masses re- 

spectively. A is the Polonyi constant, ms,a is the gravitino mass, ji and tan a~ are 

the mixing parameter and the ratio of the two VEVs of the two Higgs doublets re- 

spectively, and finally sin 4 is the CP violating phase arising from the complex gluino 

and/or squarks masses. 

(iii) In left-right symmetric model, we obtain[li, 211 

1+I,w+l,w2; 
4 t’ 4 tz 

(12) 

Here u:r = m:/M&;. v; and a; are defined in the charged currents t;ly(u< + a;ys)b 

which couples to the mass eigenstates W of the charged gauge bosons WL,R. They 

can related to the mixing angle [ and the CP violation phase 7 as 

v1 = cos ( + eiq sin 4, al = - cos ( + eitl sin t, 
(13) 

772 = - sin (es $ cos f, ar = e-‘? sin E + cos [. 

where E and n are defined by WI’ = co~<W~+e-~~ sin(WRf and Wz’ = --e’q sintWz+ 

cos (W;. Also, Mw, > A4w, N Mww. For simplicity, we have used the condition 

gL = gn = e/(fisinBw). Note that, unlike in Eqs. (10,ll) of previous models, mb 

does not occur in Eq. (12). 

To study the induction of the gluonic operators, we will assume that Cs(A) and 

Cs(A) are initially zero for the models mentioned above. Since 0s has lower dimension 

than 0s and O&i = 1,2,3), it will not induce these operators in the RG evolution. 

However, as one passes through the b quark threshold from above, finite 0s and 

Os+(; = 1,2,3) are induced with coefficients C&L) and L&(p). These coefficients are 
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determined by matching physical amplitudes from below and above[7,6,8, 91 the b 

quark threshold with Eq. (a), where the CEDM Cb G C(m,f) is related to C&(A) by 

S, = (33-2n)/3 is the QCD p-function coefficient with n active flavors of light quarks 

during the RG evolution. 7s is the anomalous dimension of Cb. We assume 5 active 

flavors between the scales A and mb. In order to obtain a more reliable estimation of 

the matrix element of the NEDM, we need to evolve the induced operators Oe and 

0s from mb down to the hadronic scale via the RG machinery. The RG equations are 

d 
P&G t ~7sc. = 0, -ya = -18, (15) 

d a:a 
@-cs+-c~.7=0, 

dp 2x 
7= 

6 -12 18 

19-50 21 

7 -6 -15 ,I: (16) 

in the matrix form. The eigenvalues 7i(; = 1,2,3) of this anomalous dimension 

matrix in Eq. (16) are 4.82, -42.98, and -20.84. The transformation matrix (S) 

which diagonalizes the matrix (7) is obtained numerically 

s= 
-0.912 0.190 0.275 

-0.394 1.038 -0.224 

-0.203 0.175 -0.560 

(17) 

such that S’7S = 7n and (7D)ij = 7i6ij. In the new basis, O’s = ‘~5’~‘.Os, CA = Cs.S. 

One can see that the RG enhanced operator is mainly composed of Oar. Thus, at 

the hadronic scale, the Wilson’s coefficients are 

G(P) = 3y$; * ($q (z!w)” (#)” , (16) 



2s1i t 3&i c*(f) (z!;)) ’ (~:i;;i) ii ( I$;(,) 2 (lg) 
mb 

We estimate the size of the NEDM by using the naive dimensional analysis[lli] ac- 

companied with the unknown correction factors &, & which are naively of order 

about one. 

DN(OS) = (eMx/4~)s%)C&)ts , 

DN(Qs) E (eM,3/16?rZ)g4(ll)C~,i(~)~~,i . (20) 

Here Mx = 47rF, Y 1.19 GeV is the chiral symmetry breaking scale. The strong 

coupling is set at g(p) = 4r/fi as in Ref.[l]. It is interesting to compare the 

numerical ratio between DN(O~) and D.v(Os), 

DN(“d = s(p) M; 2% + 3.53; --- 
DN(OS) 4n m; 6 

We concentrate our attention to the case i = 1 for the reason of the QCD enhance- 

ment . Then, 

DN(OII)/DN(OB) 2! 3.6&,,/& (22) 

The naive dimensional analysis is certainly not reliable since, when it is applied to 

operators of arbitrary normalization, we will obtain different predictions. Recently, 

Chemtob[22] used the QCD sum rule method to provide a more systematic estimate 

of the hadronic matrix elements of the operators Og,Os, and 0s. In this scheme if 

one assumes the nucleon pole dominance, the results are [s = 0.07, I&,, = 0.08, which 

correspond to smaller DN compared to the dimensional estimates above. However, 

their ratio is still about 1, so the 0s operators remain giving the dominant contri- 

bution to the NEDM. Using the current experimental bound[lO] lo-r5 e cm and the 

matrix elements of Chemtob, one can put a constraint on the CEDM of the b quark, 

i.e. 
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cb 5 0.6 G,mzb/16?r2 (23) 

If the chrome-electric dipole moment is given to the charm quark initially, the ratio 

in Eq. (22) will be even an order of magnitude larger because the quark mass suppres- 

sion factor is less severe. In conclusion, the induced 0s operators can place strong 

constraint on parameters of the CP violation. 

Finally we note that, in the above models, the contribution to 0s.i through the 

b quark CEDM in our approach corresponds to a RG improved two loop contribu- 

tion from the viewpoint of the high energy Lagrangian. There are other two loop 

contributions to the Os,i in these models. However they are expected to be small as 

discussed in Ref.[lO]. 

We have been benefited from discussions with Eric Braaten, M. Chemtob and 

Lai-Him Chan. This work was supported by the U.S. Department of Energy. 
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