
Fermi National Accelerator Laboratory

FJZRMILAB-tinf-9lf316

Software Development Tools for the CDF MX Scanner

W. Stuermer, K. Turner and S. Littleton-Sestini

Fermi National Accelerator Laboratory
P.O. Box 500, Batavia, Illinois 60510

November 1991

* Presented at the IEEE Nuclear Science Symposium, Santa Fe, New Mexico, November 2-9, 1991.

4E Operated by Universities Research Association Inc. under Contract No. DE-AGO%76CHD30W with the United Stales Department of Energy

.
Dudaimer

This report was prepared as an account of work sponsored by an agency of the United States
Gouernment. Neither the United States Government nor any agency thereof, nor any of
their employees, makes any warranty, express or implied, or assumes any legal liability
or responsibility for the accuracy, completeness, or usefullness of any information,
apparatus, product, or process disclosed, or represents that its use would not infringe
privately owned rights. Reference herein to any specific commercial pmdwt, process, or
service by trade name, trademark, manllfacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United States
Government or any agency thereof. The views and opinions of authors expressed herein do
not necessarily state or reflect those of the United States Government or any agency thereof

SOFTWARE DEVELOPMENT TOOLS FOR

THE CDF MX SCANNER

W. Stuermer, K. J. Turner, S. E. Littleton-Sestini,

Fermi Naiional Accelerator ikboraloryl

Abstract

This paper discusses the design ofthe high level assembler
and diagnostic control program developed for the MX, a high
speed, custom designed computer used in the CDF data acqui-
sition system at Fermilab. These programs provide a tiiemlly,
productive environment for the development of software on
the MX. Details of their implementation and special features,
and some of the lessons learned during their development are
included

I. INTRODUCTION

The CDF experiment at Fermilab uses a programmable
processor called the MX in its data acquisition system.
Because of the custom design of the MX, off the shelf sot%
ware could not be used for program development, software
debugging or hardware diagnostic functions. Writing these
utilities afforded an opportunity to incorporate some new and
interesting features, as well as learning the degree of effort re-
qtied to develop custom sot%vare to support a machine like
the Mx.

A. MXArchitecture

The design of the MX has several unique OI unusual
features. These features are of interest here because they are
reflected in the design of the tools developed to support the
MX. As shown in figure 1 the MX has 5 internal memories in
addition to the instruction memay (IM). The Ewe Memory
(UM) is used to store a list of specially encoded words which
tell the ADC card (called a “Ewe”) how to convert analog
channels and to read (digital) PROM data. There are three in-
dependent data memories called DMA, DMB and DMC,
whose data is used to perform arithmetic corrections on the
ADC data and such housekeeping iimctions as counting loops.
The Event Memory (EM) is where the MX writes its output.
Much of the power of the MX comes from the fact that it can
fetch a0 operand from three different memories, perform a
thee way operation such as A+B*C and store the result in a

‘Fermilab is operated by the University Research Association,
inc, under contract with the US. Department of Energy. This . ..~

ax
UYEO. DITA
2ERO
En
E
E-RwL’

L

-m
:g E;;

:ii. 1wm
F K;
“U pa:ml 1

I”StNckv (IM, kmnats

(11~2~tQs~ll1~~15Yu5211yIlDl.,~l1.451.u~2.,~,10~17~.55Y,12
‘1. on”l ‘B’N7S.L vmm I ‘R. mm.,
Tdm Wm.1 rnPU*a IMP bnn)”
‘K due hm.8.. @.h I .r-

,,,o~~~ir~~,~2~~2212010,1.~1,1115Y,ll~dll10 118 IBIS,4 3 2 10
*cd. m bix . . m xc Y I m lnpp

Figure 1 -Architecture of the MX Computer

The MX also has a set of 13 registers, but only the index
registers will be discussed here. Memory addresses in the MX
are formed by adding the contents of a l&bit index register WOIK was supported by the U.S. Department of Energy under

contract No. DE-AC02-76CH03000. with an S-bit offset encoded in the inst~ction word The in-

struction format allows for 4 independent addresses (3
operands and 1 result), but there are some restrictions on
which index registers can access a given memory. The “A”
and “C” addresses are used to read operands t?om the DMA
and DMC memories respectively, and can use the Xl, X2 or
X3 index registers. ‘Ibe ‘73” address is used to read an operand
6om the UM, EM, or DMB memories, and can use the full set
of index registers (Xl, X2, X3, AXI, AX2). The “R” address
is used for writing an arithmetic result and can also use any
index register. The result can be written to any memory except
the IM.

B. Role of the MX in the
CDF Data Acquisiiion System

Figure 2 shows a simplified view of the CDF data ac-
quisition system. When the CDF experiment is running, thae
is a proton-antiproton “bunch crossing” every 3.5 KS. Some of
these crossings result in high-energy collisions. The result of a
collision is called an “event”. The purpose of the data aoqtisi-
tion system is to digitize, process and collect the signals oom-
ing from the electronic detectors used to instrument the CDF
experiment, and write the data to tape for further analysis of-
the.

The trigger system uses special “fast out” signals t?om the
front-end electronics to determine if the event is interesting. If
the event satisfies the level 1 and level 2 triggers, a start scan
message is broadcast to the MXs.

L I Fleu. I I

Figure 2 - Simplified Diagram of the
CDF Data Acquisition Systan

The purpose of the MX is to digitize a set of analog than-
nels, perform certain local processing on the data and format it

in the EM. It starts this process when a start scan message is
written to its FBCR (Fastbus co&o1 register) register by a
Fastbus broadcast, and signals completion by setting the
DONE bit in the SR (status register). When all of the MXs and
other “scanners” have finished, the Event Builder reads the
dete 6om each one and builds “event record”. The “Level 3”
trigger uses physics analysis programs to reconstruct the event
and apply a tinal cut to which events are written to tape.

Each Mx controls two ADC cards, called Ewes; and each
Ewe converts approximately 500 analog channels coming
f?om the CDF detectors. The MX tells each Ewe what to do by
sending it specially encoded 24-bit words which are written to
the UM at the same time that the MX program is downloaded
to the IM. After starting each conversion, the MX polls the
Ewe status until DONE goes high. Then, the digital data is
read from the Ewe.

IftheMXis running the data acquisition code, a pedestal
value is subtracted from the data, it is multiplied by a linear
correction, and it is compared to a threshold value. If the MX
IS rum@ the pedestal calibration code, 256 values are col-
lected for each charmeL Each v&e has a base value subtmcted
(to prevent overflow) and is added to a 32 bit sum(x) and
sum(xn2). Later, these sums ax used to calculate the mean and
sigma for each channel pedestal.

The resulting data is written to the Event Memory in a
format which is organized by detector component, and logical
channel ID, called “scanner bank format.”

Currently, there are 60 MXs used in the CDF data
acquisition system and about one half of the data from the
CDF detectors are processed by these MXs. The rest of the
data is processed by other devices in the data acquisition
system.

m. HIGH LEVEL ASSEMBLER

Arguably, a prooessor’s assembly language is the most im-
portant interface between the hardware and the intended was.
This wes especially tie in the case of the Mx, since the de-
velopment of a high level programming language such as
Pascal or C was not anticipated. A custom assembler language
incorporating features t?om high level languages such as do
while loops, if/then/else structure, local storage and branch
symbols has been designed and implemented to serve as a ve-
hicle for sofhvare development on the MX.

There are several possible pitfalls in the design of an as-
sembler for a device such as the Mx. For example, an a&h-
metic expression for the MX may involve 4 operands in&d-
ing the result Does LDAM A,B,C,D mean A = B + C’D, or D
= A + BY, or does it mean A = B*C + D ? The MX assem-
bier (called ASMMX) borrows it’s syntax for such arithmetic
expressions from more familiar grammars like Forhan. It is
hoped that the meaning of a statement in ASM/MX like
LOAD A = B + C*D require no explanation (the rules of
precedence are the same as those in Fortren). In thii example
A, B, C and D could be any memory or register, limited only
by the architecture of the MX.

A. Familiar Cad of Characters

ASMMX refers to the MX registers by the same names as
those found on the original schematics and engineering docu-
mentation used in the development of the MX (and shown in
figure 1). This is important because a significant group of
users of the assembler are the engineers and technicians who
developed the MX and keep it running today. The same is
true of the MX memories, except the DMA is referred to as
“A”, DMB as “B” and DMC as “c”, for the sake ofbrevity. In
this way, the memories and registers of the MX form e famil-
iar test of characters for those being introduced to MX pro-
gramming for the first time.

B. Memory References

As stated above, MX memory references are fanned by
adding the contents of e l&bit register to an 8 bit offset and
such references may apply to the DMA,DMB,DMC,EM or
UM memories. The MX assembler provides several distinct
representations for such references, in order to facilitate the
simplest and most easily understood structure for each use.

dma *name
de

A (mnstent)
B.“MW B (mnstsnt ,

dmc c.name c(mnstard)
ml EM.Mme EM(mnslard ,
ump3:1S] “M_HGthams
“nl,15:00]

UM-HIGH(mnstant)
“MmLW.mme uM~Lcw (mnstard)

dnm A.name (mnsient ,
Lbh &name (mndani)
dmc cnams (mn*ard ,
em EM.name(mn*nt ,
ump3,q
“@,Sao]

“MJwa.nsma(comtanl)
uh_Low.nanw (Kndanl)

Figure 3 - Direct Addressing Mode in ASMMX

For example, the tint 256 locations in each of the memo-
ries are treated as a special “scratch memory” by MX pro-
gremmers. The reeson that this is so is that these looations can
be accessed without the use of an unused index register, which
ten be a scarce commodity. In ASMMX, the programmer can
assign symbolic names, Iike a.module-no, to one or more con-
secutive memory locetiom. These names cm be used alone
like e 16 bit integer in Fortmn, or in combination with an in-
dex register, like an array of 16 bit integers. In some situ*-
tions, it is convenient to specify an explicit offset in addition
to the offset implied by the symbolic name. The syntax for di-
rect (no index register) and indirect (wi index register) are
shown in figures 3 and 4, respectively. Notice that all
symbolic names begin with the name of the memory in which
it resides.

C. Program Structure

An ASMiMX program consists of a list of functions and
“storage sections.” A storage section declares a related set of
symbols like those just described and fulfill much the same
purpose es common blocks in Fortran. One storage section
may be designated as the “GLOBAL STORAGE” section.
Storage symbols declared in tbis storage section arc eutomati-
c&y imported by every fimction. Every other storage section
is given e name and timctions that need to refer to the storage
declared there need to import them by referring to the name of
the storage section. Storage sections differ from Fortran com-
mon blocks in that the symbols (variables) are only declared in
one place and it is impossible to eccidently overlay symbols
have different names or associated storage.

GLOeALSTOMOE
Qtow~ddaa6on>
-atoiage_d*ra6mr

. . .
EN0

sTORAGEmsix~nam>
ucmge~d~clara~n~
ewage~dechratbn~

*..
END

STORAGE sontants
a.cc.IIp1 “““‘=~v&
a.mm~*p : IWrrl = lia
a.mxmrd : lvmd = &I
b.hra_FFFF : lvmd = (hex) FFFF
b.ky%xa : llrod = (hex) Boco
bAaLam : Ivad = 1
c.m*t-l8 : 1 vaid = ,B
C.rn”s-t~32 : 1 mrrd = 32
c.twL4om : IWrd = (hex) .Wm

END

Figure 5 - Storage Sections in ASMlMX

Functions are the basic executable unit of an MX program.
One function is designated the “MAIN FUNCTION” and
serves es the primary entry point for the program. An
ASMMX timction is divided into two parts. ‘Il~e fust is wed
to declare local symbols for storage and importing storage
symbols from storage seotions. The second part contains alI of
the executable code in the function.

Figure 4 -Indirect Addressing Mode in ASMNX

hwm FUWTlcN
w.4mRTsTORAGE Fem.4

CBBd1O”JBW.
~~O”~“~W.

. . .
STORAGE

etorape_dedamml~
emrage~wmtion>

..*
BEOlN

~~XEC#Abl~~*t~lW”P
~exealAble_stat*mnb

..I
LVD

FUWCTION *unmon_nam>
lMFoRTSTORAGE FROM

~tio”_naw.
csecdo”_nam.3z-

..*
STORAGE

c*rage_deda~ons
etmge~d&amons

.-.
BEGIN

~WEOhtd~_statsmSnB
<eXecUtable-dBtU,TN,D

. . .
Ew

Figure 6 -Functions in ASMMX

This separation between declarative and executable state-
ments is unusual for an assembly language, but introduces BLL
element ofpredictability for the programmer. Like any reason-
able programming language, ASM/MX wiIl tlag the use of any
storage symbol which has not been explicitly declared as e
syntax error. This behavior helps prevent simple spelling er-
rors from introducing bugs in the program. By putting all of
the storage declarations et the beginning of the fin&ion, the
programmer knows where to look to see if e storage symbol
has already been defmcd and, if so, how it is spelled,

Transfer of control within an ASM/MX function is accom-
plished by the “GOTO” statement. Every GOT0 statement
must have e branch label as its target. Branch labels look like
those found in PASCAL and consist of an alphabetic charac-

the program to resume execution where it let% off in the origi-
nal function. The only provision for passing arguments to the
called function or returning results is by the use of storage
symbols which are shared by both functions. This is consistent
with the requirement for MX programs to operate as fast as
possible.

wntax -FleS

I(WILE emtirm>
weo.4tak-tatemnnb
Vmrutablem*temenb

. . .
*END WIILE

*LOOP
<exsoltath_statslMO
exmJta&~~mem

. . .
%ENO ICOP

P LcadevafolneXtda”“e,. 7

?&we a.mnaG.4tand “~hiih(aa) = 0
load “rnbti “rn(ti). al++, @rote

%B”d while

P Free running mnm 7
?m.ap

lbda.m”nt=*,m”nt-,
%“d bxp

<~~M~bl~_statefWT,P
~xmJla~a~arAemn

. . .

%END “NTlL

I . s-
n-3: -wa&bie_statemsnb

w%mJt¶blsstatermm . . .
UENO CASE

%IF ecwmm~ THEN

. . ;
%ELSE IF Cc.mdbO”> THEN

~~xputab~~etats~“P
~~ble~Sl<WM”b

. . .
%ELSE IF <mndmn~ THEN

-xeartsbie_s(atern”b
+XeaWble_Ltabm”D

.t I
%ENOIF

9bcase x2 of
cr got0 e”dJmp
1: call etats_a
2: cdl, EhtE~b
3: c811 date-c

send CaBB

P hlwe to an BYB” wad bOun*ly. Y
BMi x3 and a.mnnt(,)
sar la*Jea”n ,= 0 men

bad em(x3, = 0. a++
send r

Figure 7 - Meta Statements in ASMA4X

ter, one or more aIphanumeric characters and a colon. All
branch labels are local to the function in which they are de-

D, ~~~~~~~~~~~~~

clared, so jumping into the middle of another function is not
possible. This feature is intended to discourage the unstmc-
hired, “spaghetti code” oflen found in assembly language pro-
grams. Branch labels are not required et a& in most cases, be-
cause of the availability of structured, “mete-stetements.”
@‘lease refer to section D, Mete-Statements.)

Transfer of program control from one function to another
is done with a conventional “CALL” statement that enters the
function at the top , and “RETUW statement which causes

One of the most important goals of ASMiMX program-
ming is for the resulting program to execute as eff%ently as
possible. This is because, in the case of the data acquisition
code, the execution time of the MX adds directly to the “fiati-
end deadtime” of the system. During this time, the data ac-
quisition system is blind to the proton-antiproton collisions
that are occurring way 3Sps. Since operation the acceleretor

at Fermilab costs many thousands of dollars per hour, these
lost collisions have a significant value.

For this reason, ASMMX maintains a one-to-one relation-
ship between executable statements and generated machine in-
shuotiom. This &es the programmer the control he/she needs
to write the fastest possible program within the available in-
shllotion set.

There iIre certain COILstmcts of these atomic statements,
however, which are repeated time and again in h4X programs.
These constructs correspond to the classical elements of
structured programming, including 3 types of loop, chained
if/then/else and the case statement. Special “meta-statements”
have been added to ASMiMX which implement these
const~cts by generating several MX machine inst~ctions.
Each of these constructs begin with a keyword with a percent
sign, like %WHILE, in order to distinguish between meta-
statements and the ordinary, atomic statements. The syntax of
the available mete-statements is listed in figure 7.

IV. MX ONLINE EXECUTIVE INTERFACE

The MX functions as an embedded processor, in that it has
no controls or displays on its front panel and has no direct
terminal connection. All communication between it and the
outside world is done over the Fastbus local area network. A
program has been written to sewe BS a combination control
panel, software development debugger and hardware diagnos-
tic utility. This program is called the MX Online Executive
Interface, or “Maxi.” Maxi implements several features which
may be useful for applications written to support custom pro-
cessors besides the MX.

I Irnl ueoa-am..Tm 2 GET Mbric..rdYoupnm*,.. 1 BIESml R”.lUOXlP”m..nUl*...
: EC? %EiE%%

L

: KY .%.W..lk4‘O~.-.nd,
B wm p&&y -mm+>
0 ,REAOl R”dhYlc,hrb,k.,
1: K?P” R..o “uu”~ M.W.. Wlfl~YX~WWdn,.Z., 12 ,YODlflJ UmlyYXorEwEn#U e”. RETURN brmi Paw

YOXI L

_ __
q OXI”LRsIO* 8.M
ulP*: a.m
m..“.y ““KNOW”

.“.: ENP

-I IWmw Ds..mED
n*n”* EWE0
.wm* DISABLED
mhmd.: EMLED
.vm* DISenLED

Figure 8 -Menu and Status Viewports in Maxi

A. User Interface Issues

Every useful program has B user interface and Moxi is no
exception. A s&o&ant effort has been devoted to developing
B consistent, powertid and easy to use tool.

Moxi features a “dual user interface” and can be operated
as a menu driven or command driven program. When Maxi
starts up, it presents the user with a menu viewpoe a status

viewport and B workspace. The menu viewport gives the user a
list of verbs, the user types one and Maxi presents the user
with a different menu, until there are no more options and the
command is executed This mode can be usetid for people who
are just becoming familiar with Maxi’s commands, but leaves
a relatively small part of the screen available for the work
space, where the user types in B command and reviews the re-
sponse. As the user becomes more proficient in using Moxi,
the user can dismiss the menu viewport with the “SET
VIEWPORTR‘JOMENU” command. This makes Maxi more
responsive because it no longer has to change the menu, and
leaves more room to review the results of a command which
dumps more than a few lines of data, and to review the results
of more than one command. This oan be quite useful when
tracking down a bug in hardware or software.

A verb-noun syntax is used to organize the commands in
Maxi and make them easier to remember. There are currently
over 100 commands in Moxi. Rather than attempt to assign a
unique verb to each one, Maxi uses a Verb-Noun combination
wherever possible. Because the same verbs and nouns are used
in many commands, the user only has to remember M+N
items rather than M*N items. For example, the DECODE verb
can be applied to the command register in the Ewe (called
EWE/COMMAND), or the FBCR (“Fastbus Control
Register”), or B word in the instruction memory. Similariy, the
noun FBCR can be used in tie READ and WRITE, BS well as
the DECODE, commands.

MoOF”F&R
Momw,u IMLnw”l.m4
wxaFI.=c
UlaFIlVW
%L4T
REIDCAN)
REmCs.vSPICE
~~3hcE

!zE$-
RWMEP
REznrn
FE%%*
RESETen%<
FzEEP
Ezz3’ RWMX
RhSETTN?ZE

RMTRLP
ET=
EF&C+CW
Ez?2%iY’
E7?z%A
ziEE&%” SETEUTW.
.z E.&L. STrlmp SEIMCOE,?&+CK SErwwEISPY SETYX)E&TEP
zFm~w
zs%= SETYLSYRIRT mavw.EAK s.imv- sIowEyyE

1

Figure 9 - Summary of C ommand.s in Maxi

Another principle in Moxi’s design is to avoid “command
modes”, where B command is only available in some restricted
context, or the same commands have different meaning in
different modes. This is B common problem with menu driven
programs, which can make them tedious to use. All of Maxi’s
commands are always available, unless they require a device
which has not been selected, and the user can escape any input
prompt (for the WRITE PC command, for example) by enter-
ing CNTRL-2.

Positive feedback is used to let the user know what state
Moxi is in and to put the data displayed in the workspace in B
meaningful context. The status viewport tells the user what

version of Maxi is currently executing, what devices (such BS
the MX) have been selected, and what modes (ie, is there an
open log file, is Maxi currently reporting NACK errors) are
active.

The standard names are used for the memories and regis-
terS in the MX. PC and DMA, for example. Registers located
in other devices, such as the Mep, Ewe, and Bat, use names
like MEPiSCID and EWE/COMMAND.

Maxi provides quick INIT commands for the Mep, Ewe,
Bat and MX; and quick TEST commands for the MX and
Ewe. For example, TEST EWE reads out the Ewe’s ID prom,
reads certain reference voltages on the Ewe, performs a
“barber pole” bit test for all the registers on the Ewe, and tests
the Ewe’s “autodec” feature of the channel address register.
The INIT command sets the specified device to some prede-
tined state, then reports to the user what state that is.

‘Ike Mep, Ewe, Bat and MX can also be used as the target
for the READ and DECODE command For example, READ
EWE displays the contents of all of the registers of the cur-
rently selected Ewe. This is a lot easier than typing 7 com-
mlmds to read these registers out one at a time.

B. General Facilities

The READ command provides a mechanism for displaying
the contents of any register or memory in the MX, Mep or
Ewe. The output of the READ command can be directed to a
file with the /OUTPUT qualifier. The DECODE command
provides roughly the same timction as READ, except the tar-
get of the command (a memory, register, or device) decoded
into fields, like the module and submodule addresses in the
EWEiCHADRS register; or disassembled into the ASM/MX
syntax, in the case of the IR (instruction register) and IM
(instmction memory).

Similarly, the WRITE command provides a mechanism to
change the value of any witable memory or register in the
MX, Mep or Ewe. (Some registers are read-only.) Maxi will
perform a readback and verify operation if “verify mode” is
enabled. The MODIFY command allows the user to modify
one or more fields in a register by performing read-modify-
write operation. Naturally, the register fields are specified by
IUiUlC?.

Even with the menu and status viewports disabled, the user
only has 24 lines for the workspace on a standard ASCII ter-
minal. Maxi allows the user to get around this by opening up B
log tile. Everything written to the workspace: command
prompts, user responses, data, and any error messages, are
written to the log file. This can be particularly useful in two
situations. In the fast, someone is running an overnight hard-
ware test and wants to be able to review the results even if the
terminal is accidently turned off The second situation is where
the user is executing a program trace, where the output may
potentially be thousands of lines long.

C. Software Faciliiies

The basic commands for controlling the execution of an
MX program are RUN, STOP, and STEP. As the name im-
plies, the STEP command uses the single-instruction featme of
the MX to execute one instruction. It can only be used when
the MX clock is in a halted state. The RUN command either
releases the MX clock, or causes the Mx program to execute
in a series of single-instruction steps. This is controlled by the
state of “step mode” in Maxi.

Breakpoints are IM addresses detined by the user and kept
on B list by Maxi. The PC is read and checked against this list
whenever the user executes the STEP command, or after every
instruction is executed in step mode. If the current PC is a
breakpoint, program execution is stopped, a list of read/write
commands called the display list is executed, and Maxi returns
control to the user via the command prompt. Because break-
points require reading the PC after every instruction is exe-
cuted, they are inactive when the MX clock is running (non-
step mode).

Trappoints are user defmed addresses where a special
jump-to-self instruction has been written to the IM by Maxi.
Trappoints behave like breakpoints, except they will stop
program execution regardless of whether Maxi is in step mode
or non-step mode. Because the PC is not read out atter every
inst~ction is executed, the display list is not automatically ex-
ecuted, but the user can use the WAIT command to poll the
PC and execute the display list when the Mx program reaches
one of the trappoints. When the user sets a trappoint, Maxi
reads the original contents of specitied address, so the trap-
point can be reset and the original instruction restored just as
easily as it was set.

A special “CONTINUE” command is provided in Maxi to
allow the user to “step through” a trappoint. When the user en-
ters this command, Maxi first stops the MX clock and checks
that the current PC is on the trappoint list. Assuming we are at
a trappoint, Maxi temporarily restores the original inshuction
and executes a single step. The breakpoint is restored and the
clock restarted

Maxi allows the user to build a “display list” consisting of
a list of read/write commands. The display list can be executed
explicitly, with the DISPLAY command, or implicitly, after
one instruction has been executed with the STEP command, or
when the MX program bits a user defined breakpoint.

Rather than defining a set of commands to add and remove
operations from the display list, Maxi uses the LSE or EDT
editor on the host machine (a Vex) for the user interface.
When the user enters “SET DISPLAY”, Maxi opens a tempo-
rary file using the editor’s callable interface Once the user is
in the editor, he/she can use the familiar keypad commands to
insert, remove or modify read/write operations. The same syn-
tax is used as the READ and WRITE commands. When the
user is satisfied, the editor is exited in the normal way and
control retmns to Maxi. Maxi opens the temporary file, parses
its contents and finally deletes it. This method provides the
user with a familiar and flexible interface, and may be of use
in other control programs like Maxi.

Alternatively, if the user specifies a tile name with the SET
DISPLAY command, Maxi will look for an existing file and

build the display list with the commands in this file. In this
case, the file is not deleted ‘Ibis allows the user to build a set
of predefmed display lists. Towards this end, Maxi fmt looks
for the display list in the current directory, then in a special di-
rectory defined by a logical name.

D. Hardware Faciliiies

Facilitating the job of tracking down and repairing h4X
failures is an important function in Maxi. One tool Maxi pro-
vides for this is the “scope loop.” A scope loop is a list of read
and write oommands which are executed to generate some
signal in the Mx hardware. A oscilloscope or logic analyzer
can then be used to look at the behavior of the MX’s logic on-
&r this stimulus.

Maxi uses the same user interface for setting up a scope
loop and setting up a display list. When the user enters the
“SET DISPLAY” command, he/she is put into the LSE or
EDT editor (this is a user defined option), where the desired
read and write commands can be added, removed or modified.

When the user starts the scope loop (via the “LOOP”
command), the commands on the scope loop are executed
again and again, until the user presses CNTRL-C. Unlike the
display list, the read commands on the scope loop do not dis-
play any data. This is in order to maximize the speed with
which the loop executes

Another command which is useful in maintaining the MX
hardware is the “TEST” commend. The TEST command
works with any of the memories and registers in the Mx; or
my of the registers in the Ewe, or all of the registers and
memories in the MX; or all of the registers in the Ewe.

which test is performed depends upon the memory or re.g-
ister under examination. For example, the registers in the Ewe
arc checked using a barber-pole pattern that looks like 1, IO,
100, 1000.. First, the pattern is w&en to all of the registers,
then the registers are read back and compared with the original
data. Then the whole pattern is rotated with a circular shift op-
eration and it is written to the registers again. This process
only requires 16 I/O operations on the Vex and since a diffa-
ent value is written to each register, problems with the register
decoding in the Ewe are checked at the same time.

Although some hardware failures may show themselves
every time it is tested, others happen only intermittently. The
OVERNIGHT command repeats one or more tests over and
over again in a loop until the user terminates the test by press-
ing CNTRL-C. The overnight command accepts the same tar-
gets as TEST and, in fact calls the same test functions.

V. CONCLUSIONS

The ASMMX assembler and Maxi are sophisticated pro-
grams which provide a good environment for software dcvel-
opment and hardware maintenance. These programs demon-
strate certain features which may be applicable in the design of
programs of related function. ASMMX demonstrates that an
assembler featuring good context dependent error messages
and combining some of the best features from high level and

assembly level languages can be implemented using a simple,
recursive-descent approach.

Maxi demonstrates the concept of providing the user with
complementary user interfaces, in this case, merm driven and
command driven interfaces; it shows one way a consistent
command language can be designed, by adopting a verb-noun
framework; and uses an interesting user interface for creating
a command lis< by using the callable inter&ace to an editor..

But these capabilities were not achieved without cost.
ASM/MX and Maxi are large programs, with almost 12k and
53k lines of code respectively, and took approximately 6 pro-
grammer-years to develop. Off the shelf software could not be
used because of the custom design of the MX, so tbis cost may
be viewed as a consequence of choosing B custom design for
the MX. This investment was justified in the case of CDF
since there were no processors available in 1981, when the
CDF data acquisition system was designed, to match the MX’s
capabilities.

Developing custom software will always be a costly
proposition, and must be taken into account when oustom de-
signed hardware is being considered as part of a system’s de-
sign.

VI. ACKNOWLEDGEMENTS

We wish to gratefully acknowledge the efforts of Greg
Schuweiler, who is currently maintaining Maxi; and of Steve
Hahn and Daniel Frei, who have made major contributions to
Amada, the MX data acquisition and calibration code.

VII. REFERENCES

[I] F. Abe, et al., “The CDF Detector: An Overview,” Nuclear
heumentifion andMethods, volAZ71, pp. 387403,1988.

[2] G. Drake, et al., “The RABBIT System,“NucleorlnslMnstlarion
andM&ods, volA269, pp. 6&81,1988.

[3] T. F. Drcege, I. Gaines, and K. J. Toma, “The M7- A High Speed
Digital Processor For Second Level Trigger Selections,” IEEE
Transactions on Nuclear Science, Vol. NS-25.
The name of the MX was derived fmm the Mrrgnifxent Multi-
Muon Mass and Momentum Monitoring Machine, or M7. M7
was promoted to M8, translated to Ml0 (octal), and
tcaoslit~ted to Mx (Roman numerals).

[4] A.J.T. Davie and R. Monison, Recursiw Descent Compiling,
New York: John Wiley and Sons

