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1 Introduction 

The dynamical breakdown of symmetries[l] has played an important role in the physical 

understanding of the low energy behavior of quantum chromodynamics, and has been pro- 

posed as an alternative to the Higgs mechanism to explain the breakdown of the electroweak 

symmetry. Based on the present experimental lower bound on the top mass, it has been 

realized that the top quark may be sufficiently heavy as to induce the formation of a conden- 

sate, which catalyzes the electroweak symmetry breakdown at low energies [2]-[5]. A possible 

physical realization of this mechanism is given by the gauged Nambu-Jona-Lasinio model 

in which the dynamical fermions have effective four Fermi interactions at the compositeness 

scale A. The four Fermi coupling constant acquires a critical value, which separates the 

region in coupling constant space in which the chiral sum x U(1) symmetry is broken 

from the one in which this symmetry is preserved. When the four Fermi coupling is tuned 

to its critical value, a composite, scalar Higgs multiplet appears at low energies as a new 

dynamical degree of freedom. 

For values of A >> I%&, this model can be viewed as a particular limiting case of the 

standard model. In fact, the top quark and Higgs masses obtained at low energies are 

those consistent with the renormalization group trajectories associated with the “triviality” 

bounds on these quantities[4]. On these trajectories, the renormalized Yukawa and scalar self 

couplings diverge at the compositeness scale A. Hence, the top quark mass values obtained 

within this model can be understood as upper bounds for a given effective cutoff scale A, 

at which, quite generally, new physics should appear. For a compositeness scale A N 10’s 

GeV, the top quark mass turns out to be mt N 230GeV, a value that could be too large to 

be consistent with the experimental constraints coming from the p parameter measurement. 

The gauged Nambu-Jona-Lasinio model described above requires an unnatural fine tuning 

of the four Fermi coupling constant in order to give sensible physical results. In fact, this is 

not a special feature of this model. In the standard model, due to the quadratic divergence 

of the scalar mass, a fine tuning of the Higgs mass parameter at a high energy scale A is 

required in order to get the proper electroweak symmetry breaking scale. Supersymmetry 

provides a possible solution to this problem. In a supersymmetric extension of the standard 
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model the quadratic divergences disappear, and hence no fine tuning of the four Fermi 

coupling constants, or in general of the Higgs mass parameters, is required [6]. As has been 

pointed out in Ref. [7], a potential problem for the supersymmetric composite-Higgs model 

is that a large four Fermi coupling, of the order of the inverse of the supersymmetry breaking 

scale squared, could induce unitarity violations at scales which are large compared to the 

supersymmetry breaking scale but still small compared to the compositeness scale A. A 

definitive answer to this question may necessarily come from a complete nonperturbative 

analysis of the supersymmetric model. However, the bubble sum approximation provides a 

solution to this problem in the direct four fermion channels, while supersymmetry may yet 

protect the model in other multiparticle channels. In other words, from the renormalization 

group point of view, at energies lower than the compositeness scale this model is nothing but 

a particular limiting case of the minimal supersymmetric standard model, hence no unitarity 

violations will appear in the low energy theory. 

The minimal supersymmetric extension of the composite-Higgs model was first studied 

in Ref.[6], in a simplified version in which only one of the scalar Higgs doublets acquires a 

vacuum expectation value, and hence, the bottom quark remains massless. This supersym- 

metric composite-Higgs model is obtained, in analogy to the standard one, for those values of 

the low energy parameters which are consistent with the renormalization group trajectories 

associated with the triviality bounds on the top quark mass. As is already well known, if 

the top Yukawa coupling becomes large at a high energy scale A, the top quark mass is 

governed by an infrared quasi-fixed point [s], which determines the low energy top Yukawa 

coupling as a function of the low energy QCD gauge coupling constant. In the supersym- 

metric model, the infrared quasi-fixed point value of the top Yukawa coupling is lower than 

in the case of the standard model. Consequently, the top quark mass values obtained in the 

supersymmetric composite-Higgs model studied in Ref.[G] are lower than those obtained, for 

the same compositeness scale, in its standard version. 

In this article, we shall analyze the minimal supersymmetric extension of the standard 

model with dynamical symmetry breaking in further detail. We will study the effects of 

considering nontrivial vacuum expectation values for the two scalar Higgs doublets, which 

give masses to the upper and lower quark and lepton isospin components, respectively. Since 
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both neutral Higgs particles give contributions to the 2” mass, their individual vacuum ex- 

pectation values are lower than that of the standard model Higgs particle. Thus, the top 

quark mass values can be significantly lower than those obtained in Ref.[6]. In addition, 

we will show that, the value of the lightest neutral Higgs mass, within the supersymmetric 

top-condensate model, strongly depends on the value of the supersymmetry breaking scale. 

This may seem surprising, since the lightest Higgs scalar mass obtained using the tree level 

supersymmetric potential with soft supersymmetry breaking terms is only weakly depen- 

dent on the supersymmetry breaking scale. However, for the large top Yukawa couplings 

consistent with the supersymmetric infrared fixed point, large radiative corrections to the 

tree level predictions are induced[9]. A n important consequence of these radiative effects 

is to invalidate previous phenomenological constraints on the ratio R of the Higgs vacuum 

expectation values, and hence, as will be discussed in section 2, lower values for the top 

quark mass are allowed within the model under study. Moreover, we will analyze the mod- 

ifications to the top quark mass predictions induced by the appearance of a finite bottom 

quark Yukawa coupling. In section 3, we will compute the complete Higgs mass spectrum as 

a function of the radiatively corrected quartic scalar couplings and the explicit scalar mass 

terms. The top quark mass value will be computed, as a function of the lightest Higgs mass 

for different values of the compositeness scale A and the tree level CP-odd Higgs mass, and 

for a supersymmetry breaking scale of the order of 1 TeV. 

2 Renormalization Group Flow of the Low Energy 
Parameters. 

To describe the dynamics responsible for the top quark multiplet condensation, we shall 

consider an SU(3) x SCJ(2) x U(1) mvariant gauged supersymmetric Nambu-Jon,a-Lasinio 

model[6], [lo]-[12], with explicit soft supersymmetry breaking terms. In this simplified model, 

we shall first ignore all quark and lepton Yukawa couplings besides the one associated with 

the top quark, since they are unessential for the qualitative description of the phenomena 

under study. These additional interactions will be introduced below, while analyzing the 

complete supersymmetric standard model. 
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Written in terms of the two composite chiral Higgs superfields HI and Hz, the action of 

the gauged Nambu-Jona-Lasinio model at the scale A takes the form 

I’,, = lYYM + 
I [ 

dV @?‘Q + Tce-avTTc + BCe-*VBBC] (1 - Aa8agz) 

+ 
I 

dV~~~av~~H~(l - Mi8”P) - JdSE<j (moHiHZj(l + BOO”) - ~T~H~Q’T~(~ + Ale’)) 

- JdSe<j (m~E-l;‘Pi(l + BOB*) - ~T~T~Q’~~(~ + A,$‘)) 3 (1) 

where Q = (g) is the SU(2) doublet of top and bottom quark chiral superfield mnltiplets, 

TC (BC) is the SU(2) singlet charge conjugate top (bottom) quark chiral multiplet, and we 

have denoted the superspace integration measures dV = d4rd6’ad8a, dS = d4zde2 and d.? = 

d’xd$* [13]. An equivalent form of the above action, only in terms of the fundamental quark 

chiral superfields, can be obtained by integrating out the static composite chiral superfields, 

or equivalently, by substituting in Eq.(l) the fields HI and Hz in terms of their Euler- 

Lagrange equations. Ily~ includes the usual supersymmetric gauge field kinetic and the 

supersymmetry breaking gaugino mass terms, while the quark and Riggs multiplets interact 

with the SU(3)xSU(2)xU(l) gauge fields via 

V, = g3G”;X” + g2W’+’ + ;gIY, 
1 

VT = g3GaZX4 + tg,Y 

V, = g3G+’ Y 391 1 v,, = $W%’ - tg,y. (2) 

Generalizing the model of Ref.[G], we have included two soft supersymmetry breaking terms 

A0 and &, which are proportional to the scalar trilinear and bilinear terms appearing in the 

superpotential. The gauged Nambu-Jona-Lasinio model depends only on 6 = A0 - Bo, as 

can be easily verified by integrating out the chiral Higgs superfields. As will be discussed 

in section 3, the inclusion of the 6 induced terms in the low energy theory is essential in 

order to obtain nontrivial vacuum expectation values for both neutral scalar Higgs particles 

without inducing an unacceptably light axion[l4]. A s in Ref.[G], AZ and MS provide explicit 

soft supersymmetry breaking scalar mass terms. 

It follows from the Hz Euler-Lagrange equations that the scalar component of the HI 

chiral superfield and the quark superfields are related by 

PHI = sT.@‘, (3) 
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where we have denoted by 0 (C?‘) the scalar component of the chiral quark superfield Q 

(TC). Since the soft supersymmetry bre,aking terms are thought to arise from an underlying 

supergravity [15], it is reasonable to assume that the higher dimension composite fields HI 

feel twice the breaking strength as do the individual 6 or ? fields. It is straightforward to 

prove that this is achieved when the HI-explicit supersymmetry breaking mass term is given 

by M; = 2A” + P. 

In the presence of a condensate of top quark superfields, a dynamical mass for the top 

quark is generated. Its value may be determined in a self consistent way by using the 

Schwinger-Dyson equations in the bubble approximation. The Schwinger-Dyson equations 

for the top quark mass are depicted in Figure 1. Note that, generalizing the expression for 

the superfield propagators derived in Ref.[lG], there is a left-right scalar quark propagator 

induced by the inclusion of the soft supersymmetry breaking term 6. For a nontrivial solution 

of the Schwinger-Dyson equations, the gap equation 

G-l=% I+ 2m;a+f’a ‘1 ) -zln($)]. (4) (m: + A’) - m&c 
must be fulfdled, where G = g$o/mi and a = m&,,/(&nt) is given by 

-‘=1+ GM&NC ln A’ 
L1 

32~~ (m: + AZ)’ - m&c 

The logarithmic term in Eq.(5) comes from the interactions induced by the explicit scalar 

supersymmetry breaking mass term associated with the scalar field HI. The gap equation 

takes a simpler form in the case in which this explicit mass term vanishes. In general, 

however, the critical value of the four Fermi coupling G may be obtained by solving the 

above two coupled equations. The logarithmic dependence on the compositeness scale A is 

a direct consequence of the supersymmetric nonrenormalization theorems [17]. The usual 

quadratic dependence on A, appearing in the standard top-condensate models has been 

replaced by a mild quadratic dependence on the supersymmetry breaking scales A and 6. 

Thus, as we have already mentioned, no fine tuning is necessary in this model. 

In the scaling region, in which the four Fermi coupling constant is close to its critical 

value, a gauge invariant kinetic term for Hs is induced at low energies. In the large NC limit, 
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it may be obtained by computing the contributions depicted in Fig. 2, and is given by (61 

za, I 
dVH2eZVHal?2(1 + A# + A# + (2A* + Ai)8’8’), (6) 

where ZH, is the Hz wavefunction renormalization constant, which at a normalization scale 

p is given by 

(7) 

and V,, = -V,,. When p approaches A, ZH, tends to zero and Hz has no independent 

dynamics. For energies much lower than the compositeness scale A, instead, Hz appears as 

an independent dynamical degree of freedom. Rescaling the field Hz -+ &(I - Ad’)/JZa,, 

so that it has a canonically normalized kinetic term, the low energy model is given by 

ra = ITYM + 
J [- 

dV Qe-Q + TCe?“TTc + BCe-2VBi?C] (1 - A’B*#“) (8) 

+ jdV& avH1 H,( 1 - M~8*ti2) - 1 d5’eij (mHiHi( 1 + 60’) - htH{Q’TC) 

- / dSEij (m~~~(l + 6Ba) - h,i’“~‘~~) + / dV~~;elVn~ H,(1 + 2Aa9’81). 

where we have defined the renormalieed mass, m = m,/&, and Yukawa coupling, ht = 

id,/%. Ob serve that, since rno and gTo have finite values, these renormalized couplings 

diverge at the scale A. Once Hz is canonically normalized, the effective supersymmetry 

breaking terms proportional to the bilinear and trilinear terms of the superpotential are 

B = 6 and A = 0, respectively. The negative value of the induced mass parameter for 

the scalar Higgs Hz may generate the electroweak symmetry breakdown in the low energy 

effective theory, even for the case B=O [15]. However, as mentioned above, a nonvanishing 

B is necessary in order to induce a nontrivial vacuum expectation value for the scalar Higgs 

HI, and therefore give masses to the bottom quarks and leptons of the theory. 

The corrections induced by the inclusion of the gauge couplings may be obtained by 

going beyond the bubble sum approximation. The qualitative features associated with the 

composite-Higgs scenario, however, are properly described by the leading order in ~/NC re- 

sults presented above. Instead of computing gauge fields corrections and higher order in ~/NC 

effects, in order to obtain physical information at low energies it proves convenient to work 

with the full renormalization group equations of the supersymmetric standard model [4],[6]. 

The effect of the interactions ignored in the above discussion can be obtained by analyzing 



the modifications to the renormalization group trajectories consistent with the composite- 

ness condition, ZH,(~ = A) = 0, which are induced by their inclusion in the low energy 

theory. Concomitantly, when studying the scalar sector of the theory, we will not restrict 

ourselves to the particular assignments for the scalar mass parameter which were obtained 

in Eq.(8). It is important to remark, that although the cancellation of the supersymmetry 

breaking term A(p) at all scales is only a property of the bubble sum approximation, the 

relation A(p)IF = 0 is a prediction of the model. 

The top quark mass value is given by rnt = ht(mt)v2, where ‘ui is the vacuum expectation 

value of the scalar Higgs Hi. The low energy value of the top quark Yukawa coupling 

can be obtained by using the renormalization group flows in which h, becomes large at 

the compositeness scale A. The relevant renormalization group equations in the minimal 

supersymmetric model are given by[19] 

da3 4 - = 
dt 

3G 

daz 4 - = -- 
dt 4lr 

dm 4 - = 
dt 

-1lG 

dY, 16 
_ - dt -753 3 + 3&z 

13 
+ -41 9 - SY, - Yb 

> 
dUs _ 

- dt +, + 3& + ;kl - 6Yb - yt 
> 

where (Xi = g,?/4r, & = a</4~, Yb = (hb/4n)‘, Yt = (ht/47)’ and t = log(A/p)*. The solution 

to these equations provides the renormalization group flow for energy scales As I p 5 A. 

In general, if supersymmetry is broken at an energy scale As larger than the electroweak 

scale, the low energy effective theory is equivalent to the Standard Model with one or two 

light Higgs doublets, depending on the value of the mass parameters appearing in the scalar 

potential. Hence, at scales below As, the proper renormalization group flow is described by 

the solutions to the standard model renormalization group equations, which are given by[S] 

da3 4 - = 7z 
dt 

daz - = pa2 
dt 

da, -= 
dt 
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dYt 
dt 

dYb -xz 
dt (10) 

where /3s = 3(19/6), ,B1 = 7(41/6), cxb = l(3), at = l(3) if there are two (one) light scalar 

Higgs doublets. In the case in which only one light scalar Higgs doublet 4 remains at low 

energies, it will be given by a combination of the original Higgs doublets HI and Hz [9] 

4 = HI cos( 6’~) + ir, Hi sin( 0M) 01) 

where -9~ is the mixing angle. As we will show in the next section, when there is only one 

light Higgs doublet below As the mixing angle tan(BM) = R, where R = Q/WI is the ratio 

of the Higgs vacuum expectation values. Hence < 4 >‘= (v, 0), where v = $21 zll + vs. The 

top and bottom Yukawa couplings appearing in the renormalization group equation (10) 

are the effective couplings of the doublet 4 with the top and bottom quarks. These are 

related to the supersymmetric Yukawa couplings at the scale As by hi” = hb cos(6’~) and 

I$” = h, sin(tJM). 

For a compositeness scale A >> M, and a supersymmetry breaking scale which is of the 

order of the weak scale, an estimate of the top quark mass may be obtained by using the 

supersymmetric infrared quasi-fixed point, h,(Mz) 2 figs(Mz). This yields a top quark 

mass approximately equal to mt N 196GeVR/m. Consequently, if the ratio R N 1, 

the top quark mass can be significantly lower than the values obtained in the model of Ref.[G]. 

A more accurate estimate of the top quark mass can be obtained by numerical integra- 

tion of the renormalization group equations, Eqs.(S)-(10). In Fig.3, we show the results 

obtained for the top quark mass as a function of the ratio R for three different values 

of the compositeness scale A and a supersymmetry breaking scale A, = 1TeV. In the 

numerical work, we impose the compositeness condition on the top quark Yukawa cou- 

pling Y,(h)-’ = 0. The boundary conditions for the gauge couplings are chosen to be 

a,(&) = 0.115, cx,(Mz) = 0.0336 and aI = 0.0102, which are consistent with present 

experimental constraints[lS]. Th e 1 ow energy bottom Yukawa coupling was fixed by requir- 

ing the bottom mass to be consistent with its experimental value mb Y 5GeV. The values 

of the gauge and Yukawa couplings at a given energy scale p are obtained by integrating the 
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renormalization group equations, asking for continuity at the supersymmetry breaking scale 

As. The perturbative one loop renormalization group equations may not be reliably used 

to determine the evolution of the Yukawa couplings at energy scales /L close to the compos- 

iteness scale A. However, as we have already mentioned in the introduction, the action of 

the infrared quasi-fixed point makes the top quark mass predictions very insensitive to the 

precise high value of the top quark Yukawa coupling at the scale A. A slight variation, of 

less than 1% (Z%), of the top quark mass value is obtained by setting Y,(A) = 0.1, for a 

compositeness scale A > 10’s GeV (A 2 10” GeV). 

As it is apparent from Figure 3, the minimal value of the top quark mass is obtained for 

the lowest value of R. In general, the top quark mass values are insensitive to whether only 

one or two light Higgs doublets appear in the spectrum. However, for low values of R, the 

top quark mass predictions obtained if there are two light Higgs doublets are slightly lower 

than those obtained for the one light Higgs doublet case. As we will show in the next section, 

in the one light Higgs doublet case the ratio R is bounded to be larger than one. In the two 

light Higgs doublets case, although for characteristic values of the low energy parameters 

R 1 1, R could be slightly lower than one. 

The top quark mass has the same qualitative behavior for the different values of A and 

A,. Since vz(R) = va(R = l)Rdm), the top quark mass is expected to increase with 

R, tending to a constant value for large values of R. Such behavior is actually observed for 

low and intermediate values of R. However, since mb = hb2)lr the bottom Yukawa coupling 

depends on R as follows 

hb = hb(R = 1),/m. 02) 

Thus, for larger values of R, the bottom Yukawa coupling becomes larger and the infrared 

quasi-fixed point is reached for lower values of the top Yukawa coupling. In addition, since 

vs varies only slightly with R in the large R regime, the top quark mass decreases with R, a 

behavior that is clearly seen in Fig.3. If R becomes too large (R 2 36 for A N lO’*GeV), hb 

becomes larger than the top Yukawa coupling. In our computations we have set an upper 

bound on R by requiring the top Yukawa coupling to be larger than hb. 

In Figure 4, the top quark mass as a function of the ratio R is depicted, for three different 
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values of the supersymmetry breaking scale As. An important result of these computations is 

that, if the compositeness scale A N 10’pGeV(lO’OGeV), and As N lTeV, the characteristic 

top quark mass is 140 GeV < mt < 195 GeV, (160 GeV < mt < 220 GeV). Furthermore, 

the top quark mass results obtained for As = 100 GeV are very similar to the ones obtained 

for As = 1 TeV. For As as large as 10 TeV, the top quark mass is shifted slightly towards 

larger values. Therefore, as may be seen from Figure 4, the low energy predictions for the 

top quark mass obtained in our analysis are stable under variations of As. 

3 Scalar Higgs spectrum and the top quark mass 

In recent years, there has been considerable effort to derive low energy supersymmetry from 

supergravity or superstring inspired models [19],[20]. In p t’ ar ICU ar, it has been realized that 1 

there is a finite set of soft supersymmetry breaking parameters which can be included in 

the theory without spoiling the cancellation of quadratic divergences. These parameters 

are the gaugino masses, an explicit mass parameter for the scalar components of the chiral 

superfields, a scalar trilinear coupling A proportional to the Yukawa dependent part of the 

superpotential, and a bilinear coupling B proportional to the Higgs-bilinear term in the 

superpotential (see section 2). The values of these parameters must be adjusted at a high 

energy scale A in order to obtain a sensible low energy spectrum. In addition, the value of 

the mass parameter m appearing in the superpotential should be fixed in order to define a 

particular low energy model. There is a wide range of possible values for m and the soft 

supersymmetry breaking parameters at p = A, that lead to low energy predictions which 

are in agreement with both experimental and theoretical constraints[21]. The values of the 

mass parameters appearing in the scalar potential depend on the particular choice of the 

supersymmetry breaking scheme. The compositeness condition imposes the cancellation of 

the t&near coupling A(A), together with a relation between the supersymmetry breaking 

mass terms for the squarks and the Higgs field Hz at the scale A. However, it imposes 

no constraints on the gaugino masses, the bilinear term B, the low energy value of the 

supersymmetric Higgs mass m and the overall scale of the Higgs and squarks supersymmetry 

breaking mass terms. Therefore, it proves convenient to get a general picture, independent 
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of the boundary conditions at the compositeness scale A. For any sensible set of boundary 

conditions, the supersymmetry breaking scale As cannot be much larger than 1 TeV without 

requiring a fine tuning, which would spoil one of the relevant properties of the supersymmetric 

models. Hence, we will be particularly interested in studying models with As 5 10TeV. 

At the supersymmetry breaking scale As, the low energy Higgs potential reads 

Kff = m:HfHl + rniH:Ha - rn: (HTir2H2 $ h.c.) 

(13) 

where we have defined rn: = Bm, and mf and rni are generic mass parameters. An inter- 

esting aspect of the minimal model under consideration is that it predicts that the lightest 

tree level Higgs mass is bounded to be below the Z” mass. However, for large values of the 

top and bottom Yukawa couplings, large radiative corrections to the tree level potential are 

induced[9]. At energies below the supersymmetry breaking scale the potential is given by 

the general expression 

&f = m:HiH, + miH:H2 - rni (H;~QH~ + /LX.) 

+$ (@HI)’ + $ (&Hz)’ +X3 (H!H~) (HAHN) + A, IH,tir,H;l’ (14) 

where we have chosen the same notation as in ref.[8]. Ob serve that the appearence of other 

quartic couplings than the ones given in Eq.(14) is protected by either discrete symme- 

tries (Hz + -H2, HI --t -HI) or a global PQ symmetry. In particular a quartic term 

X,[(H~ir~H~)’ + h.c.] breaks the PQ symmetry. The PQ symmetry is only broken by the 

mass term rng in the scalar potential, Eqs. (13) and (14). Hence, X6 will not receive any 

leading logarithmic contribution and will not appear in our renormalization group analysis. 

The minimization conditions for the above potential give 

while 

sin(20) = 
2m$ 

(m: + mi) + XIV: + Au,2 + (AS + b)v” 

R2 = m? + hf = m: + X& + (X1 - X,)v: 

m: + X2v$ rni + XgG (1‘3) 

where we have defined tan 0 = R. 
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The value of the quartic couplings at a low energy scale p may be computed through the 

renormalization group flows obtained by solving the corresponding renormalization group 

equations[B] 

16&~ = -6 [A; + (4~)‘~~(yb - &/4 - 3&z/4) + (4a)‘(&;/16 + al&/8 

+ 3&i/16 - Y:)] - 2X; - 2X3X4 - A: 

2& 16~~ = -6 [A: + (47r)‘&(Y, - &,/4 - 3&/4) + (4~)~(&:/16 

+ &A,/8 + 3&;:/16 - y,‘)] - 2X: - 2X3X4 - A: 

-32~2% = 0, + x,)(6x, + 2~~) + 4~: + 2x: + ~(4~)~(-3&~ - 9ca 

+ 6X + 6yb) + (4T)‘(9&;/4 t 3&f/4 - 3&c&/2 + 12y,yb) 

-32~~2 = X4(2X1 t 2Xz t 8~3 + 4X4) + 3X4(4r)z(-3&!2 

- 61 t 2u, + 26) + 3(4k)‘(&& + 4y,Yb) (17) 

Contrary to what happens in the standard model, the tree level Higgs masses do not depend 

on the compositeness scale A. In the minimal supersymmetric model, this is a result of the 

quartic Higgs couplings being proportional to the electroweak gauge couplings, whose low 

energy values are fixed by experimental constraints. In fact, from eqs.(13)-(14), it follows 

that at the supersymmetry breaking scale the quartic couplings must fulfill the boundary 

conditions 

&(As) = &(A,) = v 

X3(As) = ” ; “, &(A,) = -$ 

where we have used the relation 

(H,~H,) (H;H,) = IH;H,('+ IH&~H;I~ . 

(18) 

(19) 

It is easy to prove that, for As 5 lOTeV, the stability conditions X1 > 0, Xz > 0, 

l/xx > -As t lx41 if A4 < 0 
&ix > -As if x4 > 0 (20) 

are always verified within this model. Hence, the Higgs scalar potential is stable. 
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In the absence of radiative corrections, Ma, defined as rnf f rni = 2M’, must be greater 

than Irn:j to assure the stability of the potential along the direction IH1I = IHzi. As we 

have shown above, radiative corrections stabilize the potential even when this relation is not 

fulfilled. In the following, we will only assume that the mass parameter M’ > 0. If M is 

of the order of the weak scale, two light Higgs doublets appear in the low energy spectrum. 

There arc two neutral CP-even scalar states with masses given by 

1 
mH,h = ; [2MZ + 3&J; t 3x14 t (A, t Xl)va 

f J(- rni cos(20) + 2&v: - 2X17@ + (ml - 2(X3 + X4)9)* sin’(20) 
J (21) 

where rn* is the mass of the neutral CP-odd scalar state 

2 ma = 2M2 + A.& + XIV: t (A, t Xd)v’. (22) 

Observe that a vanishing value of rni would imply an unacceptable massless axion in the 

physical spectrum of the theory. Finally, 

m&= rni - Xlv2 (23) 

is the squared mass of the charged Higgs eigenstate. The scalar masses may be computed 

by using the expressions given above, where the quartic couplings are evaluated at the 

renormalization scale p* = mf, with mi the corresponding scalar mass. 

It is straightforward to prove that the mass matrices of the CP-odd and charged Higgs 

states are diagonalized with an HI - Hz mixing angle, which is always given by -0. In 

addition, whenever the mass parameter M >> Mz, the mixing angle for the neutral CP- 

even states is approximately given by 0 and hence, the light CP-even state, together with 

the Goldstone modes, form a Higgs doublet 4, whose expression is given by Eq.(ll) with a 

mixing angle 0~ = 0. 

For a given compositeness scale A and a supersymmetry breaking scale A, the top quark 

mass is only a function of R, while the Higgs spectrum depends on R and on the value of 

the mass parameter M. This functional relation is depicted in Fig. 5 for a supersymmetry 

breaking scale varying in the range As = lTeV- lOTeV, for compostiteness scales A = IO” 

GeV and A = 10” GeV and for three different values of the mass parameter M, and where 
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we have assumed that the ratio R 2 1. An interesting result of these computations is 

that whenever the mass parameter M > 0, and for ratios R 2 1, the lightest Higgs mass 

is enhanced by radiative corrections to values that are beyond the present experimental 

constraint mh > 38 GeV [22]. Hence, if the supersymmetry breaking scale As is of the order 

of 1 TeV, the top quark mass within the supersymmetric top-condensate model may be as 

low as m, N 140GeV without any fine tuning of the low energy parameters. 

As we have discussed above, when M >> Mz only one light neutral Higgs particle 4” 

remains in the physical spectrum of the theory. The other three components of the doublet 

4, Eq. (ll), are the Goldstone bosom, which are eaten by the electroweak gauge bosons 

through the usual Higgs mechanism. An alternative way to compute the mass of 4’ is by 

assuming from the,beginning that at scales lower than the supersymmetry breaking scale 

one recovers the standard model with only one light Higgs doublet. Considering the effective 

potential for 4 to be 

V(4) = mzd++ + $4+4)‘, (24) 

the 4” mass is given by m$ = 2Xv’. The value of the quartic coupling X at low energies 

may be obtained by solving the corresponding renormalization group equation 

,dA 1677 t = -6 [A’ + (4a)zX(Y;ff + Ytff - ‘-%/4 - 3&z/4) + (4~)~(ir;/16 

+ &&z/8+3&;/16 - (y:“)” - (qeff)l)] , (25) 

with the boundary condition Z!(A,) = + cos?(2B), where xTff = (h;{f/4r)“. The values 

obtained for the Higgs mass coincide remarkably well with the ones obtained by the procedure 

above, when the mass M >> Mz, and are depicted with a dashed line in Figure 5. 

In the light Higgs mass, rn,,, computations we have assumed R > 1. A lower bound 

on R may be obtained by analyzing the renormalization group flow of the mass parameters 

appearing in the scalar Higgs potential. In all the supersymmetry breaking schemes studied 

so far, the mass parameters rn: and rni acquire equal values at large energy scales. From the 

renormalization group equations for these parameters [19], it follows that if m:(A) = m:(A) 

then m:(p) > m:(p) for any energy scale p < A. Observe that this also applies to our 

l/No study of section 2, where in the limit p -+ A, m:(,o)/mi(p) + 1, while at low energies 

m: - m: = MS + 2A’ > 0. Using the expression for the CP-odd scalar mass m,+, Eq.(22), 
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we can rewrite the minimization condition, Eq.( 16), as 

R1 = mT4 t (AI - X3 - X4)v2 t M& 
mi + (A, - X3 - X4)t9 - M:, ' (26) 

where M& = m: - m:. Observe that the right hand side must be greater than zero in order 

to obtain a proper electroweak symmetry breakdown. 

As it is apparent from Figure 3 and 4, a lower bound on R induces a lower bound on 

the top quark mass within this model. From Eq.(26), it follows that in the one light Higgs 

doublet case, i.e. rni >> Mi, the ratio R is bounded to be R 2 1. In the two light Higgs 

doublets case, the result depends on the value of the CP-odd mass and the squared mass 

difference Mf,. For low values of R, Xr N -(Xs t X4) N 0.13, while Xr varies from X1 N 0.4 for 

A = 10’s GeV and A, = 1TeV up to Xa N 0.8 for A = 10”‘GeV and A, = 10TeV. Assuming 

a scalar CP-odd state with mass consistent with its present experimental bound, md 1 42 

GeV[22], and a small mass difference (Ml, N 0), it is easy to obtain a lower bound on R while 

setting mA to be equal to its experimental lower bound. The lower bound on R decreases 

when the compositeness (supersymmetry breaking) scale decreases (increases). However, 

since under these conditions the top Yukawa coupling is increased, the lower bound on mt 

is only slightly modified. We obtained that, for a supersymmetry breaking scale varying in 

the range As = I - 10 TeV, and a compositeness scale A = 1O’c - 10’s GeV, the top quark 

mass mt > 120 GeV. The lower bound increases rapidily for larger values of Ml,. If Ml2 is 

assumed to be Ml1 = O(Mz), the lower bound on R is generally obtained for the case of a 

heavy scalar CP-odd state, that is to say R 2 1 and therefore, for a supersymmetry breaking 

scale A, = 1 TeV, the top quark mass mt 2 140GeV. The same bound on R, R 2 1, applies 

if, as suggested by our l/No study of section 2, the mass difference Ml1 is of the order of 

the supersymmetry breaking scale. 

Observe that the bound on mt may not be relaxed by setting the supersymmetry breaking 

scale As = O(Mz). If the characteristic mass of the supersymmetric partners were of the 

order of 100 GeV, the quartic Higgs couplings would be approximately described by their 

supersymmetric expressions. Hence, the bounds R > 1 and mh < MzI cos(28)] would apply 

in this case. Moreover, from the present experimental bound on the lightest CP-even neutral 

Higgs mass, rnh > 38GeV [22], it follows that the ratio R > 1.6 and hence mt > 165 GeV 
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for A = 10’s GeV. 

A heavy CP-odd spectrum may be obtained only by enhancing the value of the mass 

parameter M. This is clearly shown in Figure 6.a (6.b), where we depicted the results for 

the CP-odd (charged) Higgs mass as a function of the mass parameter M for A = 10’s GeV 

, As = 1 TeV and for different values of the top quark mass. Note that, even if the mass 

M N 0, the CP-odd mass acquires phenomenologically acceptable values. 

4 Conclusions 

In this article we have analyzed the values of the top quark mass compatible with a dynamical 

breakdown of the electroweak symmetry induced by condensates of the third generation of 

quark multiple@ in a minimal supersymmetric extension of the standard model. We have 

argued that these values may be reinterpreted as being the triviality bounds on the top 

quark mass, for a given cutoff energy scale provided by the compositeness scale A. We 

have shown, in a way independent of the supersymmetry breaking scheme, that, for a given 

supersymmetry breaking scale, the values of the top quark mass within this model only 

depend on the ratio R of Higgs vacuum expectation values. In addition, we have shown 

that, for As = O(lTeV), no additional constraint is obtained from the present experimental 

bound on the lightest Higgs mass mh > 38GeV. For the compositeness scale A N 10’sGeV 

and the supersymmetry breaking scale As = lTeV, the characteristic top quark mass is 

predicted to be in the range 140GeV 5 mt 5 195GeV. This prediction has only a slight 

dependence on the exact value of the supersymmetry breaking scale. 

Finally, when trying to give masses to all observed quarks and leptons, additional four 

Fermi couplings to the ones considered in this article have to be included in the super- 

symmetric model. Since the relevant four Fermi coupling constants are not suppressed by 

powers of A, these additional interactions may induce flavor changing neutral currents at 

the supersymmetry breaking scale. These processes, if they are not supressed as in the non- 

supersymmetric model, may provide a means to experimentally test this model. As well, 

there is a correlation between the Higgs spectrum and top quark masses that provides a 

signature for the supersymmetric top-condensate model. 
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FIGURE CAPTIONS. 

Fig. 1. The Schwinger-Dyson equation for the top quark chiral superfield self energy in 

the bubble approximation, where the coupling G(b’, 8) = G( 1 - 2A’8’8’ + 88’ + SB’). 

Fig. 2. The Feymann diagram contributing to the induced kinetic term for the Higgs 

chiral superfield Hz in leading order in l/No, where the coupling gT(0) = grO(l + W). 

Fig. 3. Top quark mass as a function of the ratio R, for a supersymmetry breaking scale 

As= 1 TeV and three different values of the compositeness scale A, for the case of one light 

Higgs doublet (dashed line) and two light Higgs doublets(solid line). 

Fig. 4. Top quark mass as a function of the ratio R, for three different values of the 

supersymmetry breaking scale, for the case of two Higgs doublets and a compositeness scale 

a) A = 1O’O GeV and b) A = 10” GeV. 

Fig. 5. Top quark mass as a function of the lightest Higgs mass m,,, for three different 

values of the mass parameter M (solid lines), and the same functional relation for the case 

of one light Higgs doublet (dashed line), for 1. A = 10”’ GeV and 2. A := 1Ol6 GeV, and a 

supersymmetry breaking scale a) As = 1 TeV and b) AS = 10 TeV. 

Fig. 6. a) the CP-odd Higgs mass, mu, and b) the charged Higgs mass, m,,,, as a function 

of the mass parameter A4 for a supersymmetry breaking scale AS = 1 TeV, a compositeness 

scale A = 10’” GeV, and different values of the top quark mass, mt. 

21 



Figure 1 

T-TC = &k-Tc 
m++ 82miQc G(B,@) 

Figure 2 

Q 

Hz & 
TC TC 



0 

*a 



Figure 4 

22: 

2oc 

> 
s 17E 

2 
f IX 

125 

ICC 

2oc 

18C 

2 
cl 160 

0” 
E 

140 

120 

ICC 

I I I I I I / / 1 / I F 
- - 

- - 
\ \ 

I- 

)- 

I- 

l- 

,- 

/ 
I ’ 
0. 

r 
l- 

l- 

/- 

I 1 I I I J 

5 1.0 5.0 10.0 2d.0 
R 

I I I I F 

. 

. 
\ 

(a) 

(b) 



Figure 5.1 
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Figure 5.2 
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