
Fermi National Accelerator Laboratory

FERMILAB-Cod9l/320

System Software Design for the CDF Silicon Vertex Detector

5’. Tkaczyk

Fermi National Accelerator Laboratory
P.O. Box 500, Batavia, Illinois 60510

M. Bailey

Purdue University
West Lafayette, Indiana 47907

November 1991

* Presented at the IEEE Nuclear Science Symposium, Santa Fe, New Mexico, November 2-9, 1991

e Operated by Universltiaa Research Asroclation Inc. under Contract No. DE-ACOZ-76CHC3000 with the United States Department of Energy

Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States
Gouernment. Neither the United States Government nor any agency thereof nor any of
their employees, makes any warranty, express or implied, or assumes any legal liability
OP responsibility for the accurcccy, completeness, or usefullness of any information,
apparatus, product, or process disclosed, or represents that its use would not infringe
privately owned rights. Reference herein to any specific commercial product, process, or
service by trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United States
Government or any agency thereof. The views and opinions of authors expressed herein do
not necessarily state or reflect those of the United States Government or any agency thereof:

System Software Design for the CDF Silicon Vertex Detector

S. M. Tkaczyk
Fermi National Accelerator Laboratoly *, P.O. Box 500, Batavia, IL 60510

M. W. Bailey
Purdue University, West Lafayette, IN 47907

Abstract

An automated system for testing and performance
evaluation of the CDF Silicon Vertex Detector (SVX) data
acquisition electronics is described. The SVX data acquisition
chain includes the Fastbus Sequencer and the Rabbit Crate
Controller and Digitizers. The Sequencer is B programmable
device for which we developed a high level assembly
language. Diagnostic, calibration and data acquisition
programs have been developed. A distributed software
package was developed in order to operate the modules. The
package includes programs written in assembly and Fortran
languages that are executed concurrently on the SVX
Sequencer modules and either a microvaw or an SSP. Test
software was included to assist technical personnel during the
production and maintenance of the modules. Details of the
design of different components of the package arc reported.

I. INTRODUCTION

The development of the software package and assembly
language for the tests and operation of the Silicon Vertex
Detector readout electronics components being commissioned
for the CDF92 nm will be discussed. The basic components of
the SVX DAQ are a Fastbus Sequencer, a Rabbit Crate
Controller and a Digitizer module. The function and
arrangement of these modules will be briefly summarized
here, sod arc described in more detail in other contributions to
tbis conference[l,2].

The SVX detector contains over 46,000 readout chaonels
divided into 24 sections called wedges. Each wedge is
connected to a separate Digitizer, which resides in a Rabbit
crate mounted on the CDF detector. Four Rabbit crates hold 6
Digitizers each. The Digitizer is responsible for driving and
receiviog analog and digital signals to the detector. The digital
signals it sends are used to control the operation of switches on
the wstom designed VLSI chips called SVX Rev D integrated
circuit[3](SVXIC) that arc connected to the detector. The
analog signals it sends are used to inject charge into the
detector. The analog signal it receives is the pulse height of a
charged particle traversing the detector, which is sent with a
digital description of the location of the channel that was bit.
In each of the four Rabbit crates there is one Controller, an
interface between the Digitizers sod the Sequencer, which

* Operated by the UIuversities Research Association under contmct
with the US Department of Energy..

resides in B Fastbus crate in the Control Room. There is one
Sequencer connected to each Controller.

The Sequencer contains a 16k data memory and a 16k
program memory, along with a microsequencer chip,
conditional control logic, and B 100 MHz clock. It sends data,
fimction codes, and patter” timing signals through cables that
txe directly connected to the Controller. The Sequencel’s data
space is divided into 8 blocks, 6 of which correspond directly
to the Digitizers in the crate. In the current configuration, the
seventh block is not used, and the eighth block holds data from
the Controller. I” other possible configurations, the seventh
and eighth blocks could be dedicated to two more Digitizers
placed in the Rabbit crate. Each of these blocks has associated
with it an End Of Buffer(EOB) register which keeps track of
the last location in its block to which data has been written.
The Controller drives the pattern timing signals onto the
backplane ofthe Rabbit crate, where they are picked up by the
Digitizers and driven to the wedges. If a function code is
presenf the Controller int.zprets it as B write or read of one of
its own registers, of a register in B Digitizer in a designated
slot, or of a register in all the Digitizers in the mate, performs
the appropriate function, and sends the data back to the
Sequencer. Three of the top five bits of the data indicate the
slot location of the module t?om which the data came. The
Sequencer uses these bits to direct Ox data to one of its eight
data blocks.

II. CONTROL AND TESTING OF DAQ MODULES

A. Operation and Control Uliliiies

The degree of complexity of the three modules residing on
different backplane buses made it necessary to design a
sohare package which made common operations easily
accessible, and would also automate the testing procedures as
much as possible. The package, called SVX-Control, is
written in Fortran, since we wanted to use the CDF Fastbus
subroutines that were programmed in Fortran. We use the
Uipack user interface package[4] to make the program me”“-
driven, so that technical personnel and the designers of the
devices can quickly learn to use the program.

The top men” allows control of all system functions
necessary during normal runtime operation. The most
straightforward operation is writing and reading of the
Sequencer’s CSR and data registers; therefore we provide
options that allow single writes and reads to CSR register and
block writes and reads to the data registers, since this is how
these registers are normally accessed In all write operations,

a readback is also performed and any mismatches are reported
One oan also BCC~SS the Controller and Digitizer registers via
addresses mapped into the Sequencel’s CSR space but the
procedure is different. In this case the desired function code is
stored in the Front End Crate control Register in the
Sequencer. Then a Fastbus write is made to the CSR address
corresponding to the Digitizer or Controller register to be
accessed, which causes the function code and data to be sent to
the Controller. If the function is a read, the data word sent
with the Fastbus write is ignored, and the data word read is
sent to the appropriate data block in the Sequencer. One then
has to perform a Fastbus read of that data space location to get
the data. In the program, block reads of the EOB registers
before and after the read code was executed are compared to
determine the location of the data. These operations are
transparent to the user, so that writes and reads of the
Controller and Digitizer registers can be performed by
selecting the same options used to write and read regular
Sequencer CSR space registers. Other options are provided to
read the supply voltages of the Rabbit crate, download the
Sequencer progmm memory, and change the Fastbus primary
address of the Sequenoer to allow communication with any
other Sequerlcers in the system.

Many functions, such as running the Sequencer, require
only that the user write a certain value to a single CSR
register. We did not want to have separate menu options for
all these kinds of timctions, but neither did we expect that the
average user would know where to write which values.
Therefore we made extensive use of the ability of Uipack to
accept command files. These files are written in standard text
format and are simply a list of commands in the order that they
could be selected from the menus. Files were made for the
simple kinds of functions mentioned above, so that the user
will enter something like @run to run the Sequencer.
Another benefit of using command files during development
of the modules is that we can quickly update them if the
address of any CSR registers or the value to write to them
changes. We also set up more complicated command tiles that
call some combination of the simpler command tiles. For
instance, the command @rgrun prognome resets the
Sequencer, zeroes its Program Counter, downloads the
programprognome, zerws the EOB registers, and runs the
program. Use of the command files saves time, eliminates
careless mistakes, and allows users to exercise the full utility
of the DAQ modules without having to know any of the
details.

B. Testing Utilities

The test portion of the package allows us to access and
automatically pinpoint faults in the boards by running a series
of automated tests. It was developed in parallel with the
prototyping of tlx modules, so that when any error was found
011 a board that the test programs failed to detect, the prognms
were updated in an iterative process so that most of the errors
that we have seen in the original DAQ modules will be
detected and reported iftbey occur in newer modules.

Some errors ax reported to the screen and all errors are
written to a log file that is opened upon entering the test menu
The simplest tests are reads, writes and comparison of all the
Sequencel’s data and CSR space registers. The user can
choose a pattern of sequential numbers, wanting ones, walking
zeroes, random data, or user de&cd data words to be written.
The location of any mismatches, the value written and the
value read are written to tie log file. Another test checks if
the Block Transfer (BT) mode ofreading out the Sequencer is
working correctly. In BT mode, when a Fastbus block read of
one of the data blocks is execute& the Sequencer generates a
Fastbus SS=2 code and stops sending data when the address
being read exceeds the EOB register content. For the test, we
perform such a read for all possible values of the EOB
contents, and report to the log tile if SS=2 is not generated or
if the number of words transferred does not agree with the
EOB content. Still another test causes errors to occur and
checks that the wrrec.t bits in the error register are set and that
the error can be reset properly.

The correct functioning of the microsequencer chip and
conditional control logic is tested by downloading a microcode
program that executes all 16 of the instruction codes in the
case that the condition was true or false. If everything works,
the microcode program finishes at a particular location that the
test progmmre~gnizes as meaning successful completion. If
an error occurs, the microcode progmm fishes at a different
location. The test program reports the error associated with
this location to the log file, eliminates the microcode
instructions that produced the error, and runs the microcode
program again. This is repeated until the “successtil
completion” line is reached.

The VAX and QPI system used for most of these tests was
in certain cases unable to provide a completely effective
means for testing the Sequencer. For instance, the QPI
temporarily drops the connection signal after a certain number
of data words are transferred from any Fastbus device, thus
breaking down the transfer of large data blocks into smaller
pieces. Since the Sequencer interprets each connection to be a
separate transaction, the SS=2 code was not issued for some
BT mode reads that were made over two connection cycles.
Also, the speed of data transactions between the VAX and
QPI is much slower than between two devices in a Fastbus
crate. One test we wanted to perform was to attempt to read
all undefmed CSR space registers in the Sequencer and make
sure the SS=7 Fastbus code was issued, but the test would take
several weeks since well over 4 billion locations allowed by
the Fastbus 32-bit address field were undefined. During
normal runtime operation, tlte slat Scanner Processor (SSP) is
the device that will be used to read out the Sequencer, so in
each of these cases, we wrote programs that could be executed
on the SSP. In the first case, the proper BT mode of
Sequencer readout was verified, and in the latter case, the
restricted test was able to be executed in less than two days.
Tests such as these have not yet been absorbed into the
SVX_Control testing environment, but it is anticipated that
they soon will be.

Other menu options can be selected to test the Conboller
and Digitizers. These modules are accessed by the Sequencer
either through the Fastbus procedures described above, or by
running a microcode program in which the 32 bits devoted to
sending the data and function codes to the crate are properiy
specified. One test performs writes and reads to all the
Digitizer and Controller registers using Fastbus, compares the
results, and reports any mismatches. It also checks that the
data are being sent to the right block in the Sequencer’s data
space. One can select whether to test a digitizer in a particular
slot or to scan all the digitizers in the crate. Or one can opt to
download a microcode program that performs all the writes
and reads to the Controller and Digitizers at the maximum
transfer rates allowed by the design.

Besides its normal operation of digitizing the analog signal
from the detector or the voltage of the Rabbit crate, the
Digitizer also allows one to select one of its three DACs as
input to its ADC for diagnostic purposes. Two test programs
make use of this feature. The first downloads a microcode
program that sets aU possible values for each of the DACs and
causes the ADC to digitize the signals for each value. In one
mode, a comparison is made between the DAC input and ADC
output, and an error is reported only ifthe difference exceeds a
specified value. In another mode, the microcode program is
executed multiple times, the mean and the standard deviation
for each value are calculated, and the results are written to a
histogram. The second program allows one to select the DAC
to use as input to the ADC and the value to write to the DAC,
then digitizes the signal multiple times. The result can be
printed on screen or used to Ii11 a histogram. Tbe user can
interrupt the program at any time to change the DAC selection
or value.

Some mcxe options available in the SV?(-Control package,
such as its program and data space display facilities and its
ability to act as a file senwr and manager of the microcode,
will be discussed later. Other functions that can be performed,
such as interfacing with other Fastbus or Camac modules, are
beyond the scope of this paper.

III. SYSTEM MICROCODE STRUCTURE

A. Description of the k&eta-Assembler

The Sequenca’s microsequencer chip executes g&bit wide
instruction words, divided into 3 equal parts that provide
pattern timing and data latching signals, crate data and control
codes, and microsequencer conditional control logic and
branching instructions. Use of the HiLevel Assembly
Language Environment[5](Hale), a relocatable macm meta-
assembler program, allowed us to defme swrce program
definitions of instruction formats for our application. The
objective is for any user to be able to write a program using
only logical mnemonic terms for the desired functions, without
having to know anything about the format of the Sequencer
control word. The necessary file structures naturally divide
into three forms: the deftition files, that specify the format of
the microcode work and the value of any us&l symbols; the

SOUTC~ files, that contain the sets of macro calls used to write
the actual programs; and the format tiles, that store the
canpiled microcode in a format that can be easiiy downloaded
in to the device(in this CBSB, ASCII).

The Hale definition file for SVX programming is built on
four levels. The lowest level is to assign mnemonic names to
valid entries in all logical fields of the control memory
formats. For example, the microsequencer instructian codes
were assigned the standard AM2910 names, the crate control
function codes were assigned names such as WRITE or
BROAD to execute writes to a single digitizer or broadcasts to
the crate, and the digitizer registers were given names such as
OFFDAC for the offset DAC register.

The next level is to set up formats corresponding to each
logical field of the control memory. Typically, each format
specifies only one logical field, with the remaining bits being
treated as “don’t care” bits that can be overlaid by other
instructions. We also assigned default values to each of these
fields so that if they aren’t specified in a swrce code program
they will be compiled correctly anyway.

At the next level, pipeline macra are set up. There are
two kinds of macros in Hale. In both kinds, the macm is
specified with sane number of call parameters. Within the
deftition of the macro, these caU parameters can be placed in
the field of format instructions, or used as call parameters for
other macros. When an ordinary macm is calle& all
microcode words specified within its d&&ion are generated
But when a pipeline macm is called its instructions are
activated, but no code is immediately generated Most of the
pipeline macrca consisted of a call to a single format
statement, with the call parameters specified in a natural order
for the user, even though the order may differ f?om the actual
bit arrangement. Thus many pipeline macms can be called
before generating a line of microcode. When a command
called PADPIPE is executed, aU the pipeline macms that have
been called generate a line of microcode that is overlaid with
the code from the other pipeline macms to create one 96-bit
microcode word

At the highest level, we set up system control macms to
control the Analog and Digital Switches of the SVXIC chip
called ADSWINST, where IN&T is replaced by one of the 16
mnemonic names of the microsequencer instructions. These
macra have twelve parameter fields that allow the
specification of the entire instruction word We arranged the
parameter fields so that the four that are most commonly used
are specified first. The remaining fields can be left
unspecified and the corresponding bits will be set to default
values. The macm itself calls all of the pipeline macms with
the call parameters that are specified, then executes the
PADPIPE instruction to overlay the code. Depending on the
characteristics of I&S?“, sane extra logic may be applied to
handle unspecified tields. For example, if no condition is
specified for a conditional instruction, the bit corresponding to
the unconditional line of the microsequencer is set, to case
the inst~ction to be executed as if it were always true. We
also introduced warning messages that are printed to the
screen during compile time if illegal chip operations are

specified in the swrce code. The microcode is still generated
in this case, but we have advised users against running
programs that result in these warnings.

B. Logical Division of the System Code

At any given time, a user is interested in only B few of the
chip operations when modifying the system microcode;
therefore we did not want all the other chip operations to have
to be continually respecified HALE has a relocatable linker
utility that allows separate modules to be compiled, then
linked together later in any order desired So we divided the
entire program structure into several separate fimctional units,
wrote the scmrce files for each, compiled them, and placed
them in an arca accessible by aU the members of the group. A
rough description of the units necessary for all calibration and
DAQ programs is es follows:

CHIP INITIALIZE: Perform a dummy readout to reset
the chip.
WRITE CHIP ID: Write a 4-bit identification number to
each of the filtecn chips in B wedge, and set the mode of
OpdiOlL
RESET AND INTEGRATE: Put the chip switches into
a Reset state, then select the sampling of a new event and
store it on capacitors.
LATCH: Latch the data stored on the capacitor.
READOUT: Depending on readout mode selected scan
all the channels and either read out all channels, or just
those with hits above an internal threshold

In addition to the operations on the SVXIC chip, there are
additional sets of instructions used to control registers in the
Digitizers. These are as follows:

INITIALIZE: Set the gain register, charge injection and
offset DACs in the Digitizer to desired initial values;
read these values back into the data stream.
INJQ: Vary the value of the Veal DACs on an event-by-
event basis (this is used for calibration only).
READ DIGITIZER: Read out the current value of all the
Digitizers’ registers into the data stream.

One last set of instructions is needed to control the
pmgram flow in the Sequencer based on the sipals from
higher level systems:

SYNCHRONIZE: Select Reset and Integrate cycle if a
signal called Clear and Strobe is received, or select Latch
and Readout if a signal called Start Scan is received(for B
description of these signals, please consult reference 1).
The chip is held in B Partial Reset state during this time,
meaning that the charge collected on the capacitors in the
previous Reset and Integrate cycle is held in place.

Most of these sets of instructions cart be set up to work in
all readout modes, and no further changes can be made that
enhance performance of the chip. However, some others
require precision tuning. In order to allow such tuning of parts
of the acquisition cycle without requiring *e-specification of
the other parts, we have designed each of the sets of
instructions listed above to be fully modular by providing
labels designatiag entry and exit points at the beginning and
end of each set. Afier fme-tuning and compiling one set of

instructions, the user then links with the other precompiled
modules to regenerate the complete acquisition cycle.

The particular implementation of this utility is dependent
on the chip function to be performed The most general state
transition diagram is shown in figure 1. By design, the most
straightforward application is for real event acquisition, in
which case all the modules listed above are linked The only
restric.tion on the order is that the Initialize module be tirst.

h .e

,.- -... 1 WRrE WIP ID

1

CHIP lNmAuZE

INmALlZE

‘.
; INN j

--..“....,.’

STT
SYNCHRONIZE LATCH

s

@

CLEAR*mclBE?

RESET 6
IME‘QATE w w

Figure I. Typical order in which the Hale relocatable modules
are executed.

For calibration programs, slightly more sophisticated
means must be employed. For example, a leakage current
calibration is performed by varying the integration time.
Assuming the leakage current is constant, its magnitude is
simply the change in charge accumulated on the capacitor
divided by the change in the integration time. One can just
modify the integration module to produce several different
integration times, then link it with the other modules in the
package.

Gain calibration is performed by computing the change in
the readout pulse height divided by the amount of charge
injected. This is a quality measurement for all channels, so
every channel is read wt. Threshold calibration consists in
determining the amount of charge that must be injected in
order to cause a given channel to be above the chip’s internal
threshold 50% of the time. In both cases. the variable quantity
is the charge injection. AU that is necessary is to set up an
INJQ module for each of these, and link the other modules
together, with latch-all readout for gain; latch sparse, for
threshold

Iv. FORTRAN UTILITIES FOR MICROCODE
MANAGEMENT

A. File server in SVX_Confrol

In order for all users to be able to compile and link the
progrpams, we set up command files and defmed symbols to
execute them. A set of all the modules listed in the previous
sections was kept in a restricted area on disk. Members of the

group had read access only to this area If a user wanted to
modify one of the modules, he could copy it to a separate work
area, change it, and compile and reline a new microcode
program that would also be placed in the work area. There
were two problems with this procedure. The fust is that the
user would have to know which modules to link and the
correct order in which to link them to generate the appropriate
program. The second is that several users may be modifying
the same programs in the same directory. We solved these
problems by implementing a file server facility from a separate
mmu in the SVX Control environment. Upon entering the
menu for the first time, the user executes a “new user” option.
This option copies a complete set of the modules to the work
area, but appends the username to the end of each filename.
Files that contain the list of modules to be linked in order to
generate a given calibration program are also created Then
the user chooses the kind of calibration program to be
modified and is presented with a list of the modules that can
be modified After selecting whichmodules to modify, an edit
session is created for each selection. The user is asked
whether to compile the modified modules and link a new
microcode program. If so, the appropriate command files are
called. The name of the microwde file is requested, and the
file is written to a library area where is can immediately be
downloaded and executed by SVX-Control. In this way the
user doesn’t have to know anything about the names of
individual tiles or the order in which to link them; it is all done
automatically for him.

B. Display utilities in SVX-Control

Prior to the introduction of the Fastbus DAQ modules,
there was a simpler system which used the Camac system. AU
the microcode for the Camac sequencer was done in a binary,
column-oriented text file. The functionality of that module
was less than the Fastbus Sequencer, so the number of bits to
specify were fewer, but to the average user the file was just a
me.mingJess collage of zeroes and ones. There was no means
to generate these tiles Tom higher level smu~e code, so any
changes had to be done directly in the microcode file.
Nevertheless, several people in the group became quite adept
at recognizing the chip operations that were performed by each
binary pattern Therefore we added an option in SVX_Control
that would display the pats of the microsequencer program
that had analogous functions in the Camac sequencer in the
familiar binay pattern to which some people had become
accustomed Other display options are available that break the
%-bit words into the logical fields, displayed according to the
field width in birwy, octal, or hexadecimal format.

C. Pattern plolier

A standalone Fortran program was written that can read the
forrttetted microcode files, interpret the microsequencer
instruction codes, and generate timeline flow charts showing
the pattern of timing signals that would be sent to the SVXIC
chip when the program is run on the Sequencer. ‘I&s not only

allows me to immediately spot logical flaws in the program
structure, but also allows users with more experience with
operating the SVXIC chip to quickly determine if the program
will deliver a pattern that insures optimal operation of the chip.
At the moment, the program generates the plots using the
assumption that all condition codes are true. It is anticipated
that in the near future the program can be interfaced with a file
that specifies the timing of external signals sent to the
Sequencer, so that conditions can be properly evaluated This
will result in a fairly comprehensive simulation of the actual
execution ofthe programs in the Sequencer.

V. CONCLUSIONS

The idea of a design of one sotlware package to operate
and maintain three different hardware devices has already
proven effective. We observed good error coverage, limited
supervision during the test run and short repair time due to
automatic identification of problem areas. The package
helped to save a lot of debugging time in a highly complex
data acquisition etwironment

The management and structure of the assembly language to
generate the microcode programs for operation of the SVXIC
chip is such that any user who knows what switch timing to
select is able to write, compile, and link such programs
without knowing any of the details of the DAQ chain. This
allowed for more attention to the operation of the detector
without many people having to spend a lot of time
understanding the Sequencer, Controller, and Digitizer
modules. The same method could be applied to any other
similar systems, and the existing assembly language could be
ea.@ modified to work with future versions of the Sequencer,
without any change noticeable to the user writing the system
source programs.

VI. REFERENCES

[I] S.M. lkanyk, el al., “Commissioning of the DAQ Control and
Data Acauisition for the CDF Silicon Vertex Detector”. these

PI

[31

prweedidgs.
K.J. Turner. el 01.. “Control and Data Acauisition for the CDF
Silicon Ve&x De&r”, these prcceeding~.
S. A. Kleinfelder et oL, “A Flexible 128 Channel Silicon

[41

PI

