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Abstract 

Some aspects of supersymmetric gauge theories are 

discussed. A formula for the quantum spectra of the 

classical zero modes in supersymmetric gauge theories is 

derived. The topological vacua in higher dimensions are also 

discussed. The spectra and the discussion of the topological 

vacua are applied to the study of dynamical supersymmetry 

breaking. We argue that our previous argument that dynamical 

supersymmetry breaking does not occur in supersymmetric 

gauge theories free of both local (perturbative) and global 

(non-perturbative) gauge anomalies in higher dimensions is 

irrelevant to any possible vacuum-angle specification in the 

theories. 
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The discoveries of Yang-Mills theory' and 

supersymmetry 2 led to the development of supersymmetric 

gauge theories3 which have been one of the most interesting 

ideas in elementary particle physics. It is also known that 

the open superstring theory4 can be approximated at low 

energy by a supersymmetric gauge theory. Supersymmetric 

gauge theories are of fundamental interest for unification 

theory5 in particle physics beyond the standard model. 

In the construction of realistic models based on 

supersymmetry, supersymmetry must be spontaneously broken 

since degenerate Bose-Fermi multiplets are not observed. Due 

to this fact, the study of the possibilities of spontaneous 

supersymmetry breaking is crucial in supersymmetric gauge 

theories. 

It was noted by Witten '-' that generally there may be 

dynamical supersymmetry breaking by non-perturbative effects 

due to the non-zero energy of ground state created in the 

quantum dynamics. With extensive discussions, Witten has 

shown that dynamical supersymmetry breaking does not occur 

in certain interesting classes of theories. Witten's method 

has also been' applied to the cases of higher dimensions. 

Especially, we have shown that dynamical supersymmetry 

breaking does not occur in supersymmetric QED in higher 

dimensions, and argued that more generally there is no 

dynamical supersymmetry breaking in higher dimensions in any 

supersymmetric gauge theories free of gauge anomalies by 
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Witten's method of calculating the index' Tr(-lJF. 

In this paper, further discussions and results will be 

given intimately connecting to the study of dynamical 

supersymmetry breaking in gauge theories. By choosing a 

physical vacuum, We will construct the spectra of zero- 

momentum modes in the minimal supersymmetric gauge theories 

with an arbitrary compact connected simple gauge group G in 

a finite box with periodic boundary conditions. The spectra 

with the discussion of topological vacua which we will 

provide, are then applied to the study for the possibilities 

of dynamical supersymmetric breaking. As a complimentary 

to the previous discussions, we will argue that our previous 

argument generally for the anomaly-free theories in higher 

dimensions is independent of the any possible vacuum angle 

chosen in the theory. This is different from the case in 

four dimensions, where the theory has no dependence on the 

vacuum angle is assumed'. Note that the study of gauge 

theory in a finite box with an appropriate boundary 

condition is of interest generally for the understanding of 

other non-perturbative effects also, for example, see ref.9. 

An essential feature in global supersymmetric theories 

is that the hamiltonian H is the sum of the squares of the 

supersymmetry charges which are hermitian. This implies that 

supersymmetry is spontaneously broken if and only if the 

ground state has energy greater than zero. For the analysis 

of zero energy states, Witten introduced an operator (-ljF 
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for which the trace can be written as' 

Tr(-l)F=nBE’O-nFE’O , (1) 

where no E=O and "P E=O are the numbers of zero-energy bosonic 

and fermionic states respectively. If TIY(-~)~~O, then there 

exists at least one zero-energy ground state, the 

supersymmetry is not spontaneously broken. As shown by 

Witten, the trace in (1) can be regarded as the index' of an 

operator M, with supersymmetry charge Q written in the form 

of 

/ 

! 

0 M' 
Q= 1 (2) 

M 0 I 
1 

by splitting the Hilbert space of the theory into bosonic 

and fermionic subspaces. More generally, one can calculate 

the following trace 

Tr(-l)Ff(X)=Cf(X)Tr(-l)FPA , 
x 

(3) 

where X is any operator commuting with the supersymmetry 

charges LX, Q,l=O, and thus commuting with the hamiltonian 

also. The Px denotes the projection from the Hilbert space 

onto its subspace with X=x for a definite eigenvalue. If 

Tr(-l)Ff(X) is non-zero for some choice of f(X), then 

supersymmetry is not spontaneously broken, thus there is no 

dynamical supersymmetry breaking. The usefulness of the 

formula(l) or (3) is due to the fact that the index of an 
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operator is independent of the parameters of the theory if 

the different set of parameters can be reached to each other 

by continuous deformations, for example by conjugate 

transformations'. This implies that for those theories, the 

trace Tr(-ljF of Tr(-l)Ff(X) can be calculated in a 

convenient limit, such as small volume, large bare mass, and 

weak coupling. Essentially, for this purpose one only needs 

to restrict to the minimal theory for the supersymmetric 

gauge theories', although additional fields may be present 

in general. 

From the above discussion, one can easily see that the 

study of quantum spectra of classical zero-energy modes in a 

finite box is crucial to the determination of the traces 

Tr(-l)Ff(X). Note that" there can be supersymmetric gauge 

theories only in the specific dimensions D=3, 4, 6, 10, and 

we will focus on the cases of D=4, 6, 10 dimensions. But we 

expect that our discussions are useful to the study of Yang- 

Mills system in general dimensions. 

Consider the minimal supersymmetric gauge theory with 

the lagrangian density given by 

f=-&Fa CliiF aaR+& qa+Du $a , (4) 

where 

Fa aa= aaAaa-aaAaa+gCabcAbaAca , (5) 

(6) 
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with gauge coupling constant g. The Gabc are the StrUCtUre 

constants given by [La,Lb]'iGabcLc with a basis 

{L,=/a=1,2,. ..dim(L(G))} for the Lie algebra L(G) of the 

gauge group G. We will assume here that G is a compact 

connected simple Lie group. In the case of an abelian G, see 

refs.7-0. Since Au and transform into each other under 

supersymmetry transformations, it is necessary that the 

spinor fields {$J~] also form the adjoint representation of G 

under the gauge transformations. Furthermore, the spinors 

are Majorana in D=3, Majorana or Weyl in D=4, Weyl in D=6, 

Majorana and Weyl in D=lO respectively. The supersymmetry 

transformations that leave (4) invariant are 

6Aa,=$i[~r,$a- Jarus , 

6 +a=&X,SFaaDc , 

-a - 6 $ =-&ECaBF aaR s 

(7) 

(8) 

(9) 

with 

~aB=3[ra,rfil . (10) 

In the case of Majorana spinors in D=3, 4, or 10, (7) 

can be written in the simpler form 

bAa -‘-r +a . 
v-l” I-I (11) 

In the case of D=6, it is necessary to keep both terms. The 

conserved supersymmetry current in the theory is 



Su=Ea6F aa13r)l $a 
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(12) 

Now consider the above supersymmetric gauge theory in a 

finite box of dimensions D (D=4, 6, 10) with periodic 

boundary conditions. We will choose the gauge Ag=O. Then, 

classically the gauge field modes corresponding to zero 

energy are those zero-momentum modes Ai which commute with 

each other'. Obviously, for these modes 

F ij= aiAj- SjAi-ig[Ai,Aj]=o _ (13) 

Note here that a zero-momentum mode Ai is a constant in the 

Lie algebra L(G). For the minimal supersymmetric gauge 

theories in our discussions, the zero-momentum modes Ai are 

then constant matrices in the adjoint representation of the 

L(G). 

The gauge field components Ai commuting with each other 

are contained in a Cartan subalgebra. Since the different 

Cartan subalgebra of a gauge group can be transformed into 

each other by a topologically trivial gauge transformation, 

in terms of a basis (HSls=1,2,... r=rank(G)) of a Cartan 

subalgebra of L(G), we can write the zero-momentum modes of 

the gauge field as 

r 
Ai=,~,CisH S (i=1,2,...D-l), (14) 

where Cis are constants. The Dirac field can be written as 
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(15) 

The zero modes of in the background field (14) are of the 

form 

(16) 

where E' are constant spinors. 

Now what is crucial in our discussion is the spectrum 

for the zero-momentum modes after quantization. One may 

expect that the zero modes may remain as low-lying states 

even if they are lifted above zero energy after 

quantization. As we will see explicitly that this is true 

only in the weak coupling limit. 

In order to quantize the zero modes (14) and (161, we 

need to determine the periodicity properties of the 

variables in the zero modes. In the following, we will show 

that the constants (Cis} for the zero modes of the gauge 

field are variables modulo a class of vectors in the root 

space of the Lie algebra L(G). 

In the special case of G=SU(2), as noted by Witten 

the variable in the zero modes of the gauge field is a 

periodic variable with period 2n/gL, where L is the length 

of the box. This can be easily seen explicitly, and can be 

used as a preliminary discussion of the general case. The 

zero-momentum modes of Ai can be written as 

Ai=CiLS (i=1,2,...D-1). (17) 
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Obviously, the well defined and periodic gauge functions 

= 

: 

COS(2lt/L'Xi) -sin(Zn/L*Xi) 0 
SiIl(2lt/L*Xi) COS(2iT/L'Xi) 0 

I 

(18) 
0 0 1 

generate gauge transformations which shift Cl, C2,...and 

CD-1 by 2nfgL for i=l, 2,...D-1 respectively. Where Ll, L2, 

and L3 in the adjoint representation of SU(2) can be written 

as 

Lj= Fj i] , L2=;B ! r] , L3= [Hi: i] .(19) 

By the constraint of Gauss' law, the physical states are 

invariant under Ui (i=l, 2,...D-l), since the Ui are all 

topologically equivalent to the identity gauge function. In 

the Hilbert space with the constraint of Gauss's law, the Ci 

are periodic variables with period 2n/qL. 

Now consider generally for a compact connected simple 

gauge group G in the adjoint representation for the minimal 

supersymmetric gauge theories. Obviously, the gauge 

functions 

Ui=exp(i4=xi/L.~RsHS] (i=l, 2,...D-l), (20) 

generate gauge transformations which shift respectively C+., 

Clsr... and CD-ls by 4nR,/gL with constant 8, (s=l, 2,...,r). 
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However, in order to preserve the periodicity, only those Ui 

satisfying the condition 

uil =exp(i4n;0sHS)=1 (21) 
xi=L 

are well defined. The general solutions to eq.(21) are given 

by'* 

nis=j~,m(i)j(aj)s/taj,oj> s=l, 2,...,r, and mCi)jEZ. (22) 

Where aj (j=l, 2,... ,r) denote the simple roots of the Lie 

algebra L(G), and <o,a'>=$=,csc's denotes the inner product. 

As a matter of fact, up to a normalization, the expressions 

Ti lllti)j ,j/caj,aj, , ,(i) 
j=l 

j&z, (23) 

are weights of a dual group Gu, (ref.12). Gu is dual to G in 

the sense that (G~)"=G. Eq.(22) is of interest in the study 

of magnetic monoples, charge spectra of dyons associated 

with generalized magnetic monoples and the possibilities of 

quarks as dyons in a spontaneously broken gauge theory'2113. 

Now with 13, given by eq.(22), the gauge functions Ui in 

eq.(20) generate gauge transformations which shift Cis by 

4n/gL-Z m(i)j(aj)s/taj,aj> ,(i=l, 2,...~-1). (24) 
j=l 

Essentially, for the gauge functions 
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1,s=l 

m(i)j(Oj)sHS/taj,aj> , 
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(25) 

only the following ones are fundamental for any given i: 

ui(aj)=exp(i4nxi/L.~(~j)sHs/<cj,~j> (j=l, 2,...r), (26) 

since the gauge transformations corresponding to the gauge 

functions (25) can be generated by those corresponding to 

(26) for the H ' in the Cartan subalgebra of L(G). 

Since the Ui in (26) are all topologically equivalent 

to the identity gauge function, then the constraint of Gauss 

law requires that the physical states be invariant under the 

gauge transformations generated by Ui in (25) or (26). 

Therefore, by regarding each (CislS=l, 2,...r) as a vector 

in the r-dimensional root space of L(G), up to an overall 

normalization, the (Cis} are only defined module the weights 

of L(Gu) in the Hilbert space with the constraint of Gauss 

law. 

We now need to quantize the degrees of freedom for the 

zero-momentum modes (14) and (16). For this purpose, one 

needs to choose a physical vacuum and expand around (14). 

The physical vacuum is expected to be a linear combination 

of the topological vacua with Fij=O. In D=4 dimensions, the 

topological vacua are characterized by the homotopy group 

n3(G)=Z. As is well known, the physical vacuum can be chosen 

as a 0 vacuum in this case. However, in higher dimensions, 
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there can be either finite or infinite number of different 

topological vacua depending on the dimensions and the gauge 

group G. As an example relevant to the supersymmetric gauge 

theories in higher dimensions, consider the case of G=SU(Z). 

The relevant homotopy groups 14 are given by 

nS(SU(2))=Z2 , (27) 

ng(SU(2) )=Z3 , (28) 

and there are only a finite number of different topological 

vacua in this case. Therefore, we expect that there can be 

only a finite number instanton solutions. In general, 

instanton tunnelling will physically connect the topological 

vacua. The gauge invariant physical vacuum can be 

constructed as a linear combination of the topological 

vacua. One can easily see that for ZN topological vacua 

connected physically, up to an overall phase factor, the 

physical vacuum can be written as 

N-l 
Ivac>=zCoexp{-i2nk/N}\k> . (29) 

Under a topologically non-trivial gauge transformation with 

/k>+lk+l>, we have 

Ivac>~exp{i2n/N}lvac, , (30) 

the Ivac> is invariant up to a phase factor. It is 

straightforward to generalize the formula (29) to the case 
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in which topological vacua correspond to a general finite- 

cyclic homotopy group. An interesting general feature in the 

case of finite number of physically connected topological 

vacua is that the gauge invariant physical vacuum is unique 

up to an overall phase factor. This is different from the 

case of an infinite many possibilities for the 

vacuum characterized by a vacuum angle. 

From the above results, and the constructi 

physical 

on of the 

usual @ vacuum, one can easily construct the gauge invariant 

physical vacuum when the topological vacua physically 

connected correspond generally to the direct sum of infinite 

cyclic and finite cyclic groups. For example, for the 

supersymmetric SO(10) gauge theories in D=lO dimensions, the 

n9 (SU(2))=Z + z2 . (31 

Denote the topological vacua by /n,o> with o defined module 

2. When the /n,o> are physically connected, then up to an 

overall phase factor, the gauge invariant physical vacuum 

can be written as 

) 

relevant homotopy group is given by 

I Q’=,;-m ;.mO exp{-in@+ino}(n,a> (32) 

In any case, for our discussions of dynamical supersymmetry 

breaking, we only need to ensure the existence of at lease 

one zero-energy vacuum state, otherwise the supersymmetry is 

already spontaneously broken. 
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We now assume a zero-energy physical vacuum is chosen. 

It is then straightforward to quantize the degrees of 

freedom for zero-momentum modes (14) and (16) by expanding 

around (14). The relevant lagrangian for the zero-momentum 

L= 
1 

dD-'x f~=,(~I:(~is~2+~Si~o~s~ 
J 

= Iv;=, 
D-l 

‘E=, 
(Cis)2+EsiroEs) (D=4, 6, IO), 

where V=LD-' is the volume of the box. After quant i 

the corresponding hamiltonian is then of the form 

modes can be written as 

D-l 
H= &V-l $=, &,(nis12 (D=4, 6, IO), 

(33) 

zation, 

(34) 

where nis=-ia/dCis is the canonical momentum conjugate to 

Cis. The eigenfunctions of H in (34) with Cis as variables 

defined modulo the expressions in (24) can be easily 

constructed, by regarding each C (i)={CislS=l, 2,...,r) as a 

vector in the root space of L(G). The eigenfunctions are 

normalizable which, up to a normalization constant are given 

D-l r 
{igL*C Cmij<C (i) ,Yj,) , IllijEZ. (35 

i=l j=l 

where vj {s=l, 2 ,...I r) denote the fundamental weights" of 

) 
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the lie algebra L(G), satisfying the condition 

2tyj,a (k)~/ta(k),ak>=6jk , j, k= 1, 2, ..*r, (36) 

corresponding to the simple root system (aili=l, 2,...,r). 

Obviously, when cci) is shifted by 4nfgL.aj/taj,ajj for some 

simple root a7 under a gauge transformation, I {mij)> remains 

unchanged. Therefore, the spectrum of the hamiltonian (34) 

is given by 

Etmij) =g2/2LD-3*;-1 : ( E m..(yj)s)2 17 (IllijEZ). (37) 
i=l s=l j=l 

This spectrum has a unique zero-energy ground state with a 

constant wave function. The states correspond to any given 

{mij) in Eq.(37) in the weak coupling limit are all low- 

lying states as expected. Thus after quantization, the zero- 

momentum modes for the gauge field are excited with only one 

ground state remains as zero energy. For the physical ground 

state in the supersymmetric gauge theories, we must include 

zero-momentum fermions also by Fermi statistics. Moreover, 

physical states must satisfy the constraint of Gauss law. 

The physical ground states can be constructed by noting 

the fact that the zero-momentum modes are contained in a 

Cartan subalgebra of the gauge group G. The Weyl group 

corresponding the Cartan subalgebra leave the subalgebra 

invariant, but will generally rearrange coefficients with 

respect to generators in it. This corresponds to the fact 
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that Weyl group of G is isomorphic to the group generated by 

Weyl reflections with respect to the roots of the Lie 

algebra. Since the gauge transformations with gauge 

functions in a Weyl group are topologically equivalent to 

the identity gauge function, physical states then must be 

invariant under the Weyl group action by Gauss' law. Namely, 

Gauss' law requires that the physical states form a trivial 

representation of the Weyl group. Especially, the index 

Tr(-1 jF should be calculated in the Hilbert space invariant 

under the Weyl group. Each fermion corresponding a given 

generator HS in the Cartan subalgebra have two spin states. 

Witten has shown that there are totally r+l different zero- 

energy physical states, and Tr(-lJF=r+ltO up to a possible 

sign ambiguity for the gauge group G of rank r. Therefore, 

we expect that there is no dynamical supersymmetry breaking 

in the relevant supersymmetric gauge theories. However, 

there is an essential difference between the case in D=4 

dimensions and D=6, 10 dimensions which will be given below. 

In D=4 dimensions, dynamical supersymmetry breaking 

does not occur in the O-independent gauge theories7, since 

the conjugation transformation which continuously changes 

the gauge coupling constant is gauge invariant only when the 

theory is independent of the vacuum angle 0. The operator 

K=f dxD-'cijk 
I 

(AiaSjAka-2/3CabcAiaAjbAkC) (38) 

relevant to instantons in four dimensions can be used in the 
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conjugation. The discussion of the continuous deformation 

in higher dimensions is more involved and will be given 

elsewhere. We found that the operator implementing the 

continuous transformation of the gauge coupling constant 

in the higher dimensions leaves the physical vacuum 

invariant due to the fact that the operator is invariant 

with respect to both topologically trivial and non-trivial 

gauge transformations. When the physical vacuum is 

constructed from only a finite number of physically 

connected topological vacua, the gauge invariant physical 

vacuum is unique up to an overall phase factor as we have 

seen. If the physical vacuum is constructed from an 

infinite number of physically connected topological vacua 

when the homotopy group n&l(G) contains an infinite cyclic 

group, then any possible vacuum angle chosen in the theory 

will be invariant under the action of the operator 

implementing the conjugation transformation of the gauge 

coupling constant. This implies that our conclusion for 

the dynamical supersymmetry breaking in higher dimensions 

does not dependent on any possible vacuum angle chosen in 

the theory. This is different from the case of four 

dimensions, where the operator (38) is invariant only under 

local gauge transformations. In a O-dependent theory, under 

the action of the operator (38) on the physical states, the 

resulted states will not be invariant under a topologically 

non-trivial gauge transformation. Consequently, the gauge 
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coupling constant can be continuously transformed into each 

other in four dimensions only in theories independent of the 

vacuum angle S7. 

In conclusion, we have obtained a formula for the 

quantum spectra of the classical zero modes for the study of 

gauge theory system in a finite box with periodic boundary 

conditions. We have also discussed about the topological 

vacua in gauge theories in higher dimensions. Our results 

obtained are then applied to the study of dynamical 

supersymmetry breaking in supersymmetric gauge theories. 

Especially, it is argued that our previous argument that 

dynamical supersymmetry breaking does not occur in 

supersymmetric gauge theories in higher dimensions free of 

both local and global gauge anomalies is irrelevant to any 

possible vacuum-angle specification in the theories. 
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