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ABSTRACT 

Recent investigations of the effects of inhomogeneities generated by the quark-hadron 
phase transition in the early universe on the primordial nucleosynthesis have shown that 
the difference in the mean free paths of neutrons and protons and the resulting diffusive 
segregation have a significant influence on the cosmological abundances of the light ele- 
ments. We calculate the diffusion coefficients of neutrons and protons moving through 
the background electron and photon gases and their mutual difTusion coeflicient, which 
are important,&& in the nudeosynthesis calculations. in the framework of relativistic 
kinetic theory in the temperature range 10s 5 T < 5. IO0 “K. The coefficients are shown 
to have explicit dependence on density and temperature. 
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1. Introduction 

There is a strong possibility that a first order QCD phase transition kom the quark- 

gluon plasma to the confined hadronic matter had occurred in the early the universe, when 

the temperature was about 100 MeV. Witten [l] pointed out that this phase transition 

might have produced isothermal baryon number fluctuations because the quark-gluon 

plasma has a greater baryon concentration than the hadromc phase with which it is in 

thermal and chemical equilibrium. Applegate and Hogan [2,3] have suggested that the 

characteristic size of these fluctuations could be such that protons would not be able to 

diffuse across them before the onset of nucleosynthesis but the neutrons would, as they have 

no electrical charge and therefore suffer less scattering. This would result in high density 

regions rich in protons and low density regions rich in neutrons. Consequently the scenario 

would be quite different from that of the standard big-bang model in which the density of 

nucleons is assumed to be the same everywhere at the time of nuckosynthesis. Recenily 

several authors [4-9) have calculated the abundance of light elements *B,’ He: fle ahd 

‘Li using this inhomogeneous model of primordial nucleosynthesis. 

In this non-standard big-bang model (51 the diffusion of nucleons from regions of den- 

sity inhomogeneity, especially the diffusion lengths of neutrons and protons moving through 

the surrounding electmn and photon gases, affects the nudeosynthesis in a crucial manner. 

The calculations of Applegate, Hogan and Scherrer [3] have showu that the diierence in the 

mean free paths of neutrons and protons and the resultant diffusive segregation influences 

the formation of the light elements very significantly.- Therefore it is important to evaluate 

the diffusion coefficients of neutrons and protons carefully in order to see whether in the 

inhomogeneous model of the primordial nucleosynthesis, the cosmological abundances of 

the light nuclei are modified. In ref. 3 the diffusion coefficients were calculated using a 

mobility formula and the Einstein relation between mobility and the diffusion coefficient 

[lo]. We calculate the diffusion coefficients in the framework of the kinetic theory, assum- 

ing all particles to be classical. It turns out that in the temperature range relevant for 

nucleosynthesis, 10, 5 T 5 5.10’ “K, this assumption is not restrictive. The electrons 

are relativistic in this energy range and so we use the relativistic version of of the kinetic 

theory ill-131 in our calculations. 

In the temperature range under consideration neutrons and protons are-no longer in 
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equilibrium with respect to weak interactions and as a result they retain their identity 

for diffusive segregation to take place. Neurrons are scattered by electrons through the 
. 

interaction of their magnetic moments and by protons due Lo nuclear interaction. Protons, 

on the other hand, undergo Coulomb scattering by electrons and Thomson scattering by 

photons, and are also scattered by neutrons. With these elementary cross-sections as input 

we calculate the diffusion coefficients. 

2. Diffusion CoeiIkients 

The diffusion coefficient of particle i moving through a gas of pa&&s j is denoted 

by 0,;. The genera expression for Dlj in the first order Chapman-Enstog approximation 

I31 -Y b e written as, 

D,j = 
12c (l-r,) 1 

llU,,(T) Zj q’ 

where n is the total density of rhe system of consisting of photons, protons, elecrmns and 

neutmns, 

n=n,fn,+n,+n, 
n, (2) 

2. = 5;* 

and v.,(T) is the total scattering cmss-section at the temperature T under consideration. 

I,, is the integral, 

X {Kr(&,f) i- (~~j~)~~(z*jf)~ %jtrl 

where 

d 
A=-’ 

Zv=Z,fZ,, 

(3) 

P’o = 
mm, and 

m, + m, 
hf., = m, + mj 
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KJz,) is the modified Bessel function of order Y. Also 

w 

c 7;; - - 
” - 24,,(T) 1 

sin 6W( 1 - cos B)du,,(cM,,t, 0) 
(I 

(4) 

where 

rij = 1 - idij 

and du,, is the differential scattering cross-section in the centre of mass system. 

We now list the various diffusion coefficients calculated from Eq. (3) and Eq. (4). 

(a) Neutron-Electmn 

Since m, < m, we evaluate the integral I,,, [Eq. (3)] in the lowest order of 2,/z, to get, 

From Eq. (1) we get for the diffusion coefficient, 

D 
c 1 -r, 1 Kt(z,) -- 

Iw, te r:” If&)’ (6) 

The neutron-electron interaction is through their magnetic moments and the cross-section 

une IS, 

(7) 

where IF is the anomalous magnetic moment of neutron in nuclear magnetons. 

It is interesting to observe that for non-relativistic electrons (knT a: m,cr) one obtains 

the same expression for D, a0 given by the mobility formula [HI]. (This formula has been 

used in ref. (31 for calculating D,, albeit for relativistic electrons.) The mobility b of the 
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neutrons moving through the electron gas of density n. is given by, 

b-1 = & 
I f(u)wJdJp, I’ 

where f(v) is the ~Marwell velocity distribution function of the electrons, 

f(u) = (2nme~J-)“,2 exp (-2LT) 

Carrying out the integral we get for b-*, 

b-1 = ; $,&s~)L”~ J 
We now use the Einstein relation between b and the diffusion coefficient. 

D, = bkoT, 

and obtain 

(8) 

(9) 

00) 

7 

(11) 

which is the same as Eq. (6) in the limit of large L. for a dilute gas of neutmns (2, < 1) 

diffusing through electmns. 

(b) Proton-Electron 

The differential scattering cross-section in this case is given by the Mott formula 

$$p.44 = 4(qe($$e,2) [h2)2 + (q.)~cos~ i 1 , 

where p. is the electron momentum. Because of the divergence at small angles, the usual 

approximation is to cut-c& the angular integration at an angle given by the ratio of the 

Debye shielding length Ao = (k,~T/e*n.)“’ and a typical distance of closest approach for 
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which one takes the thermal wave length At,, = (2rh’/m,keT)L’1 [13). The cross-section 

to be used in the diffusion coefficient is then given by, 

. 
( > 

I 
=P = 47ra’ & log 4 

B 

where 6 = An /At,,. The diffusion coefficient D, is then, 

D c 1 - zp 1 Ky(z.) ---- 
no, z. z!” K+.) (15) 

(c) Neutron-Proton 

In this case both the particles a~ non-relativistic and the scattering cross-section is 

given by the triplet and singlet scattering lengths a1 and a,, 

U”, = 3x0: + raf. 06) 

We get for the diffusion coef%ient in this case, 

D 
36 c l-t, 1 

np = - --- 
4 no,, z, zila (17) 

(d) Proton-Photon 

Since one of the particles has zero mass we have same case as in (a) and the diffusion 

coefficient is given by, 

where the proton Thomson cross-section a, is 

Again for koT Q: m.$, 
i 

D 
3 r e l-2, 1 

$ 
-m--. 

pl = ii 2 nu, z, $’ (20) 
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3. Results and Conclusions 

We have cafculated the numericai values of the diffusion coefficients D, and D,,. The den- 

sities n,, n,, nLp and n, are calculated using the following expressions valid in the radiation 

era [14,15] : 

- 20.3TJ nT - 

np=n,- = 1.5 x lir’RTJ{l - 0.17ezp(-2.10’~T-‘/t,)} (21) 

n,, = 1.5 x 10-7fI~(0.17exp(-2.10aoT-‘/t,)) 

where Sl and t, are respectively the density parameter and neutron life-time. We take 

R = 0.2 and t, = 687.6 see (16!. The results are shown in Table I. For D, our results 

differ widely kom those of Applegate et al (31. This is largely because their diffusion 

coefficient does not depend on the electron density, whereas it depends very strongly on 

the temperature-D,,. is proponionai to exp(n&/knZ’) which becomes inordinately Iare 

for ksT < m.cr. For D,,, our expression Eq. (13) is the same, except for numerical factor& 

as the elementary kinetic theory expression jr& which has been used in ref. (31. Here i 

is the velocity of the neutron and X = l/nPu,, is its mean free path. The agreement of 

numerical values of the two calculations is to within an order of magnitude. 

We would like to emphasise that our expressions for the diffusion coefficients have 

explicit dependence on the densities of the diffusing particles and we recover the correct 

expressions in the non-relativistic lit. An important feature that emerges from the 

calculations is the equivalence between the expression for the diffusion coefficient D,,, &t-m 

by the mobility formula and that derived from the kinetic theory for a dilute neutron gas 

diffusing through electrons at low temperatures. We have thus shown that the relativistic 

kinetic theory cau be used to calculate the various diffusion coefficients needed for the 

inhomogeneow-nodeosyntheais modd as long as the classical approsimation is valid. This 

approximation can be checked by calculating the degeneracy parameta (hr/2rmlinT)s”n 

which is < 1 throughout the density and temperature range that we have considered. 

We expect our values for the diffusion coefficients, which differ fmm~ the values used so 

far, to have significant inlIuence on the abundance of light elements in an inhomogeneous 

cosmological model. However this can only be shown by detailed calculatiolu which are in 

progress (171. 
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TABLE I 

D,.(cm’/sec) Tg(‘K) 

5.0 

3.0 

1.0 

0.8 
0.6 

0.4 

0.2 

0.1 

2.5 x l@” 2.9 x 10” 1.4 x 10’0 

5.5 x 10’9 1.2 x 10’9 4.9 x 10’0 

2.0 x 10” 2.3 x lOJo 7.8 x 1011 
1.0 x 10” 4.2 x 1O’O 1.2 x 10” 

4.4 x 10” a.8 x loa0 2.5 x 10” 

1.3 x 10” 2.3 x 10” 6.5 x 10” 

1.6 x 10’” 1.3 x 10” 3.4 x 1O’I 

2.0 x IO’S 7.4 x IO” 1.9 x 10” 

Table I. Values of D, +nd D, as functions of density n and temperature T. 


