*1 r Fermi National Accelerator Laboratory

FERMILAB-Conf-91/316

Software Development Tools for the CDF MX Scanner

W. Stuermer, K. Turner and S. Littleton-Sestini

Fermi National Accelerator Laboratory
P.Q. Box 500, Batavia, Illinois 60510

November 1991

* Presented at the IEEE Nuclear Science Symposium, Santa Fe, New Mexico, November 2-9, 1991,

Operated by Universities Research Assoclation Inc. under Contract No. DE-AC02-76CHO3000 with the United States Depariment of Energy

Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of
their employees, makes any warranty, express or implied, or assumes any legal liability
or responsibility for the accuracy, completeness, or usefullness of any information,
apparatus, product, or process disclosed, or represents that its use would not infringe
privately owned rights. Reference herein to any specific commercial product, process, or
service by trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United States
Government or any agency thereof. The views and opinions of authors expressed herein do
not necessarily state or reflect those of the United States Government or any agency thereof.

SOFTWARE DEVELOPMENT TOOLS FOR

THE CDF MX SCANNER

W. Stuermer, K. J. Turner, S. E. Littleton-Sestini,

Fermi National Accelerator Laboratory!

Abstract

This paper discusses the design of the high level assembler
and diagnostic control program developed for the MX, a high
speed, custom designed computer used in the CDF data acqui-
sition system at Fermilab. These programs provide a friendly,
productive environment for the development of software on
the MX. Details of their implementation and special features,
and some of the lessons learned during their development are
included.

. INTRODUCTION

The CDF experiment at Fermilab uses a programmable
processor called the MX in its data acquisition system.
Because of the custom design of the MX, off the shelf soft-
ware could not be used for program development, software
debugging or hardware diagnostic functions. Writing these
utilities afforded an opportimity to incorporate some new and
interesting features, as well as learning the degree of effort re-
quired to develop custom software to support a machine like
the MX.,

A. MX Architecture

The design of the MX has several unique or unusual
features. These features are of interest here because they are
reflected in the design of the tools developed to support the
MX. As shown in figure 1 the MX has 5 internal memories in
addition to the instruction memory (IM). The Ewe Memory
(UM) is used to store a list of specially encoded words which
tell the ADC card (called a “Ewe™) how to convert analog
channels and to read (digital) PROM data. There are three in-
dependent data memories called DMA, DMB and DMC,
whose data is used to perform arithmetic corrections on the
ADC data and such housckeeping functions as counting loops.
The Event Memory (EM) is where the MX writes its output.
Much of the power of the MX comes from the fact that it can
fetch an operand from three different memories, perform a
three way operation such as A+B*C and store the result in 2

1Fermilab is operated by the University Research Association,
ine, under contract with the U.S. Department of Energy. This
work was supported by the U.S. Departient of Energy under
contract No. DE-AC02-76CHO3000.

fourth memory, in a single 120ns instruction.

g e
N
A Address
Ity
xb
‘8" ofee!
=
San (=]
" ofiest
8Ix
UM EM DMA DMB DMC
] IMMED. DATA
Box24bite | | 4kxd2bis | |4kx166ie | | dkx 160t | |4k 18 bits ZERQ
ka.:'etih P?FICR
DMC
I ; BIX I-) BIX - BIX E:sr,_nesul.‘r
D
UTR
A M A UMTR 1[;;'?2]1
UMTR [23:
h | MULTIPLIER] UBR
LMBR (1500
Umer [23:14
FaL A 18 A 18 UM (1500)
! L UM [
. ,_!__v

ALU

|| =[]k
==l

g
g
&
g
c
=
g

Instryction (IM) Formats

PEZ 6t 60 58 58 57 50[55 5453 5251 50 48 4847 A8 45 44 43 &2 41 40]38 38 37 36 35 34 33 22

"A* offeet "B offsat “C* offssl "R* offsst
A" offsat “B" offset Jump select I jump address
A" offset mmediaie data | R offsst

wh

3 3020 25 27 26 25|24 2322 H 20 19]18 1718 15 1413 1211910 €8 7 & 4 3 2140
i code mi bix e} b X¢ xr we |m Ins type

Figure 1 - Architecture of the MX Computer

The MX also has a set of 13 registers, but only the index
registers will be discussed here. Memory addresses in the MX
are formed by adding the contents of a 16-bit index register
with an 8-bit offset encoded in the instruction word. The in-

struction format allows for 4 independent addresses (3
operands and 1 result), but there are some restrictions on
which index registers can access a given memory, The “A”
and “C” addresses are used to read operands from the DMA
and DMC memories respectively, and can use the X1, X2 or
X3 index regjisters. The “B” address is used to read an operand
from the UM, EM, or DMB memories, and can use the full set
of index registers (X1, X2, X3, AX1, AX2). The “R” address
is used for writing an arithmetic result and can also use any
index register. The result can be written to any memory except
the IM.

B. Role of the MX in the
CDF Data Acquisition System

Figure 2 shows a simplified view of the CDF data ac-
quisition system. When the CDF experiment is running, there
is a proton-antiproton “bunch crossing” every 3.5 us. Some of
these crossings result in high-energy collisions. The result of a
collision is called an “event”. The purpose of the data acquisi-
tion system is to digitize, process and collect the signals com-
ing from the electronic detectors used to instrument the CDF
experiment, and write the data to tape for further analysis of-
fline.

The trigger system uses special “fast out” signals from the
front-end electronics to determine if the event is interesting. If
the event satisfies the level 1 and level 2 triggers, a start scan
message is broadcast to the MXs.

Level { and
Lawvel 2 Triggers

| Event Buikder I

L Fastous

MX

Rabbit

E
E
Rabbit

Figure 2 - Simplified Diagram of the
CDF Data Acquisition System

The purpose of the MX is to digitize a set of analog chan-
nels, perform certain local processing on the data and format it

in the EM. It starts this process when a start scan message is
written to its FBCR (Fastbus control register) register by a
Fastbus broadcast, and signals completion by setting the
DONE bit in the SR (status register). When all of the MXs and
other “scanners”™ have finished, the Event Builder reads the
data from each one and builds “event record”. The “Level 3”
trigger uses physics analysis programs to reconstruct the event
and apply a final cut to which events are written to tape.

Each MX controls two ADC cards, called Ewes; and each
Ewe converts approximately 500 analog channels coming
from the CDF detectors. The MX tells cach Ewe what to do by
sending it specially encoded 24-bit words which are written to
the UM at the same time that the MX program is downloaded
to the IM. Afler starting each conversion, the MX polls the
Ewe status until DONE goes high. Then, the digital data is
read from the Ewe.

If the MX is running the data acquisition code, a pedestal
value is subtracted from the data, it is multiplied by a linear
cotrection, and it is compared to a threshold value. If the MX
is running the pedestal calibration code, 256 values are col-
lected for each channel. Each value has a base value subtracted
(to prevent overflow) and is added to a 32 bit sum(x) and
sum(x”2). Later, these sums are used to calculate the mean and
sigma for each channel pedestal.

The resulting data is written to the Event Memory in a
format which is organized by detector component, and logical
channel] ID, called “scanner bank format.™

Currently, there are 60 MXs used in the CDF data
acquisition system and about one half of the data from the
CDF detectors are processed by these MXs. The rest of the
data is processed by other devices in the data acquisition
system.

IIT. HIGH LEVEL ASSEMBLER

Arguably, a processor’s assembly language is the most im-
portant interface between the hardware and the intended users.
This was especially true in the case of the MX, since the de-
velopment of a high level programming language such as
Pascal or C was not anticipated. A custom assembler language
incorporating features from high level languages such as do
while loops, iffthen/else structure, local storage and branch
symbols has been designed and implemented to serve as a ve-
hicle for software development on the MX.

There are several possible pitfalls in the design of an as-
sembler for a device such as the MX. For example, an arith-
metic expression for the MX may involve 4 operands includ-
ing the result. Does LDAM AB,C.Dmean A=B + C*D, or D
= A + B*C, or does it mean A = B*C + D ? The MX assem-
bler (called ASM/MX) borrows it’s syntax for such arithmetic
expressions from more familiar grammars like Fortran. It is
hoped that the meaning of a statement in ASM/MX like
LOAD A = B + C*D require no explanation (the rules of
precedence are the same as those in Fortran). In this example
A, B, C and D could be any memory or register, limited only
by the architectare of the MX.

A. Familiar Cast of Characters

ASM/MX refers to the MX registers by the same names as
those found on the original schematics and engineering docu-
mentation used in the development of the MX (and shown in
figure 1). This is important because a significant group of
users of the assembler are the engineers and technicians who
developed the MX and keep it running today. The same is
true of the MX memories, except the DMA is referred to as
“A”, DMB as “B” and DMC as “C”, for the sake of brevity. In
this way, the memories and registers of the MX form a famil-
iar cast of characters for those being introduced to MX pro-
gramming for the first time.

B. Memory References

As stated above, MX memory references are formed by
adding the contents of a 16-bit register to an 8 bit offset and
such references may apply to the DMA,DMB,DMC,EM or
UM memories. The MX assembler provides several distinet
representations for such references, in order to facilitate the
simplest and most easily understood structure for each use.

memory syntax
dma A.name A (constant }
dimb B.name B (constant)
dme C.name C (constant)
em EM.name EM(constant }
um[23:16] UM_HIGH.name UM_HIGH(constant)
um|15:00] UM_LOW.name UM_LOW (constant)
dma A.name (constant)
dmb 8.name (constant)
dme C.name (constant)
em EM.name{ constant)
um[23:16] UM_HIGH.nama{ constant)
um{15:00] UM_LOW.name (constant)

Figure 3 - Direct Addressing Mode in ASM/MX

memory syntax
dma A (xa) A.rame (xa)
dmb B (xb) B.name (xb}
dmec C (xc) C.name (xc)
em EM(xb) EM.name(xb)
um[23:16) UM_HIGH (xb) UM_HIGH. name(xb)
um(15:00] UM_LOW (xb) UM_LOW .name (xb)
dma A.name (xa + constant)
dmb B.narne { xb + constant)
dme C.name (xc + constant)
em EM.name{ xb + constant)
um[23:16] UM_HIGH.name(xb + constant)
um[15:00] UM_LOW .name (xb + constart

Figure 4 - Indirect Addressing Mode in ASM/MX

For example, the first 256 locations in each of the memo-
ries are treated as a special “scratch memory” by MX pro-
grammers. The reason that this is so is that these locations can
be accessed without the use of an unused index register, which
can be a scarce commodity. In ASM/MX, the programmer can
assign symbolic names, like a.module _no, to one or more con-
secutive memory locations. These names can be used alone
like a 16 bit integer in Fortran, or in combination with an in-
dex register, like an array of 16 bit integers. In some situa-
tions, it is convenient to specify an explicit offset in addition
to the offset implied by the symbolic name. The syntax for di-
rect (no index register) and indirect (w/ index register) are
shown in figures 3 and 4, respectively. Notice that all
symbolic names begin with the name of the memory in which
it resides.

C. Program Structure

An ASM/MX program consists of a list of functions and
"storage sections." A storage section declares a related set of
symbols like those just described and falfill much the same
purpose as common blocks in Fortran. One storage section
may be designated as the “GLOBAL STORAGE” section.
Storage symbols declared in this storage section are automati-
cally imported by every function. Every other storage section
is given a name and functions that need to refer to the storage
declared there need to import them by referring to the name of
the storage section. Storage sections differ from Fortran com-
mon blocks in that the symbols (variables) are only declared in
one place and it is impossible to accidently overlay symbols
have different names or associated storage.

ayntax example
GLOBAL STORAGE STORAGE constants
<storage_declaration> a.const : Bwords = 0,123,
<storage_declaration> 4587
LI aconst_stop © tword = 128
END aconat rd - 1word = 64
b.hex_FFFF : 1word = (hex) FFFF
b.hex_8000 : 1word = (hex} BOOO
STORAGE <saction_name> bflag emor : tword = 1
<siorage_declaration> ceconst 18 . 1word = 18
<storage_declaration> cconst 32 : 1word = 32
- a chex 4000 @ Tword = (hex) 4000
END END

Figure 5 - Storage Sections in ASM/MX

Functions are the basic executablc unit of an MX program.
One function is designated the “MAIN FUNCTION” and
serves as the primary entry point for the program. An
ASM/MX function is divided into two parts. The first is used
to declare local symbols for storage and importing storage
symbols from storage sections. The second part contains all of
the executable code in the function.

syntax exampie
MAIN FUNCTION
import storage from
MAIN FUNCTION constants
IMPORT STORAGE FROM storagatad‘ N
i c.8 26 wol
<gaction_name>, :
<gaction_names>, ctop atack : 0 words
... BEGIN
STORAGE load SR = a.sr.dona

load X1 = addr(c.top_stack)

<storage_deciaration>
™ Main event loop. ™*f

<storage_declaration>

sa %iloop
BEGIN 1* Wait for a start-scan. */
<executable_staternent> Yuntil ss
<exectitable _staternent> Wait *f
L %end until

END
* Save the start scan message and

the EOS Lit in the statue register. *f

load 3 fher = foc
load sr = a.8r_start

/" Find out what type cf start-scan.”

eval a.foor and (hex) 0C00
load X2 = last_reeult {* high) c.const_ 64

FUNCTION <function_name>
IMPORT STORAGE FROM

<saction_name:,
<gaction_name>,

p Y%case X2 of
STORAGE 0: call catass
<storage_declaration> 1: I* do nething *f
<storage_deciaration> 2 call initas
- = call sat_chadrs
BEGIN 3. /" do nothing */
<exacutable_siatement> %end case N
<executable_statement> * Set EOS (enq-of-ewn) bit in
i the status regisler. *f
END load sr = sr or a.sr_done
%end loop

END

Figure 6 - Functions in ASM/MX

This separation between declarative and executable state-
ments is unusual for an assembly langnage, but introduces an
element of predictability for the programmer. Like any reason-
able programming language, ASM/MX will flag the use of any
storage symbol which has not been explicitly declared as a
syntax error. This behavior helps prevent simple spelling er-
rors from introducing bugs in the program. By putting all of
the storage declarations at the beginning of the function, the
programmer knows where to look to see if a storage symbol
has already been defined and, if so, how it is spelled.

Transfer of control within an ASM/MX function is accom-
plished by the “GOTO” statement. Every GOTO statement
must have a branch label as its target. Branch labels look like
those found in PASCAL and consist of an alphabetic charac-
ter, one or more alphanumeric characters and a colon. All
branch labels are local to the function in which they are de-
clared, so jumping into the middle of another function is not
possible. This feature is intended to discourage the unstruc-
tured, “spaghetti code” often found in assembly language pro-
grams. Branch labels are not required at all, in most cases, be-
cause of the availability of structured, “meta-statements.”
(Please refer to section D, Meta-Statements.)

Transfer of program control from one function to another
is done with a conventional “CALL” statement that enters the
function at the top , and “RETURN™ statement which caunses

the program to resume execution where it left off in the origi-
nal function. The only provision for passing arguments to the
called function or returning results is by the use of storage
symbols which are shared by both functions. This is consistent
with the requirement for MX programs to operate as fast as
possible.

syntax examples

WWHILE <condition>
<executabla_statement>
<executable_statement>

 Load ewe for next channel. */
Ybwhile a.const_xgt and um_highfax1)= 0

LK] load umbr = um{ax1), ax1++, strobe
WBEND WHILE %end while
%LOOP I Free running counter. */

<executable_statement>

<axacutable_staternent> %loop
se lcad a.count = a.count - 1
%END LOOP %end loop

% UNTIL <condition>
<exacutable_statement>
<gxocutable_statement>

I* Walt for the ewe to finish with this channel, =
%until done(bottom)

* e load ubr
3END UNTIL %%end untl
%CASE <index_reg> OF P e e e aeas
3 cases:

Q0 <executable_statement>

<oxacutable_statement>
L

1: <exscutable statement>

<gxpcutable_statement>

o Both top and bottom liste are empty.
o Only top list is empty.
0 Only bottom liet is emply

- . load x2 = c.atate
n-1: <executabie_statement> %case x2 of
<exmcutabie_staterment> 0: goto end_loop
se e 1: call etate_a
9%END CASE 2 call etate_b
3: call state_c
%end case

%I F <condition> THEN
<executable_statement>
<executable_statement>

- = 8

%ELSE IF <condition> THEN
<axacutable staterment>
<executable_statement>

- @

%ELSE IF <condition> THEN
<axecutable_statement>
<executable_statement>

* 40

%ENDIF

" Move to an even word boundary. */
evai X3 and a.const{1)
%if last_result 1= © then

load em(x3) = 0, X3++
%end i

Figure 7 - Meta Statements in ASM/MX

D. Meta-statements

One of the most important goals of ASM/MX program-
ming is for the resulting program to cxecute as efficiently as
possible. This is because, in the case of the data acquisition
code, the execution time of the MX adds directly to the “front-
end deadtime” of the system. During this time, the data ac-
quisition system is blind to the proton-antiproton collisions
that are occurring every 3.5us. Since operation the accelerator

at Fermilab costs many thousands of dollars per hour, these
lost collisions have a significant value.

For this reason, ASM/MX maintains a one-to-one relation-
ship between executable statements and generated machine in-
structions. This gives the programmer the control he/she needs
to write the fastest possible program within the available in-
struction set,

There are certain constructs of these atomic statements,
however, which are repeated time and again in MX programs.
These constructs correspond to the classical elements of
structured programming, including 3 types of loop, chained
if/then/else and the case statement. Special “meta-statements”
have been added to ASM/MX which implement these
constructs by generating several MX machine instructions.
Each of these constructs begin with a keyword with a percent
sign, like %WHILE, in order to distinguish between meta-
statements and the ordinary, atomic statements. The syntax of
the available meta-statements is listed in figure 7.

IV. MX ONLINE EXECUTIVE INTERFACE

The MX functions as an embedded processor, in that it has
no controls or displays on its front panel and has no direct
terminal connection. All communication between it and the
outside world is done over the Fastbus local area network, A
program has been written to serve as a combination control
panel, software development debugger and hardware diagnos-
tic utility. This program is called the MX Online Executive
Interface, or “Moxi.” Moxi implements several features which
may be useful for applications written to support custom pro-
cessors besides the MX.

MAIN MENU STATUS:
1 [00] Execute command script. MOXIVERSION #8.14
2 [SET} Sot device and MOXI paramaet .. Wpeck: 8.00
3 [RESET} Reset MOXI parametars 1o de... mrsoanner: UNKNOWHN
4 HOW] Show MOX) E;Erlmm adkdrens: 00000003
L} EDI‘H Edit He with or EQT. e NONE
8 [HELF Request haip oh same command,
7 By Exscits VMS command(s).

8 um Exik MOX]. log fie: DISABLED
@ [READY Read from MX or other davices nack mode: ERABLED
10 [DECCDE] Fead ragister and Interpret. spy mada: DISABLED
11 [WRITE} Weite to MX or other devicas, warify mode: ENABLED
12 [MODIFY] Modhty MX or EWE registar. wtep mode: DISABLED

Press RETURN kor next Fage

MOX| >

Figure 8 - Menu and Status Viewports in Moxi

A. User Interface Issues

Every useful program has a user interface and Moxi is no
exception. A significant effort has been devoted to developing
a consistent, powerful and easy to use tool.

Moxi features a “dual vser interface” and can be operated
as a menu driven or command driven program. When Moxi
starts up, it presents the user with a menu viewport, a status

viewport and a workspace. The menu viewport gives the user a
list of verbs, the user types one and Moxi presents the user
with a different menu, until there are no more options and the
command is executed. This mode can be useful for people who
are just becoming familiar with Moxi’s commands, but Jeaves
a relatively small part of the screen available for the work
space, where the user types in a command and reviews the re-
sponse. As the user becomes more proficient in using Moxi,
the user can dismiss the menu viewport with the “SET
VIEWPORT/NOMENU” command. This makes Moxi more
responsive because it no longer has to change the menu, and
leaves more room to review the results of 2 command which
dumps more than a few lines of data, and to review the resulis
of more than one command. This can be quite useful when
tracking down a bug in hardware or software.

A verb-noun syntax is used to organize the commands in
Moxi and make them easier to remember. There are currently
over 100 commands in Moxi. Rather than attempt to assign a
wnique verb to each one, Moxi uses a Verb-Noun combination
wherever possible. Because the same verbs and nouns are used
in many commands, the user only has to remember M+N
items rather than M*N items. For example, the DECODE verb
can be applied to the command register in the Ewe (called
EWE/COMMAND), or the FBCR (“Fastbus Control
Register”), or a word in the instruction memory. Similarly, the
noun FBCR ¢an be used in the READ and WRITE, as well as
the DECODE, commands.

CONTINUE MODIFY FBCR RESET TRAP SHOW LOGFILE

ocL MODIFY IM RESTORE SHOW MODE

DECODE EWE MCDIFY memory RUR SHOW MY

DECODE EWEraginter MODIFY PC SAVE SHOW TRACE

DECODE M MO DIFY wrr SCAND_MODE SHOW TRAP

DECODE MEP ouIT SCANS_MOOE. SHOW VERSION

DECCDE MEF/register READ BAT SCANDATA SPAWN

DECODE register READ CARD SCANANIT STEP

DISABLECS READ CSR_SPACE SCANTERM STOR

DISPLAY READ e SET BREAK TEST EWE

Do READ DATA_SPACE SET DISPLAY TEST EWEAUTODEC

EDIT READ EWE SET EDAfOR TEST EWE/REGISTER

EXIT READ EWE/rsgister EWE TEST me

HELP REAL EVENT SET LOGFILE TEST Nkm

HISTOGRAM ADC READ Mernory SET LOOP TEST regiater

HISTOGRAM EM READ MEP SET MOOE /NACK VERIFY

INIT BAT READ MX. MOOE WAIT

INIT EWEE READ Regleter SET MODE /STEP WRITE BAT

ENIT 30K READ TMXD SET MODE VERFY VWRITE Composile

LOAD RESET BREAK SET MX. WRITE EWE

LOOP RESET DISPLAY SET TRACE WRITE Mamaory

MAP ESET EWE SET TRAP WRITE MEP

MODIFY EWECHADRS RESET LOGFILE SET VIEBWPORT WRITE MX

MODIFY EWEACOMMAND RESET LODP SHOW BREAK WRITE Ragister
DIFY EWEPEDESTAL ~ RESET MX EDITOR

MODIFY EWEWRITE RESET TRACE SHOW EWE

Figure ¢ - Summary of Commands in Moxi

Another principle in Moxi’s design is to avoid “command
modes”, where a command is only available in some restricted
context, or the same commands have different meaning in
different modes. This is a common problem with menu driven
programs, which can make them tedious to use. All of Moxi’s
commands are always available, unless they require a device
which has not been selected, and the user can escape any input
prompt (for the WRITE PC command, for example) by enter-
ing CNTRL-Z.

Positive feedback is used to let the user know what state
Moxi is in and to put the data displayed in the workspace in a
meaningful context. The status viewport tells the user what

version of Moxi is currently executing, what devices (such as
the MX) have been selected, and what modes (ie, is there an
open log file, is Moxi currently reporting NACK errors) are
active.

The standard names are used for the memories and regis-
ters in the MX. PC and DMA, for example. Registers located
i other devices, such as the Mep, Ewe, and Bat, use names
like MEP/SCID and EWE/COMMAND.

Moexi provides quick INIT commands for the Mep, Ewe,
Bat and MX; and quick TEST commands for the MX and
Ewe. For example, TEST EWE roads out the Ewe’s ID prom,
reads certain reference voltages on the Ewe, performs a
“barber pole” bit test for all the registers on the Ewe, and tests
the Ewe’s “autodec” feature of the channel address register.
The INIT command sets the specified device to some prede-
fined state, then reporis to the user what state that is.

The Mep, Ewe, Bat and MX can also be used as the target
for the READ and DECODE command. For example, READ
EWE displays the contents of all of the registers of the cur-
rently selected Ewe. This is a lot casier than typing 7 com-
mands to read these registers out one at a time.

B. General Facilities

The READ command provides a mechanism for displaying
the contents of any register or memory in the MX, Mep or
Ewe. The output of the READ command can be directed to a
file with the /OUTPUT qualifier. The DECODE command
provides roughly the same function as READ, except the tar-
get of the command (a memory, register, or device) decoded
into fields, like the module and submodule addresses in the
EWE/CHADRS register; or disassembled into the ASM/MX
syntax, in the case of the IR (instruction register) and IM
(instruction memory).

Similarly, the WRITE command provides a mechanism to
change the value of any writable memory or register in the
MX, Mep or Ewe. (Some registers are read-only.) Moxi will
perform a readback and verify operation if “verify mode” is
enabled. The MODIFY command allows the user to modify
one or more ficlds in a register by performing read-modify-
write operation. Naturally, the register fields are specified by
name.

Even with the menu and status viewports disabled, the user
only has 24 lines for the workspace on a standard ASCII ter-
minal Moxi allows the user to get around this by opening up a
log file. Everything written to the workspace: command
prompts, user responses, data, and any error messages, are
written to the log file. This can be particularly useful in two
situations. In the first, someone is running an overnight hard-
ware test and wants to be able to review the results even if the
terminal is accidently turned ofT. The second situation is where
the user is executing a program trace, where the output may
potentially be thousands of lines long.

C. Software Facilities

The basic commands for controlling the exccution of an
MX program are RUN, STOP, and STEP. As the name im-
plies, the STEP command uses the single-instruction feature of
the MX to execute one instruction. It can only be used when
the MX clock is in a halted state. The RUN command either
releases the MX clock, or causes the MX program to execute
in a series of single-instruction steps. This is controlled by the
state of “step mode” in Moxi.

Breakpoints are IM addresses defined by the user and kept
on a list by Moxi. The PC is read and checked against this list
whenever the user exccutes the STEP command, or after every
instruction is executed in step mode. If the current PC is a
breakpoint, program execution is stopped, a list of read/write
commands called the display list is executed, and Moxi returns
control to the user via the command prompt. Because break-
points require reading the PC after every instruction is exe-
cuted, they are inactive when the MX clock is running (non-
step mode).

Trappoints are user defined addresses where a special
Jump-te-self instruction has been written to the IM by Moxi.
Trappoints behave like breakpoints, except they will stop
program execution regardless of whether Moxi is in step mode
or non-step mode. Because the PC is not read out after every
instruction is executed, the display list is not automatically ex-
ecuted, but the user can use the WAIT command to poll the
PC and execute the display list when the MX program reaches
one of the trappoints. When the user sets a trappoint, Moxi
reads the original contents of specified address, so the trap-
point can be reset and the original instruction restored just as
casily as it was set.

A special “CONTINUE” command is provided in Moxi to
allow the user to “step through” a trappoint. When the user en-
ters this command, Moxi first stops the MX clock and checks
that the current PC is on the trappoint list. Assuming we are at
a trappoint, Moxi temporarily restores the original instruction
and executes a single step. The breakpoint is restored and the
clock restarted.

Moxi allows the user to build a “display list” consisting of
a list of read/write commands. The display list can be executed
explicitly, with the DISPLAY command, or implicitly, after
one instruction has been executed with the STEP command, or
when the MX program hits a user defined breakpoint.

Rather than defining a set of commands to add and remove
operations from the display list, Moxi uses the LSE or EDT
editor on the host machine (a Vax) for the user interface.
When the user enters “SET DISPLAY”, Moxi opens a tempo-
rary file using the editor’s callable interface. Once the user is
in the editor, he/she can use the familiar keypad commands to
insert, remove or modify read/write operations. The same syn-
tax is used as the READ and WRITE commands. When the
user is satisfied, the editor is exited in the normal way and
control returns to Moxi. Moxi opens the temporary file, parses
its contents and finally deletes it. This method provides the
user with a familiar and flexible mterface, and may be of use
in other control programs like Moxi.

Alternatively, if the user specifies a file name with the SET
DISPLAY command, Moxi will look for an existing file and

build the display list with the commands in this file. In this
case, the file is not deleted. This allows the user to build a set
of predefined display lists. Towards this end, Moxi first looks
for the display list in the current directory, then in a special di-
rectory defined by a logical name.

D. Hardware Facilities

Facilitating the job of tracking down and repairing MX
failures is an important function in Moxi. One tool Moxi pro-
vides for this s the “scope loop.” A scope loop is a list of read
and wrile commands which are executed to generate some
signal in the MX hardware. A oscilloscope or logic analyzer
can then be used to look at the behavior of the MX’s logic un-
der this stimulus.

Moxi uses the same user interface for setting up a scope
loop and setting up a display list. When the user enters the
“SET DISPLAY” command, he/she is put into the LSE or
EDT editor (this is a user defined option), where the desired
read and write commands can be added, removed, or modified.

When the user starts the scope loop (via the “LOOP”
command), the commands on the scope loop arc executed
again and again, until the user presses CNTRL-C. Unlike the
display list, the read commands on the scope loop do not dis-
play any data. This is in order to maximize the speed with
which the loop executes

Another command which is useful in maintaining the MX
hardware is the “TEST” command. The TEST command
works with any of the memories and registers in the MX; or
any of the registers in the Ewe, or all of the registers and
memories in the MX; or all of the registers in the Ewe.

Which test is performed depends upon the memory or reg-
ister under examination. For example, the registers in the Ewe
are checked using a barber-pole pattern that looks like 1, 10,
100, 1000.... First, the pattern iz written to all of the registers,
then the registers are read back and compared with the original
data. Then the whole pattern is rotated with a circular shift op-
eration and it is written to the registers again, This process
only requires 16 1/0 operations on the Vax and since a differ-
ent value is written to each register, problems with the register
decoding in the Ewe are checked at the same time.

Although some hardware failures may show themselves
every time it is tested, others happen only intermittently. The
OVERNIGHT command repeats one or more tests over and
over again in a loop until the user terminates the test by press-
ing CNTRL-C. The overnight command accepts the same tar-
gets as TEST and, in fact, calls the same test fimetions.

V. CONCLUSIONS

The ASM/MX assembler and Moxi are sophisticated pro-
grams which provide a good environment for software devel-
opment and hardware maintenance. These programs demon-
strate certain features which may be applicable in the design of
programs of related function. ASM/MX demonstrates that an
assembler featuring good, context dependent error messages
and combining some of the best features from high level and

assembly level languages can be implemented using a simple,
recursive-descent approach.

Moxi demonstrates the concept of providing the user with
complementary user interfaces, in this case, menu driven and
command driven interfaces; it shows one way a consistent
command language can be designed, by adopting a verb-noun
framework; and uses an interesting user interface for creating
a command list, by using the callable interface to an editor..

But these capabilities were not achieved without cost.
ASM/MY and Moxi are large programs, with almost 12k and
53k lines of code respectively, and took approximately 6 pro-
grammer-years to develop. Off the shelf software could not be
used because of the custom design of the MX, so this cost may
be viewed as a consequence of choosing a custom design for
the MX. This investment was justified in the case of CDF
since there were no processors available in 1981, when the
CDF data acquisition system was designed, to match the MX’s
capabilities.

Developing custom software will always be a costly
proposition, and must be taken into account when custom de-
signed hardware is being considered as part of a system’s de-

sign.

VI. ACKNOWLEDGEMENTS

We wish to gratefully acknowledge the efforts of Greg
Schuweiler, who is currently maintaining Moxi; and of Steve
Hahn and Daniel Frei, who have made major contributions to
Amanda, the MX data acquisition and calibration code.

VII. REFERENCES

{11 F. Abe, et al., “The CDF Detector: An Qverview,” Nuclear
Instrumentation and Methods, vol A2T1, pp. 387-403, 1988.

[2] G. Drake, et al,, “The RABBIT System,” Nuclear Instrumentation
and Methods, vol A269, pp. 68-81, 1988,

[3] T. F. Droege, 1. Gaines, and K. J. Tumer, "The M7- A High Speed
Digital Processor For Second Level Trigger Selections," IEEE
Transactions on Nuclear Science, Vol. NS§-25.
The name of the MX was derived from the Magnificent Multi-
Muon Mass and Momentum Monitoring Machine, or M7. M7
was promoted to MS, translated to M10 (octal), and
transliterated to MX (Roman numerals).

[4] A.J.T. Davie and R. Morrison, Recursive Descent Compiling,
New York: John Wiley and Sons

