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Abstract 

We consider domain walls generated through a cosmological phase transition, 

which interact non-gravitationally with light neutrinos (m, - O(l)eV). At a redshift 

.z 2 lO* the network grows rapidly and is virtually decoupled from the matter. As the 

friction with the matter becomes dominant, a comoving network scale close to that 

of the comoving horizon scale at z - lo4 gets frozen in. During the later phases, the 

walls produce matter wakes of thickness d - lOh-‘Mpc, that may become seeds for 

the formation of the large scale structure (30 - 130h-‘Mpc) observed in the Universe. 
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The discoveries of supergalactic structures at a scale comparable to lOOh-‘Mpc 

and of an intergalactic medium already ionized at z N 5 prompted new interest in 

models of galaxy formation alternative to the standard cold dark matter (CDM) 

scenario.“2 As is well known, the CDM model finds it difficult to generate the very 

large clustering scales we observe, given the constraints from the microwave back- 

ground. This model also predicts that most of the galaxy formation should take 

place at a redshift z 5 2, and can hardly explain the production of big quantities of 

ionizing radiation at early times. An alternative class of models is based on the fact 

that cosmological phase transitions could give rise to highly concentrated pockets of 

energy, that may become seeds for baryonic infall and lead to galaxy and structure 

formation earlier than what the standard model postulates. 

Cosmological phase transitions can result from the spontaneous breaking of a sym- 

metry associated with “Higgs-like” scalar fields. The symmetry breaking is usually 

considered to take place at a temperature close to the electroweak or the grand- 

unification (GUT) energy scales. The phase transitions can give rise to topological 

defects. Depending on the choice of the scalar fields one may, in particular, gener- 

ate l-d or 2-d objects like “strings” or “domain walls”, formed of a “false vacuum” 

phase. As many studies show, these solitons can be associated with galactic and 

supergalactic scales and generate fluctuations in the distribution of matter. Typi- 

cally, the defects move at relativistic speeds and create matter fluctuations by their 

gravitational acti0n.s 

In the first model dealing with cosmological domain walls, Zel’dovich et a1.(1974)4 

considered a phase transition taking place at the GUT scale. The main results of 

the paper were discouraging. The walls produced were far too heavy, giving rise to 

unphysically large distortions of the microwave background radiation. The idea was 

therefore abandoned until a possible mechanism was found to form domain walls at 
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a much lower transition temperature.5 It was founds that the surface energy density 

0 of the walls is compatible with the constraints of the microwave background, by re- 

quiring 0 < 10MeV3, but still gravitationally significant, if 0 - 10MeV3. Numerical 

simulations’*’ showed in detail that the typical scale associated with the network is 

always close to that of the horizon, provided that the walls freely stretch under their 

surface tension. 

In a recent publication,g I discussed a variation of the previous domain wall models 

that could possibly generate both the large scale structure and give rise to a very 

early galaxy formation (at t - 10 - 30). A simple non-gravitational Lagrangian 

coupling was introduced between the scalar field associated with the walls and a 

component of the dark matter. We assumed that the domain walls gave rise to a 

symmetric potential barrier for the dark matter, resulting in elastic scattering.” As a 

simplifying assumption, the barrier was taken to be high enough to reflect elastically 

all the incident particles, regardless of their impact energy. The result of such an 

interaction is to keep the velocity of the walls to very non relativistic values (typically 

u N 10-2-10-3c). Therefore, the network just stretches with the universal expansion, 

the comoving scale of the system being frozen. Summarizing the results, for this to 

occur, &.,lr/!20M N 10e3. The walls, by pushing ahead the dark matter, create a 

void region behind them and a high density wake in front of them, whose thickness 

can be of order d - lOh-‘Mpc. 

In the present paper, we modify the assumptions of the previous work. We consider 

the effects of a finite barrier height E, for the particle reflection.” We assume that 

particles hitting the domain wall with a relative kinetic energy E 5 E, are scattered, 

and for E 2 E, they pass through the barrier. As we show in ref.10, this is always a 

good approximation, in the limit E, << m, where m is the mass of the dark matter 

particles. We are going to limit our calculations to such a limit. In considering the 
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dark matter as a fermion gas in thermal equilibrium, we will find a link between the 

comoving scale of the network F and the mass m of the particles. 

We begin by deriving the equation of motion of the walls, under the assumption 

that they move through a homogeneous medium formed by a fermion gas in thermal 

equilibrium. The action of the dark matter gives rise to a pressure P, on the domain 

walls. Deriving P, is the first step of our calculation. 

If we define as the x-axis the normal to the moving surface, the momentum ex- 

change between wall and incident particles is Ap N 2my(v-v,) (notice that, for thein- 

teraction to occur, (V -vJ=) << 1, since E, < m), where uz is the normal component of 

the particle thermal speed in the background frame and 7 E (1 -u’)-‘/~ N (1 -r&-i’“. 

The hit rate is given by n(v - u,), where R is the particle number density. It is con- 

venient to introduce the dimensionless variables y z m-yv/T and yz G p,/T (where 

p, is the x-momentum of the particles in the rest frame and T is the temperature). 

We now introduce the thermal distribution f (y=) of the particles in the momentum 

component pz (averaging over the other directions).’ This function is defined so that 

J_” f(y,) d(y,) = 1. Since the particles are fermions, 

yldn 

ev $22 Y= + YL + 1 
(1) 

where yL G pJT (where pi G p2 - p: and p is the particle momentum). Recalling 

that the reflections only occur if (u - vz) < 1, the pressure Pf is 

PI(Y) = W*+ [l-yo(~ - yz)‘f(yz)dyo - [+“(Y - y,)zf(y,)dy,] , (2) 

where yO is a limiting value simply related to E,,. In fact, in the rest frame of the 

wall, the maximum value of the incident particle momentum giving rise to reflection 

is approximately p, = m (since E, << m). By boosting such value back to the 

universal rest frame we find y, = y-/T to a good approximation. 
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The first integral in eq.(2) is the momentum exchanged per unit time and area 

between the wall and the particles in front of it, while the second integral refers to 

particles hitting the wall from the back. Pj can be rewritten, by changing the variable 

of integration, as 

J’r = 2-0/m [[ Y:~(Y - y&l - c Y:~(Y + y&h] t (3) 

by introducing yr E y - yz in the first and y, z yg - y in the second integral of 

w.(2). 

The range rm > T (yO > 1) corresponds to the high barrier limit, that we 

already calculated in ref.9. In this limit, PI can be written as follows: 

Pf = 12mnv* mu >> T , E, > mv*/2 (4) 

3 
= -VT4 mv << T, E, > mu’/2 (5) 7r 

= 0 mv > T, E, < mv2/2, (6) 

where u is the physical speed of the wall through the medium. 

We now want to study the limit 7m << T (yO < l), since we are interested 

in the behavior of the network at high z. It will turn out that the friction is ineffective 

at very early times, so that the network initially evolves only subject to its surface 

tension. Expanding f in power series around y, if y-/T << 1 we get 

pr = -@d’*f’(y)lm [J,“” ddyl] 

The function f’(y) is given by: 

1 m 

fYy) = -qr) 0 I 

Substituting eq.(8) into eq.(7) gives 

Pf = -4ynT’/mf’(y) c yfdyl = 2m~?&. 

(7) 

(8) 

(9) 
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For y > 1 (recall that y c mq/T), the pressure gets exponentially small. Physically, 

when v >> &herd >> (2&,/m) iI*, the walls behave like virtually decoupled from the 

matter (see eq.9). 

In the limit y < 1, the T-independence of eq.(9) comes from the fact that the 

number of particles reflected by the walls is constant during the expansion, while the 

momentum exchanged is Ap, - (E,/m)‘/* 

The equation of motion of the domain walls, describing an infinitesimal wall seg- 

ment of curvature l/A (in physical coordinates), is given by 

Pf 7%+3;u+7$, (10) 

where o is the surface energy density of the kinks. The derivatives are taken respect 

to the universal time t. This equation is valid if the wall thickness A << A, which 

becomes valid soon after the phase transition. Eq.(lO) is just the relativistic gener- 

alization of Newton’s second law divided by 70, where o is the energy density of the 

walls. The damping term 3(b/a)v derives from the universal expansion, while the 

r.h.s. is the tension that drives the motion of the walls. 

It is useful to recall the results of the limit Pf -+ 0, that has been already studied 

in several works4vrs It was shown that the network reaches a scaling regime of growth, 

the scale of the system being given by l? = 2@“/3, with p = const. N O(l), and 

a N 1. A very small percentage of the network reaches highly relativistic speeds, and 

the average physical speed is constant. 

During the early stage of the wall evolution, there could be a phase during which 

T >> m is satisfied. In this regime, P, 5 m*E~v/x* for most of the network 

(7 - 1). The cosmological damping term, instead, is 3&/a - t-‘v. Consequently, 

if the transition temperature T, >> m and t;’ > mZE,2/?rZ (where t, is the age 
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of the Universe at the phase transition), the initial phase of the network evolution is 

frictionless and rapid. Under additional conditions that we will discuss, the comoving 

scale of the network freezes in at the value it had at the time t - (m2E,2/x2)-‘. 

Solving the general form of the equation of motion in the regime T > m 

is a difficult task, since the expression for Pf is quite involved. There is, however, a 

wide range of parameters such that eq.(lO) can be simplified. Given the assumption 

that ymv < T we can write the approximate expression: 

m*E*v 
72c+3;v+-$=-;, 

This equation can be studied analytically, provided that virtually all of the network 

obeys it. The linear dependence of Pf in v ensures a selfsimilar evolution throughout 

the process. 

With the onset of the friction, the walls slow down, until they stop evolving and 

just stretch conformally with the expansion. If Pf becomes dominant at .z - lo4 or so 

for all of the network, the freeze in gives a comoving scale of the order 10 - lO*Mpc, 

comparable to the horizon scale at that time. 

Since the network evolves self-similarly, we can perform an averaging procedure to 

transform eq.( 11) into an equation describing the evolution of the average “interwall” 

distance. Such a procedure is analogous to the one used when dealing with domain 

walls in condensed matter physics.” 

Multiplying eq.(ll) by v and averaging over the surface of the network we get 

During the period in which PI is negligible, (7*6 . v) N (6 . v) = d((v*))/dt = 0. 

When Pf dominates, since 6/v - -&/a, we get (6. v) N --iL/a(v*). This term can be 

always safely neglected. 
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It is convenient to express the parameters in comoving coordinates (A z ci. and 

z) E a?). From simple geometry, it follows” that (v/k) = (e/F) = F2d(?*)/dt, where 

? is defined as the average comoving “interwall” distance, related to the average 

curvature of the walls by the relation p/r c (l/i’)‘/*. Therefore we get, 

where p = 3 if there is one wall per horizon during the uncoupled phase. In what 

follows we will suppose that the dark matter is constituted by only one particle species. 

For an open Universe, the solution to eq.(12) can be written in the approximate form 

r = 5h-‘P +?/‘(l + Kt5,/2)Mpc, 

where we introduced K zz (m/10eV)2(E,,/10-4eV)2(o/lA4eV3)-1 for convenience, 

since typically K N 1 (see fig.(l)). Th e reason for the choice of the normalization of 

I< respect to E, and o will be clear soon. The quantity t5f is the time of equivalence 

of matter and radiation: t5f s (tcqu;v /t(.z = 105)). After equivalence, the evolution of 

the network virtually stops. The values of the parameters involved indicate that the 

largest scales are obtained for small m. This is consistent with an open Universe, if 

the only forms of matter are neutrinos and baryons. 

The assumptions we have made in calculating F are selfconsistent if the network 

remains always confined to a range of speeds where Pf - v. This is approximately 

true if the network remains confined to the region where Pf is not exponentially 

suppressed. r* Assuming that the distribution of the curvatures is roughly Gaussian, 

all but a negligible fraction (1%) of the wall sections have a comoving curvature 

f-r < 2.5r-‘, and the condition above translates to a bound on K, namely K 5 

1.5(m/lOeV)‘. For K > 1.5(m/lOeV)* our analytical approach is invalid, since part 

of the network is decoupled and part is strongly coupled. In this complicated regime, 

a numerical simulation would be needed to determine the evolution of the network. 
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Considerations about the later evolution of the network can help us in further 

constraining the parameters. Up to this point we have calculated the evolution of 

the walls at T > (mE,)‘/*. As soon as the Universe cools down below T N (mE,)‘/*, 

eq.(4) holds. P, decreases rapidly, due to its steep T dependence, and v starts in- 

creasing. Shortly, v becomes bigger than the thermal velocity of the neutrinos and the 

walls are in the regime described by eq.(5). During this phase, as shown preliminarly 

in ref.9, the walls deplete the volume they sweep of dark matter, generating a matter 

wake in front of them. The speed of the walls increases at a slower rate: v - a. 

The details of the evolution through these different regimes are being investigated 

numerically. I3 Some order of magnitude estimate is already possible. The walls de- 

couple again as soon as v > (2EJm)‘/*. By that time (define it as td), the comoving 

distance the walls have swept is roughly d/tu N v&/ad = vd = (2mE,)‘~* (where 

t, is the present age of the Universe, vd E v(td) and ad s a(td)). If we consider 

m = 1 - 10eV and d = 5 - 20h-‘Mpc, we get E, = lO-‘.s - 10-3.5eV. From the con- 

straint on K, we also obtain 0 < (E,/lO-*eV)/l.5MeV3 for our analytical approach 

to hold. The wall “re-decoupling” typically takes place at ad N C?(lO-‘). Since the 

network rapidly reaches relativistic speeds, we expect one or few walls to be within 

our present horizon. However, the wakes generated at t < td should have gravitation- 

ally collapsed, in that involving also the baryon component. This collapse may been 

responsible for the formation of a first generation of protogalaxies at a z higher than 

the values predicted by the CDM model. 

The distortions of the cosmic microwave background radiation (CMBR) generated 

by walls and by the dark component of the wakes are beyond the present capability 

of detection. We give a fairly detailed analysis of the problem in ref.(g), and therefore 

we limit the present discussion to a brief summary of the main results. 

The biggest source of distortion associated wth walls and neutrinos is the grav- 
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itational potential of the matter wakes generated by the wall motion. Because of 

the Reese-Sciama effect,14 these wakes give rise to a microwave background temper- 

ature distortion AT/T - GpBii-‘/*t;‘/* - lo-‘. An additional effect is due to the 

domain walls themselves, through the same mechanism. Since today there should 

be roughly one stretched and relativistic infinite wall within our horizon (plus col- 

lapsing wall bubbles), we expect AT/T - Gut,, - lo-“, for d - 1Mev3, as shown 

in previous work.e Both the effects are lower than the current limit AT/T N 10v5. 

The effects on the CMBR due to the baryons have not yet been treated. We expect 

that a major contribution to the distortions is due to the Zeldovich-Sunyaev effect,‘s 

which is the scattering of low energy photons by free and hot electrons. This kind of 

CMBR distortion is typical of any model dealing with early formation of protogalactic 

objects. 

Special thanks to E. Kolb, A. Chakravorty, D. Schramm and A. Kosowsky, for the 

time devoted in reading the manuscript and their constructive remarks. I also thank 
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Figure caption 

The comoving scale of the network ? in h-lMpc units, as a function of a. The 

friction begins to slow down the network at a N 10e5. The curves refer to different 

values of the parameter K and the neutrino mass m. For each value of m we take 

the limiting value K = 1.5(r7~/lOeV)~. We also take p = 3 (see eq.(13)). 
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