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abstract 

We construct superstring theory in two dimensional black hole background 

based on supersymmetric SU( 1, l)/U( 1) gauged Was-Zumino-Witten model. 
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Recently it was shown that the SU(l,l)/U(l) gauged Wess-Zumino-Witten 

(GWZW) model describes strings in a two dimensional black hole!“The string 

propagation and Hawking radiation in this black hole were discussed in Ref.2. 

When the level k of SU(1, 1) current algebra equals to 9/4, this model can be 

regarded as a two dimensional gravity coupled with c = 1 superconformal matter. 

We expect that this model could be one of toy models which provide a clue to solve 

the dynamics of more “realistic” string models. 

The supersymmetric extension of this model appeared”‘as an exact solution 

of ten-dimensional superstring theory corresponding to black fivebranes!% this 

paper, we will consider the supersymmetric extension based on SU(l,l)/U(l) 

supersymmetric GWZW (SGWZW) model. It has been shown[%hat supersym- 

metric 577(1,1)/U(l) coset model has N = 2 supersymmetry due to Karma- 

Suzuki%echanizm and this model is equivalent to N = 2 superconformal models 

proposed by Dixon, Lykken and Peskinp’The central charge c of this system is 

given by, 

Here k is the level of SU(1, 1) current algebra. When k = g, the central charge c 

equals to 15 and this conformal field theory describes a critical string theory. The 

N = 1 supergravity coupled with c = :z = $ superconformal matter would be 

described by this critical theory. Furthermore the N = 2 superconformal symme- 

try of this model suggests that pure N = 2 supergravity would be also described 

by this model. Therefore the pure N = 2 supergravity in two dimensions would 

be equivalent to the N = 1 supergravity coupled with c = f6 = i supercon- 

formal matter. Due to N = 2 superconformal symmetry, superstring theories in 

the two dimensional black hole background can be constructed by imposing GSO 

projection. It is also expected that this superstring theory would be equivalent 

to the matrix models which have space-time supersymmetry[“” and topological 
WI superstring theories based on N = 2 superconformal topological field theories. 
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The action SWZW(G) of N = 1 supersymmetric Wess-Zumino-Witten model 

is given by:” 

SWZW(G) =; / d2zd20trG-‘DGG-‘BG 

k 

J 

(2) 
-- 

2n 
dtdZ~d28[trG-‘DGG-‘~GG-‘atG + (D ++ Ziterm)] . 

Here we define covariant derivatives D and D by using h&morphic and anti- 

h&morphic Grassmann coordinates 8 and 3 

o-;-e;, B-+e;. (3) 

The matrix supefield G, which is an element of a group g, is given by 

G = exp(i c To@“) . 
a 

(4) 

Here F’ is a superfield ipa = 4” + O$” + &j? + @f” and TO is a generator of 

the algebra corresponding to G. The action (2) sa is t fi es Polyakov-Wiegmann type 

formula: 

SWZW(GH) = SWZW(G) + Swzw (HI+; j d2zd29trG-‘DGDHH-’ . (5) 

Here H is also an element of 8. This formula guarantees that the system described 

by the action (2) has super Kac-Moody symmetry and N = 1 superconformal 

symmetry. 

If 7 is a U(l) subgroup of 8, we can gauge the global symmetry under the 

following axial U(1) transformation, which is given by an element F of 7, 

G+FGF. (6) 
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The action of supersymmetric G/3 gauged Wess-Zumino-Witten is given by, 

S”/7(G,A) =SWZW(F&GF~) - SWZW(F$FR) 

=Swzw(G) (7) 

+ -& 1 d2zd2Btr(Ax + AGOG-’ + G-‘DGX t ABGG-I) . 

Here 5’~ and FR are elements of 3 and gauge fields A and 2 are defined by, 

A = Fi’DFL, 2 = F~‘DFR . (6) 

The action (7) is invariant under the following V( 1) gauge transformation 

G+mF, A-+A+F-‘DF, ;i-+;i+~-‘77~. 

(FL,R + FL,RF) 
(9) 

A supersymmetric extension of string theory in a two dimensional black hole 

background is given by setting G = SU(l,l) in the action (7). We start with 

considering SU(1, 1) SWZW model. By parametrizing G by, 

G = exp(~~L~2)exp(~R~1)exp(~0naa), (10) 

with ai the Pauli matrices, we obtain the action Ssu(‘~‘) of SU(1,l) SWZW model 

Ssu(‘vl) =z /d2zd20[-iDHLD@L - ~D@RD$R 
(11) 

- CoshR DQL~@R + $DRDR] . 

The h&morphic (anti-h&morphic) conserved currents Ji (7;) of this system are 

given by, 

2kG-‘DG = Jlq + iJzo2 + 53~ , 2kG-lDG = jlcq + iJ2cq + 3:3a3 , (12) 

J; = j; + eji+ . . , J;=;;+8j; $ . . . . (13) 

Here . . express the terms which vanish by using the equations of motion. If we 
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define new currents ji and 3; by the following equation 

J+i = ji - $Eilmj,jm9 7i = 7i - ~ei1,31?m, 

These currents ji and 5, do not depend on the fermion currents ji and 7;. 

By expanding superfields QL,R and R into components, 

+L,R = +L,R + wL,R t @L,R + @fL,R, 

R -=8te~t@teBg, 
2 

(14) 

(15) 

we can rewrite the SU(l,l) SWZW action Ssu(‘~‘) in Eq.(ll) by a sum of non- 

supersymmetric SU(1, 1) WZW action ssrr(‘,‘) and free fermion actions: 

sww =yJW) + -A& 
J 

d2zb+sj- - j28j2 + I+@- - ?2a;2] , 

L?“(‘,]) =k 
J 

d2.z[-~(acjL~$L + &$R~c$R) 

- cosh(2s)&@+R + 26’s%] . 

Here ji and I* are defined by 

j, = jl f ij3 , y* G & * iy3 

(1’3) 

(17) 

(18) 

The conserved currents corresponding to the non-supersymmetric SU(1, 1) WZW 

action .Y?“(~,~) (17) are given by ji and 2; in Eq.(14). 

Fermionic currents j+ and ?* can be written as 

i+ =i =xp(MR)(q h $inh&)$L) , 

y* =i exp(Fi#L)(v 31 $inh(2s)l/lR) . 
(19) 

Note that there appear bosonic factors eXp(TidR) and exp(+ibL). Due to these 

factors, the boundary conditions of j* and y+ are twisted although fermions 7, 
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?j, 4,~ and TR, which is identified later with space-time fermionic coordinates, are 

periodic or anti-periodic. Therefore the eigenvalues of the zero modes of fermion 

number currents K and F, 

K = &(j+j- - j-j+) , 37 = &(I+;- -j-I+) , 

which satisfy the following operator product expansions 

K(z)&(w) - i &* 1 ~m*m - *Al* , 

(20) 

(21) 

are not quantized. 

We now gauge the U(1) symmetry in the action (11) by following Eq. (7). 

We consider the case that the U(1) y s mmetry is generated by 02. Since the V( 1) 

symmetry is compact, the resulting conformal field theory describes the Euclidean 

black hole. The theory of the Lorentzian black hole can be obtained by replacing 

02 by 03 or simply by analytic continuating @L,R -+ ~+L,R. 

By the parametrization (10) the SU(l,l)/U(l) gauged SWZW action takes 

the form 

ssu(l~l)/u(‘) =Ssu(‘,‘) f ; 
J 

d2&[4(1 + coshR)A;i 
(22) 

+ ~~A(D@L + COshRD@R) + 2i(DOL + coshR D@R)~ 

Here Ssu(‘*‘) is SU(l,l) SWZW action in Eq.(ll). By using the following redefi- 

@ d’L - +‘R , 
i coshR D@L + D@R 

AkAtZ 
1 +coshR ’ 

;i, ~A + 4 coshRD@R + n+L 

2 I+ coshR ’ 
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the action (22) can be rewritten as follows, 

,pwJ)/W = A 
2a J 

d2zd28[gtanh2f D@i% 

+ ~DRTTR + 4( 1 + coshR)A’;f( 

The action (22) and (24) are invariant under the following infinitesimal gauge 

transformation corresponding to Eq.(9), 

6+L=biPR=il, dA=-;DA, 6%=-ii%. 

We fix this gauge symmetry by imposing the gauge condition 

*L=4bR=&. (26) 

By integrating gauge fields A and 2 in the action (22) or (24): and by integrating 

auxiliary fields f and 9 in Eq.(26), we obtain the following action, 

S(‘) = k 
?c I 

d2z[tanh2s(&& - a$$ + $3) 

-2 s(&P + 7&b) t 4 tanh’vij& 

t L3sas - 87-pj + q&] . 

Here we write superfields 6 and R in terms of components: 

&=d+e*+2&J+esf, 
R -=steqt3~+6Bg . 
2 

(27) 

(28) 

This system has N = 1 supersymmetry since the starting action (22) and gauge 

condition (25) are manifestly supersymmetric. In fact, this action is nothing but 

the action of (1,l) supersymmetric c model ““in two dimensional black hole back- 

ground. 

* The integration of the gauge fields induces the dilaton term in the action but we now 
neglect this term. The gauge fixed action which is correct at the quantum level is given 
later in this paper. 
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The N = 1 supersymmetry in the action (27) is extended to N = 2 super- 

symmetry since this action is invariant under the following h&morphic (anti- 

h&morphic) (I( 1) symmetry: 

6$=-g” 
67 =u(z)tanha $ , 

6+-S” 
Sij =Z(E)tanhsT . 

(29) 

(30) 

Here u(.z) (G(Z)) is a h&morphic (anti-h&morphic) parameters of the transfor- 

mation. The transformations (29) and (30) tell that the currents of this U(1) 

symmetry can be regarded as fermion number currents with respect to space-time 

fermion coordinates, 7, $,, ?j and $. By commuting this U(1) symmetry transfor- 

mation with the original N = 1 supersymmetry transformation, we obtain another 

supersymmetry transformation and we find that the action has N = 2 supersymme- 

try. On the other hand, in case of the Lorentzian black hole, the obtained algebra is 

not exactly N = 2 superconformal algebra? Usual N = 2 superconformal algebra 

is given by 

{G,+, G,} =4L+m t 2(” - “)Jn+m t ++’ - 1)&n+n,o , 

[J”,G$] = 2~ Gn+,,, , etc. 
(31) 

and the hermiticities of the operators are assigned by 

(G’)’ = C, , ” J; = J-, . (32) 

The algebra which appears in the Lorentzian case is identical with Eq.(31), but 

+ Note that any Lorenteian manifold is not Kirhler. 



the assignment of the hermiticities is different from Eq.(32): 

(G;)+ = G+, , (G,)’ = G:, , Ji = -J-, . (33) 

This is not so surprizing since this algebra also appears in flat two dimensional 

Lorentzian space-time which is a subspace of flat ten dimensional space-time in 

usual Neveu-Schwarz-Ramond model. Even in Lorentzian case, we have a U(1) 

current and superstring theories can be constructed by imposing GSO projection. 

In order to consider the spectrum of this theory, we choose the following gauge 

condition instead of Eq. (25) , 

ZA-D;I=0. 

This gauge conditon allows us to parametrize the gauge fields A and ;i as 

A=DIl, ;i=-BH. 

By shifting the fields @L,R, 

@r, + +L $2iD , @R -4 +R - 2in , 

(34) 

(35) 

(36) 

the gauge fixed action S(‘) is given by a sum of SU(1, 1) SWZW action Ssu(‘J) 

in Eq. (ll), free field action Sn and (free) ghost action SFP. 

~(2) =sSu(‘J) + s” + SFP , 

sn = - 4’” d2,d2C?DIIBn , 
7r J 

sFP =!? 
2iT I 

d2zd20BDiiC 

(37) 

Here B and C are anti-ghost and ghost superfields. 



The BRS charge QB which defines the physical states is given by 

-- 
QB = dtC(DII - iJ2) + jbC(Dn t $2) . 

This BRS charge gives constraints on the physical states, 

(38) 

which tell that B, C, II and J2 (or 72) make so-called “quartet” structure[‘J1similar 

to the structure which appeared in the quantization of Neveu-Schwara-Ramond 

model based on BRS symmetry!““” 

The action which describes superstring theory in the two dimensional black hole 

is simply given by a sum of SU(1, 1) WZW action (17), free fermion actions (16) 

and the actions of free superfield and free ghost and anti-ghost superfields (37). 

Furthermore the constraints (39) imposed by th BRS charge (38) can be easily 

solved with respect to free superfields II. Therefore if we can find the spectrum 

of the bosonic string in the two dimensional black hole:“” we can also find the 

spectrum of this string theory. 

The U(1) current, which corresponds to the transformations (29) and (30) are 

given by!] 

J=-2ij2+ LK, 
k-2 

j= k- 
k-2 

-2ij,t=K 
k-2 (40) 

Here & and 2, are defined by Eq.( 14) and fermion number currents K and x are 

defined by Eq.(20). These U(1) currents commute with the BRS charge (38) and 

we can impose GSO projection consistently. Note that GSO projection does not 

give any constraint on the representations of SU(l,l) current algebra since the 

eigenvalues of the zero modes in the currents K and z are not quantized although 

those in J and 7 are quantized. 

Recently the string model based on 
v 

coset model was discussed!““r1 

This model describes the strings in two [“‘or three dimensional[“lcharged black 
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holes. By adjusting the radius of the U(1) boson, we will obtain N = 2 super- 

conformal theory with c > 3% the same way as N = 2 minimal model was 

constructed from -GP 
” ’ x” ’ ‘I’. The obtained model should be equivalent to the 

model discussed here. 
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