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SOFTWARE DEVELOPMENT TOOLS FOR 

THE CDF MX SCANNER 

W. Stuermer, K. J. Turner, S. E. Littleton-Sestini, 

Fermi Naiional Accelerator ikboraloryl 

Abstract 

This paper discusses the design ofthe high level assembler 
and diagnostic control program developed for the MX, a high 
speed, custom designed computer used in the CDF data acqui- 
sition system at Fermilab. These programs provide a tiiemlly, 
productive environment for the development of software on 
the MX. Details of their implementation and special features, 
and some of the lessons learned during their development are 
included 

I. INTRODUCTION 

The CDF experiment at Fermilab uses a programmable 
processor called the MX in its data acquisition system. 
Because of the custom design of the MX, off the shelf sot% 
ware could not be used for program development, software 
debugging or hardware diagnostic functions. Writing these 
utilities afforded an opportunity to incorporate some new and 
interesting features, as well as learning the degree of effort re- 
qtied to develop custom sot%vare to support a machine like 
the Mx. 

A. MXArchitecture 

The design of the MX has several unique OI unusual 
features. These features are of interest here because they are 
reflected in the design of the tools developed to support the 
MX. As shown in figure 1 the MX has 5 internal memories in 
addition to the instruction memay (IM). The Ewe Memory 
(UM) is used to store a list of specially encoded words which 
tell the ADC card (called a “Ewe”) how to convert analog 
channels and to read (digital) PROM data. There are three in- 
dependent data memories called DMA, DMB and DMC, 
whose data is used to perform arithmetic corrections on the 
ADC data and such housekeeping iimctions as counting loops. 
The Event Memory (EM) is where the MX writes its output. 
Much of the power of the MX comes from the fact that it can 
fetch a0 operand from three different memories, perform a 
thee way operation such as A+B*C and store the result in a 
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Figure 1 -Architecture of the MX Computer 

The MX also has a set of 13 registers, but only the index 
registers will be discussed here. Memory addresses in the MX 
are formed by adding the contents of a l&bit index register WOIK was supported by the U.S. Department of Energy under 

contract No. DE-AC02-76CH03000. with an S-bit offset encoded in the inst~ction word The in- 



struction format allows for 4 independent addresses (3 
operands and 1 result), but there are some restrictions on 
which index registers can access a given memory. The “A” 
and “C” addresses are used to read operands t?om the DMA 
and DMC memories respectively, and can use the Xl, X2 or 
X3 index registers. ‘Ibe ‘73” address is used to read an operand 
6om the UM, EM, or DMB memories, and can use the full set 
of index registers (Xl, X2, X3, AXI, AX2). The “R” address 
is used for writing an arithmetic result and can also use any 
index register. The result can be written to any memory except 
the IM. 

B. Role of the MX in the 
CDF Data Acquisiiion System 

Figure 2 shows a simplified view of the CDF data ac- 
quisition system. When the CDF experiment is running, thae 
is a proton-antiproton “bunch crossing” every 3.5 KS. Some of 
these crossings result in high-energy collisions. The result of a 
collision is called an “event”. The purpose of the data aoqtisi- 
tion system is to digitize, process and collect the signals oom- 
ing from the electronic detectors used to instrument the CDF 
experiment, and write the data to tape for further analysis of- 
the. 

The trigger system uses special “fast out” signals t?om the 
front-end electronics to determine if the event is interesting. If 
the event satisfies the level 1 and level 2 triggers, a start scan 
message is broadcast to the MXs. 

L I Fleu. I I 

Figure 2 - Simplified Diagram of the 
CDF Data Acquisition Systan 

The purpose of the MX is to digitize a set of analog than- 
nels, perform certain local processing on the data and format it 

in the EM. It starts this process when a start scan message is 
written to its FBCR (Fastbus co&o1 register) register by a 
Fastbus broadcast, and signals completion by setting the 
DONE bit in the SR (status register). When all of the MXs and 
other “scanners” have finished, the Event Builder reads the 
dete 6om each one and builds “event record”. The “Level 3” 
trigger uses physics analysis programs to reconstruct the event 
and apply a tinal cut to which events are written to tape. 

Each Mx controls two ADC cards, called Ewes; and each 
Ewe converts approximately 500 analog channels coming 
f?om the CDF detectors. The MX tells each Ewe what to do by 
sending it specially encoded 24-bit words which are written to 
the UM at the same time that the MX program is downloaded 
to the IM. After starting each conversion, the MX polls the 
Ewe status until DONE goes high. Then, the digital data is 
read from the Ewe. 

IftheMXis running the data acquisition code, a pedestal 
value is subtracted from the data, it is multiplied by a linear 
correction, and it is compared to a threshold value. If the MX 
IS rum@ the pedestal calibration code, 256 values are col- 
lected for each charmeL Each v&e has a base value subtmcted 
(to prevent overflow) and is added to a 32 bit sum(x) and 
sum(xn2). Later, these sums ax used to calculate the mean and 
sigma for each channel pedestal. 

The resulting data is written to the Event Memory in a 
format which is organized by detector component, and logical 
channel ID, called “scanner bank format.” 

Currently, there are 60 MXs used in the CDF data 
acquisition system and about one half of the data from the 
CDF detectors are processed by these MXs. The rest of the 
data is processed by other devices in the data acquisition 
system. 

m. HIGH LEVEL ASSEMBLER 

Arguably, a prooessor’s assembly language is the most im- 
portant interface between the hardware and the intended was. 
This wes especially tie in the case of the Mx, since the de- 
velopment of a high level programming language such as 
Pascal or C was not anticipated. A custom assembler language 
incorporating features t?om high level languages such as do 
while loops, if/then/else structure, local storage and branch 
symbols has been designed and implemented to serve as a ve- 
hicle for sofhvare development on the MX. 

There are several possible pitfalls in the design of an as- 
sembler for a device such as the Mx. For example, an a&h- 
metic expression for the MX may involve 4 operands in&d- 
ing the result Does LDAM A,B,C,D mean A = B + C’D, or D 
= A + BY, or does it mean A = B*C + D ? The MX assem- 
bier (called ASMMX) borrows it’s syntax for such arithmetic 
expressions from more familiar grammars like Forhan. It is 
hoped that the meaning of a statement in ASM/MX like 
LOAD A = B + C*D require no explanation (the rules of 
precedence are the same as those in Fortren). In thii example 
A, B, C and D could be any memory or register, limited only 
by the architecture of the MX. 



A. Familiar Cad of Characters 

ASMMX refers to the MX registers by the same names as 
those found on the original schematics and engineering docu- 
mentation used in the development of the MX (and shown in 
figure 1). This is important because a significant group of 
users of the assembler are the engineers and technicians who 
developed the MX and keep it running today. The same is 
true of the MX memories, except the DMA is referred to as 
“A”, DMB as “B” and DMC as “c”, for the sake ofbrevity. In 
this way, the memories and registers of the MX form e famil- 
iar test of characters for those being introduced to MX pro- 
gramming for the first time. 

B. Memory References 

As stated above, MX memory references are fanned by 
adding the contents of e l&bit register to an 8 bit offset and 
such references may apply to the DMA,DMB,DMC,EM or 
UM memories. The MX assembler provides several distinct 
representations for such references, in order to facilitate the 
simplest and most easily understood structure for each use. 

dma *name 
de 

A ( mnstent ) 
B.“MW B ( mnstsnt , 

dmc c.name c(mnstard) 
ml EM.Mme EM( mnslard , 
ump3:1S] “M_HGthams 
“nl,15:00] 

UM-HIGH( mnstant ) 
“MmLW.mme uM~Lcw ( mnstard ) 

dnm A.name ( mnsient , 
Lbh &name ( mndani ) 
dmc cnams ( mn*ard , 
em EM.name( mn*nt , 
ump3,q 
“@,Sao] 

“MJwa.nsma( comtanl ) 
uh_Low.nanw ( Kndanl ) 

Figure 3 - Direct Addressing Mode in ASMMX 

For example, the tint 256 locations in each of the memo- 
ries are treated as a special “scratch memory” by MX pro- 
gremmers. The reeson that this is so is that these looations can 
be accessed without the use of an unused index register, which 
ten be a scarce commodity. In ASMMX, the programmer can 
assign symbolic names, Iike a.module-no, to one or more con- 
secutive memory locetiom. These names cm be used alone 
like e 16 bit integer in Fortmn, or in combination with an in- 
dex register, like an array of 16 bit integers. In some situ*- 
tions, it is convenient to specify an explicit offset in addition 
to the offset implied by the symbolic name. The syntax for di- 
rect (no index register) and indirect (wi index register) are 
shown in figures 3 and 4, respectively. Notice that all 
symbolic names begin with the name of the memory in which 
it resides. 

C. Program Structure 

An ASMiMX program consists of a list of functions and 
“storage sections.” A storage section declares a related set of 
symbols like those just described and fulfill much the same 
purpose es common blocks in Fortran. One storage section 
may be designated as the “GLOBAL STORAGE” section. 
Storage symbols declared in tbis storage section arc eutomati- 
c&y imported by every fimction. Every other storage section 
is given e name and timctions that need to refer to the storage 
declared there need to import them by referring to the name of 
the storage section. Storage sections differ from Fortran com- 
mon blocks in that the symbols (variables) are only declared in 
one place and it is impossible to eccidently overlay symbols 
have different names or associated storage. 

GLOeALSTOMOE 
Qtow~ddaa6on> 
-atoiage_d*ra6mr 

. . . 
EN0 

sTORAGEmsix~nam> 
ucmge~d~clara~n~ 
ewage~dechratbn~ 

*.. 
END 

STORAGE sontants 
a.cc.IIp1 “““‘=~v& 
a.mm~*p : IWrrl = lia 
a.mxmrd : lvmd = &I 
b.hra_FFFF : lvmd = (hex) FFFF 
b.ky%xa : llrod = (hex) Boco 
bAaLam : Ivad = 1 
c.m*t-l8 : 1 vaid = ,B 
C.rn”s-t~32 : 1 mrrd = 32 
c.twL4om : IWrd = (hex) .Wm 

END 

Figure 5 - Storage Sections in ASMlMX 

Functions are the basic executable unit of an MX program. 
One function is designated the “MAIN FUNCTION” and 
serves es the primary entry point for the program. An 
ASMMX timction is divided into two parts. ‘Il~e fust is wed 
to declare local symbols for storage and importing storage 
symbols from storage seotions. The second part contains alI of 
the executable code in the function. 

Figure 4 -Indirect Addressing Mode in ASMNX 
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Figure 6 -Functions in ASMMX 

This separation between declarative and executable state- 
ments is unusual for an assembly language, but introduces BLL 
element ofpredictability for the programmer. Like any reason- 
able programming language, ASM/MX wiIl tlag the use of any 
storage symbol which has not been explicitly declared as e 
syntax error. This behavior helps prevent simple spelling er- 
rors from introducing bugs in the program. By putting all of 
the storage declarations et the beginning of the fin&ion, the 
programmer knows where to look to see if e storage symbol 
has already been defmcd and, if so, how it is spelled, 

Transfer of control within an ASM/MX function is accom- 
plished by the “GOTO” statement. Every GOT0 statement 
must have e branch label as its target. Branch labels look like 
those found in PASCAL and consist of an alphabetic charac- 

the program to resume execution where it let% off in the origi- 
nal function. The only provision for passing arguments to the 
called function or returning results is by the use of storage 
symbols which are shared by both functions. This is consistent 
with the requirement for MX programs to operate as fast as 
possible. 

wntax -FleS 

I(WILE emtirm> 
weo.4tak-tatemnnb 
Vmrutablem*temenb 

. . . 
*END WIILE 

*LOOP 
<exsoltath_statslMO 
exmJta&~~mem 

. . . 
%ENO ICOP 

P LcadevafolneXtda”“e,. 7 

?&we a.mnaG.4tand “~hiih(aa) = 0 
load “rnbti “rn(ti). al++, @rote 

%B”d while 

P Free running mnm 7 
?m.ap 

lbda.m”nt=*,m”nt-, 
%“d bxp 

<~~M~bl~_statefWT,P 
~xmJla~a~arAemn 

. . . 

%END “NTlL 

I . s- 
n-3: -wa&bie_statemsnb 

w%mJt¶blsstatermm . . . 
UENO CASE 

%IF ecwmm~ THEN 

. . ; 
%ELSE IF Cc.mdbO”> THEN 

~~xputab~~etats~“P 
~~ble~Sl&ltWM”b 

. . . 
%ELSE IF <mndmn~ THEN 

-xeartsbie_s(atern”b 
+XeaWble_Ltabm”D 

.t I 
%ENOIF 

9bcase x2 of 
cr got0 e”dJmp 
1: call etats_a 
2: cdl, EhtE~b 
3: c811 date-c 

send CaBB 

P hlwe to an BYB” wad bOun*ly. Y 
BMi x3 and a.mnnt(,) 
sar la*Jea”n ,= 0 men 

bad em(x3, = 0. a++ 
send r 

Figure 7 - Meta Statements in ASMA4X 

ter, one or more aIphanumeric characters and a colon. All 
branch labels are local to the function in which they are de- 

D, ~~~~~~~~~~~~~ 

clared, so jumping into the middle of another function is not 
possible. This feature is intended to discourage the unstmc- 
hired, “spaghetti code” oflen found in assembly language pro- 
grams. Branch labels are not required et a& in most cases, be- 
cause of the availability of structured, “mete-stetements.” 
@‘lease refer to section D, Mete-Statements.) 

Transfer of program control from one function to another 
is done with a conventional “CALL” statement that enters the 
function at the top , and “RETUW statement which causes 

One of the most important goals of ASMiMX program- 
ming is for the resulting program to execute as eff%ently as 
possible. This is because, in the case of the data acquisition 
code, the execution time of the MX adds directly to the “fiati- 
end deadtime” of the system. During this time, the data ac- 
quisition system is blind to the proton-antiproton collisions 
that are occurring way 3Sps. Since operation the acceleretor 



at Fermilab costs many thousands of dollars per hour, these 
lost collisions have a significant value. 

For this reason, ASMMX maintains a one-to-one relation- 
ship between executable statements and generated machine in- 
shuotiom. This &es the programmer the control he/she needs 
to write the fastest possible program within the available in- 
shllotion set. 

There iIre certain COILstmcts of these atomic statements, 
however, which are repeated time and again in h4X programs. 
These constructs correspond to the classical elements of 
structured programming, including 3 types of loop, chained 
if/then/else and the case statement. Special “meta-statements” 
have been added to ASMiMX which implement these 
const~cts by generating several MX machine inst~ctions. 
Each of these constructs begin with a keyword with a percent 
sign, like %WHILE, in order to distinguish between meta- 
statements and the ordinary, atomic statements. The syntax of 
the available mete-statements is listed in figure 7. 

IV. MX ONLINE EXECUTIVE INTERFACE 

The MX functions as an embedded processor, in that it has 
no controls or displays on its front panel and has no direct 
terminal connection. All communication between it and the 
outside world is done over the Fastbus local area network. A 
program has been written to sewe BS a combination control 
panel, software development debugger and hardware diagnos- 
tic utility. This program is called the MX Online Executive 
Interface, or “Maxi.” Maxi implements several features which 
may be useful for applications written to support custom pro- 
cessors besides the MX. 
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Figure 8 -Menu and Status Viewports in Maxi 

A. User Interface Issues 

Every useful program has B user interface and Moxi is no 
exception. A s&o&ant effort has been devoted to developing 
B consistent, powertid and easy to use tool. 

Moxi features a “dual user interface” and can be operated 
as a menu driven or command driven program. When Maxi 
starts up, it presents the user with a menu viewpoe a status 

viewport and B workspace. The menu viewport gives the user a 
list of verbs, the user types one and Maxi presents the user 
with a different menu, until there are no more options and the 
command is executed This mode can be usetid for people who 
are just becoming familiar with Maxi’s commands, but leaves 
a relatively small part of the screen available for the work 
space, where the user types in B command and reviews the re- 
sponse. As the user becomes more proficient in using Moxi, 
the user can dismiss the menu viewport with the “SET 
VIEWPORTR‘JOMENU” command. This makes Maxi more 
responsive because it no longer has to change the menu, and 
leaves more room to review the results of a command which 
dumps more than a few lines of data, and to review the results 
of more than one command. This oan be quite useful when 
tracking down a bug in hardware or software. 

A verb-noun syntax is used to organize the commands in 
Maxi and make them easier to remember. There are currently 
over 100 commands in Moxi. Rather than attempt to assign a 
unique verb to each one, Maxi uses a Verb-Noun combination 
wherever possible. Because the same verbs and nouns are used 
in many commands, the user only has to remember M+N 
items rather than M*N items. For example, the DECODE verb 
can be applied to the command register in the Ewe (called 
EWE/COMMAND), or the FBCR (“Fastbus Control 
Register”), or B word in the instruction memory. Similariy, the 
noun FBCR can be used in tie READ and WRITE, BS well as 
the DECODE, commands. 

MoOF”F&R 
Momw,u IMLnw”l.m4 
wxaFI.=c 
UlaFIlVW 
%L4T 
REIDCAN) 
REmCs.vSPICE 
~~3hcE 

!zE$- 
RWMEP 
REznrn 
FE%%* 
RESETen%< 
FzEEP 
Ezz3’ RWMX 
RhSETTN?ZE 

RMTRLP 
ET= 
EF&C+CW 
Ez?2%iY’ 
E7?z%A 
ziEE&%” SETEUTW. 
.z E.&L. STrlmp SEIMCOE,?&+CK SErwwEISPY SETYX)E&TEP 
zFm~w 
zs%= SETYLSYRIRT mavw.EAK s.imv- sIowEyyE 

1 

Figure 9 - Summary of C ommand.s in Maxi 

Another principle in Moxi’s design is to avoid “command 
modes”, where B command is only available in some restricted 
context, or the same commands have different meaning in 
different modes. This is B common problem with menu driven 
programs, which can make them tedious to use. All of Maxi’s 
commands are always available, unless they require a device 
which has not been selected, and the user can escape any input 
prompt (for the WRITE PC command, for example) by enter- 
ing CNTRL-2. 

Positive feedback is used to let the user know what state 
Moxi is in and to put the data displayed in the workspace in B 
meaningful context. The status viewport tells the user what 



version of Maxi is currently executing, what devices (such BS 
the MX) have been selected, and what modes (ie, is there an 
open log file, is Maxi currently reporting NACK errors) are 
active. 

The standard names are used for the memories and regis- 
terS in the MX. PC and DMA, for example. Registers located 
in other devices, such as the Mep, Ewe, and Bat, use names 
like MEPiSCID and EWE/COMMAND. 

Maxi provides quick INIT commands for the Mep, Ewe, 
Bat and MX; and quick TEST commands for the MX and 
Ewe. For example, TEST EWE reads out the Ewe’s ID prom, 
reads certain reference voltages on the Ewe, performs a 
“barber pole” bit test for all the registers on the Ewe, and tests 
the Ewe’s “autodec” feature of the channel address register. 
The INIT command sets the specified device to some prede- 
tined state, then reports to the user what state that is. 

‘Ike Mep, Ewe, Bat and MX can also be used as the target 
for the READ and DECODE command For example, READ 
EWE displays the contents of all of the registers of the cur- 
rently selected Ewe. This is a lot easier than typing 7 com- 
mlmds to read these registers out one at a time. 

B. General Facilities 

The READ command provides a mechanism for displaying 
the contents of any register or memory in the MX, Mep or 
Ewe. The output of the READ command can be directed to a 
file with the /OUTPUT qualifier. The DECODE command 
provides roughly the same timction as READ, except the tar- 
get of the command (a memory, register, or device) decoded 
into fields, like the module and submodule addresses in the 
EWEiCHADRS register; or disassembled into the ASM/MX 
syntax, in the case of the IR (instruction register) and IM 
(instmction memory). 

Similarly, the WRITE command provides a mechanism to 
change the value of any witable memory or register in the 
MX, Mep or Ewe. (Some registers are read-only.) Maxi will 
perform a readback and verify operation if “verify mode” is 
enabled. The MODIFY command allows the user to modify 
one or more fields in a register by performing read-modify- 
write operation. Naturally, the register fields are specified by 
IUiUlC?. 

Even with the menu and status viewports disabled, the user 
only has 24 lines for the workspace on a standard ASCII ter- 
minal. Maxi allows the user to get around this by opening up B 
log tile. Everything written to the workspace: command 
prompts, user responses, data, and any error messages, are 
written to the log file. This can be particularly useful in two 
situations. In the fast, someone is running an overnight hard- 
ware test and wants to be able to review the results even if the 
terminal is accidently turned off The second situation is where 
the user is executing a program trace, where the output may 
potentially be thousands of lines long. 

C. Software Faciliiies 

The basic commands for controlling the execution of an 
MX program are RUN, STOP, and STEP. As the name im- 
plies, the STEP command uses the single-instruction featme of 
the MX to execute one instruction. It can only be used when 
the MX clock is in a halted state. The RUN command either 
releases the MX clock, or causes the Mx program to execute 
in a series of single-instruction steps. This is controlled by the 
state of “step mode” in Maxi. 

Breakpoints are IM addresses detined by the user and kept 
on B list by Maxi. The PC is read and checked against this list 
whenever the user executes the STEP command, or after every 
instruction is executed in step mode. If the current PC is a 
breakpoint, program execution is stopped, a list of read/write 
commands called the display list is executed, and Maxi returns 
control to the user via the command prompt. Because break- 
points require reading the PC after every instruction is exe- 
cuted, they are inactive when the MX clock is running (non- 
step mode). 

Trappoints are user defmed addresses where a special 
jump-to-self instruction has been written to the IM by Maxi. 
Trappoints behave like breakpoints, except they will stop 
program execution regardless of whether Maxi is in step mode 
or non-step mode. Because the PC is not read out atter every 
inst~ction is executed, the display list is not automatically ex- 
ecuted, but the user can use the WAIT command to poll the 
PC and execute the display list when the Mx program reaches 
one of the trappoints. When the user sets a trappoint, Maxi 
reads the original contents of specitied address, so the trap- 
point can be reset and the original instruction restored just as 
easily as it was set. 

A special “CONTINUE” command is provided in Maxi to 
allow the user to “step through” a trappoint. When the user en- 
ters this command, Maxi first stops the MX clock and checks 
that the current PC is on the trappoint list. Assuming we are at 
a trappoint, Maxi temporarily restores the original inshuction 
and executes a single step. The breakpoint is restored and the 
clock restarted 

Maxi allows the user to build a “display list” consisting of 
a list of read/write commands. The display list can be executed 
explicitly, with the DISPLAY command, or implicitly, after 
one instruction has been executed with the STEP command, or 
when the MX program bits a user defined breakpoint. 

Rather than defining a set of commands to add and remove 
operations from the display list, Maxi uses the LSE or EDT 
editor on the host machine (a Vex) for the user interface. 
When the user enters “SET DISPLAY”, Maxi opens a tempo- 
rary file using the editor’s callable interface Once the user is 
in the editor, he/she can use the familiar keypad commands to 
insert, remove or modify read/write operations. The same syn- 
tax is used as the READ and WRITE commands. When the 
user is satisfied, the editor is exited in the normal way and 
control retmns to Maxi. Maxi opens the temporary file, parses 
its contents and finally deletes it. This method provides the 
user with a familiar and flexible interface, and may be of use 
in other control programs like Maxi. 

Alternatively, if the user specifies a tile name with the SET 
DISPLAY command, Maxi will look for an existing file and 



build the display list with the commands in this file. In this 
case, the file is not deleted ‘Ibis allows the user to build a set 
of predefmed display lists. Towards this end, Maxi fmt looks 
for the display list in the current directory, then in a special di- 
rectory defined by a logical name. 

D. Hardware Faciliiies 

Facilitating the job of tracking down and repairing h4X 
failures is an important function in Maxi. One tool Maxi pro- 
vides for this is the “scope loop.” A scope loop is a list of read 
and write oommands which are executed to generate some 
signal in the Mx hardware. A oscilloscope or logic analyzer 
can then be used to look at the behavior of the MX’s logic on- 
&r this stimulus. 

Maxi uses the same user interface for setting up a scope 
loop and setting up a display list. When the user enters the 
“SET DISPLAY” command, he/she is put into the LSE or 
EDT editor (this is a user defined option), where the desired 
read and write commands can be added, removed or modified. 

When the user starts the scope loop (via the “LOOP” 
command), the commands on the scope loop are executed 
again and again, until the user presses CNTRL-C. Unlike the 
display list, the read commands on the scope loop do not dis- 
play any data. This is in order to maximize the speed with 
which the loop executes 

Another command which is useful in maintaining the MX 
hardware is the “TEST” commend. The TEST command 
works with any of the memories and registers in the Mx; or 
my of the registers in the Ewe, or all of the registers and 
memories in the MX; or all of the registers in the Ewe. 

which test is performed depends upon the memory or re.g- 
ister under examination. For example, the registers in the Ewe 
arc checked using a barber-pole pattern that looks like 1, IO, 
100, 1000.. First, the pattern is w&en to all of the registers, 
then the registers are read back and compared with the original 
data. Then the whole pattern is rotated with a circular shift op- 
eration and it is written to the registers again. This process 
only requires 16 I/O operations on the Vex and since a diffa- 
ent value is written to each register, problems with the register 
decoding in the Ewe are checked at the same time. 

Although some hardware failures may show themselves 
every time it is tested, others happen only intermittently. The 
OVERNIGHT command repeats one or more tests over and 
over again in a loop until the user terminates the test by press- 
ing CNTRL-C. The overnight command accepts the same tar- 
gets as TEST and, in fact calls the same test functions. 

V. CONCLUSIONS 

The ASMMX assembler and Maxi are sophisticated pro- 
grams which provide a good environment for software dcvel- 
opment and hardware maintenance. These programs demon- 
strate certain features which may be applicable in the design of 
programs of related function. ASMMX demonstrates that an 
assembler featuring good context dependent error messages 
and combining some of the best features from high level and 

assembly level languages can be implemented using a simple, 
recursive-descent approach. 

Maxi demonstrates the concept of providing the user with 
complementary user interfaces, in this case, merm driven and 
command driven interfaces; it shows one way a consistent 
command language can be designed, by adopting a verb-noun 
framework; and uses an interesting user interface for creating 
a command lis< by using the callable inter&ace to an editor.. 

But these capabilities were not achieved without cost. 
ASM/MX and Maxi are large programs, with almost 12k and 
53k lines of code respectively, and took approximately 6 pro- 
grammer-years to develop. Off the shelf software could not be 
used because of the custom design of the MX, so tbis cost may 
be viewed as a consequence of choosing B custom design for 
the MX. This investment was justified in the case of CDF 
since there were no processors available in 1981, when the 
CDF data acquisition system was designed, to match the MX’s 
capabilities. 

Developing custom software will always be a costly 
proposition, and must be taken into account when oustom de- 
signed hardware is being considered as part of a system’s de- 
sign. 
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