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DERIVATION OF PRISMATIC COUPLING COEFFICIENTS IN MAGNETOSTATIC 

CODE-GFUN 

Stanley C. Snowdon* 

Fermi National Accelerator Laboratory, P.O. Box 500, Batavia IL 60510 

Abstract 

A new derivation of the analytical representation of coupling coefficients for prismatic 

elements in the magnetostatic code GFUN3D1 1s grven. Although the numerical results 

agree with the existing code the explicit derivation given below does not to my 

knowledge exist in the open literature. In particular the derivation makes use of new 

algebraic equivalences that simplify the presentation and rationalize the sign changes 

needed in the subroutine TERMS. 

I. Introduction. 

It has been noted that in the magnetostatic code GFUN3D1 the AMPFAC(actua1 

excitation current divided by ideal iron excitation current for a given central field) 

is larger than expected. Many refinements have been added to the code such as the 

use of preconditioned matrices. Although the use of these matrices has removed 

internal looping of the magnetization vector the AMPFAC is always too high. 

It is possible that the limitation placed on the number of elements by the local 

computing environment is responsible for the difficulty. However, since one must 

live with the local environment, other conceivable sources of the difficulty were 

explored. In particular, since the use of tetrahedral elements gave a lower AMPFAC 

than the use of prismatic elements, it was thought desirable to derive the coupling 

coefficients for the latter elements independently. 
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II. General. 

In Fig. 1 use h for prism axis and let 7 designate the vector from 

P(field point) to &(source point) on any of the plane faces of the prism shown 

here as triangular for simplicity. 

Thus: 

with 

i = i(xq- xp)+Xyq- yp)+I;(hq- hn) 

And 

r= I;1 

(ds x E)dh 1 (a,b,c..) 
iida = Bdxdy (e) . 

-?idxdy (0 

In GFUN’ the magnetization is taken to be constant throughout any one 

element. For this element the contribution to the field at P is given by 

AH(P) = ‘w.m(Q) , 

where E is the solid angle tensor or dyadic 

=w = $i ;;,V,+) da, 
6 *Pq 

The point & is on the surface S of the element and P is taken to be the 

centroid of any element if one is forming the set of equations from which Ef 

is to be found. Or, having found i?f, P is taken to be any point at which 

the field is desired. The vector ii., is the outward normal to the surface at 

the point Q Contraction of the dyadic gives the solid angle 

wp = i “sV,+) da, 
rPq ) 

0) 

(2) 

(3) 

(4) 

(5) 

(6) 

which is equal to 4?r if P is inside the closed surface or zero if P is outside. 



On executing the gradient the solid angle tensor in dyadic notation becomes 

=w= 
$ s%da, (7) 

r 

where iT is the outward normal at Q, r is the vector from P to Q and r is Irl. 

III. Contribution to z from Sides (a,b,c..) of the Prism 

A,=j.J(@.+=dh = Jdh &@-.$=I. 

From this the tensor components are 

Ay, = Idh f & [i.(dT x q][T.;l= jdh$ 5 dy , 

A+ = j-dh f & [i.(dF x r;)]F.fl = j.dh$ + dy , 

Aez = ldh 4;, 4 [T.(di x K)]E.r;l = jhdhc$ --$ dy , 

AL+ = j-dh 4;, -$ F.(di x lQ]F.;l = -jdh$‘$ dx , 

k!TY = p 4;, -+ F4di x ‘QlF.Tl = -fd$ --$ dx , 

Awyz = j-dh f $ fi.(dZ I r;)][;.fl = -fhdhf -$dx , 

Awzx = j-dh $ -$lr;.(dS x K)][:.r] = 0, 

Atiy = fdh s;, +r F.(ds x lT)][iJ = 0 , 

A%, = fdh 4;, $ F.(d; x Q][T.k-j = 0, 

(9) 

(10) 

(11) 

(1‘4 

(13) 

(14) 

(15) 

06) 

(17) 

where 

x = xq- xp, y = yq-- yp, h = h, h,, r= Jv. 

Individual Side Expressions: 

Ah =Jdh f 5 dy = &+=..Aw&side) , 

Au&side) =Idh $ ~d~=$~d&&z+&jdh~ 

(18) 

(19) 

(20) 
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For side a let 

y = c + sx , 

where q, the transverse part of the Q( variable) point relative to the 

P(fixed) point, ranges from (xt,y,) to (xz,y2). For side b, characterized 

by a different C and S, (x,y) will range from (xe,y.J to (xs,yJ; etc. 

Formulas will be given only for side a . The others may be obtained by induction. Thus 

Aw,(side) = hS 

(21) 

(W 

Let 

R = rz = Cn+ h2 + 2CSx + (1 + P)x~, 

And following G&R2 2.252 also let 

(23) 

(24) 

Then Eq.(22) becomes 

AsAside) =& s & + t2 x 

-2% dt 

h=h, 

t t2 h=h, 

Let: 

Aw,,(side) = ( I, t 1, ) 1:1:1~~~', 
I I 

where I, is the integral associated with CS/(l+Se) in the numerator and 

I, is the integral associated with t in the numerator. For I, G&R2 2.252 

suggests the transformation 

t v= 

1 (1 
W-( 1 tS2)hZ 

ts2)” t t2 

If a parameter rc is defined as 

(25) 

(26) 

(27) 

(‘W 
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Appendix A indicates that 

Application of Eq(27) to the I, part of Eq.(25) yields 

I,=- CP 1 

Jm” J A1 + .adv. 

Then utilizing G&R2 2.124 and Eq.(29) 

Clhl 
I,=-sgnb&- tan-’ 

IhId== rc 
hlcl IClr 

Since only the principle value of the multivalued function is desired, 

the arctangent function has the sign of its argument, thus permitting the 

absolute value signs around h and C to be removed. 

Hence 

I, = - sgnb &tan- IhT rc, 

For I,, the t-term in Eq.(25), an expression in Appendix A indicates that 

&=cQ+l+sg+t2 

would be a useful transformation. 

Thus 

Iz=~~s[~-~]d’=-~~l”[~]. 

However [r+h/(r-h)] = [(r+h)s/(+hs)]. But, since r*-hs does not contain h, 

Eq.(26) indicates that it may be dropped. 

Hence I, = - & ln(r+h) . 

Summarizing: 

Aw,(side) = [- sgnb $& tan-’ w 

-&Wr+h)] I~~~l~~~ 
I I 

(2% 

(39) 

(31) 

(32) 

(33) 

(34) 

(35) 

(36) 
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Next 

Awx,, = ldh $ 5 dy = &,b,,.Awxy(side) , 

AwJside) =fdh $ f; dy 

=jydy jg[ Y&T;] dh. 

Utilizing Eq.(21) 

AwJside) = hS $ 
q2 ’ t ‘G Idx h=h2, 

q, x2+ Y r h=h, 

And following G&R2 2.252 use Eq.(24) to give 

A+(side) = 

St -&? dt 

Hence 
1 (1 c”+( 1 tS2 ) h2 

+s”)2 + t2 

AJside) = ( --i I, t S I, ) l~~~1~‘~~, 
I 

01 

h=h, 

h=h, 

AwJside) = [sgnb & tan-’ w 

-& ln(r+h)] I~~~~~~:‘- 
I I 

Next 

A+ = lhdh $ $dy = &,blC..AuXZ(side) , (43) 

Aw,,(side) = jdy $ $ dh = -1dy I;[ ;] dh . (44) 

Utilizing Eq.(21) 

Aw,,(side) = -S Ly kdx I~~~. 
I 

(37) 

(38) 

(39) 

(40) 

(41) 

(42) 

(45) 



Then, from Eq.(23), and G&R* 2.261 

Aw,,(side) = - - r + 2(1tS2) x + 2CS 
3 

, 

taken between the above limits. Replace (l+S’J) x + CS by expression found in 

Appendix A and suppress the f&or 2 JlXF in the argument since it is 

independent of x and h to give 

&Aside) = ( 1, ) 11:: Iii:, 
I I 

where 

’ I,=-- 

F 

ln( r t sgnb rc ) 

Or 

Aw,,(side) = - s In( r + sgnb rc ) 
q=q2 h=h, 

F 
I I q=q, hzh,’ 

Next 

Since (xdx + ydy)/r3 is integrable, subtracting Eq.(12) from Eq.( 10) gives 

AwJside) = AwJside) 

Next 

AU,, = -Jdh $ $ddx = &,b,c..Awyy(side) , 

Au&side) = -Jdh f 5 dx 

=-jh&&&&] dh. 

Utilizing Eq.(21) 

AwJside) = - hty $ ;z i dx IEIr2. 
I 

(46) 

(47) 

(48) 

(49) 

(50) 

(51) 

(52) 

(53) 
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A,&ide) = ($14 -I,) I~~~l~I~, 
I I 

Or, compa.ring with Eq.(41), 

AwJside) = [- sgnb Atan-1 k!L 

+ &In(r+h)] lI;:‘ifrI;. 
I I 

Au,, = -1hdh f $ dx = &,,b,,..Aw,,(side) , 

AwJside) = -jdx $ $dh = ldx Jg[ +] dh . 

Utilizing Eq.(21) 

Aw,,,(side) = j’y idx l,“Ifr: (58) 
I 

which on comparing with Eq.(45) gives 

AwJside) = - f Aw,,(side) . 

Or, from Eq.(49) 

AwJside) = + ln( r + sgnb rc ) 11;; 1 :I;’ 
1 I 

(54) 

(55) 

(56) 

(57) 

(59) 

(60) 

This completes the evaluation of contributions from the sides of the prism. 

IV. Contributions to E from the Ends (elf) of the Prism 

“=$$$A -I *F r dxdy [+ sign for (e), -sign for (f)]. 

Since the contribution from (e) and from (f) ae to be added the following notation 

includes both ends. 

(61) 

A$(ends) = [SJ’ $ [Kd dxdy ] I:,‘. 
I 

(6% 
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The individual components are 

Aw,(ends) = 0, AwJends) = 0, Aw,(ends) = 0, 

AwJends) = 0 , AwJends) = 0 , Aw,,,(ends) = 0 , 

Aw,(ends) = [ff $ dxdy ] 1; = - [j+ j$$] dx] I;> 
1 I 

AwJends) = [jj 5 dxdy ] 1: = - [jdx j$[i] dy] I:, 

Aw,,(ends) = bff hdxdy ] 1:. 

I 

I 

Equation (67) is the only contribution to wzz and will be obtained from the 

from the solid angle; hence it need not be evaluated here. 

Comparing Eq.(65) with Eq.(45) and Eq.(49) shows that 

Aw,,(ends) = - +ln( r + sgnb r,) I~~~lfr~~. 
I I 

Similarly, comparing Eq.(66) with Eq.(57) and Eq.(60) shows that 

AwJends) = Lln( r + sgnb rc ) I~~~l~‘~:. 

F 
This completes the evaluation of the contributions from the ends of the prism. 

V. Summary 

a) Composition of tensor. 

= w= 
a, brc,.. 

b) Symmetry of tensor. 

(63) 

(64) 

(65) 

(66) 

(67) 

(68) 

(6% 

(70) 

(71) +x = “xy ) %x = %a ) %y = *yz . 



10 

c) Irreducible components in order used in GFUN. 

4) = “xx 7 44 = wxy > 

(L(4) = wyu > 

d) Solid Angle(trace of matrix). 

43) = %. 1 

45) = UYZ . 

46) = waz = I $ z 2; + 4?r ; ;$$, $z;;; ] 

e) Terms in TERMS 

Let 

di) = O(i) i~~~:I~I;~~. 

And 

T,=sgnbtan-‘[b--j, 

T, = In ( r + h ) , 

T, = In ( r + sgnb rC ) , 

G= 1. 

F 
Then 

O(l)=-S2G2T,- SG2T2, (79) 

o(2)= SG2T,-S2G2T2, (80) 

O(3)= -SGT,, (81) 

O(4) = - G2 T, + S G* T, , (82) 

O(5)= GT,. (83) 

(k&5) 

(72) 

(73) 

(74) 

(75) 

(76) 

(77) 

(7% 
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VI. Appendix A. Algebraic Equivalences. 

All equivalences relate to points (x,y) on the line specified by 

y=c+sx. 

From Eq.( 23) 

(AlI 

Or 
1 

(A21 

Concerning Eq.(28): 

(A3) 

Note that x2 + y2 is the square of the distance from the origin to a point 

on the line. Note also that C2/( l+Se) is the square of the perpendicular 

distance to the line. Thus, geometrically 

*2+yv&. (A4) 

The utility of rc becomes evident from the following observation: 

(l+P)r:= (l+S2)(x2 + ~~)-(y-Sx)~ 

= (x + Sy)? 

But 

(A5) 

x+sy=(1+s2)x+cs=;[(1+s2)y-c]. 

Hence, defining a and b for convenience, 

bz(l+P)x+CS, a z (1+S2) y -C . 

From Eq.( A5) 

(A@ 

(A7) 

(l+S2) rz = (x+Sy)* = b2 

b=*Fr,, a=Sb. (‘48) 
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The ambiguous sign is to be resolved by computing the sign of b in Eq.(A7) or 

its equivalent the sign of x + Sy in Eq.(AG). Thus 

sgnb E sign(b) = sign(x+Sy). 

Hence 

xt&= Lsgnb, 

F 
and 

y-&z - $sgnb. 

(A91 

(AlO) 

(All) 

All slopes S that are either infinite or zero must be replaced by finite numbers 

such as 10’6 or 10-e to avoid numerical difficulties. The new FORTRAN 

subroutine TERMS is available on request. 
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