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ABSTRACT 
An introduction to the techniques of analysis of hadron collider events is 

presented in the context of the quark-parton model. Production and decay 
of W and 2 intermediate vector bosom are used as examples. The structure 
of the Electroweak theory is outlined. Three simple FORTRAN programs 
are introduced, to illustrate Monte Carlo calculation techniques. 

Introduction 

These lectures are intended for a classroom rather than a technical seminar. A 
review of the present experimental situation in hadron collider physics has been pub- 
lished elsewhere? Here we will attempt to explain the ideas behind the interpretation 
of hadron collider events. To do this we rely heavily on some standard texts in the 
field: “Collider Physics” by Barger and Phillips;* “Quarks and Leptons” by Halzen 
and Martin;3 “Gauge Theories of the Strong, Weak, and Electromagnetic Interac- 
tions” bye Quigg;4 “Gauge Theories in Particle Physics” by Aitchison and Hey;s and 
“Concepts of Particle Physics” by Gottfried and Weisskopf.6 The periodic publications 
of the Particle Data Group7 furnish the latest experimental results and in addition 
establish conventions to be followed in defining parameters of the theory, naming the 
particles, etc. 

In the notes that follow we will borrow freely from these texts, sometimes citing 
specific sources, but sometimes not.. We admit our debt to the above authors at the 
outset, hoping that lapses in citation will henceforth be forgiven. 

The selection of topics and the organization has been chosen to cover the subject 
in five one hour lectures. Although much material has been omitted by necessity, the 
objective of these notes is to be comprehensible and self contained. 

There are homework problems scattered throughout the notes, which should be 
worked out by the interested reader. Calculating physical quantities is always en- 
lightening, and is necessary for progress to be made in the science. 
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Lecture I 

1.1 e+e- Annihilation 

Quantum electrodynamics is a good place to start. The interactions of charged 
leptons and photons can be accurately described by the Feynman rules. These rules 
have been extended to cover the Electroweak theory and QCD as well, so the more 
familiar QED furnishes a natural framework to introduce the notation and kinematics. 

We begin with the four dimensional notation for photons and leptons, the Dirac 
equation, and the application of the Feynman rules to the calculation of cross sections. 
All of the texts mentioned above have adopted the four dimensional metric tensor 
defined by Bjorken and Drell? 

(1.1) 

so that the space components of a lower index four vector have the opposite signs to 
those of an upper index four vector: 

x0 = {x0,5}, xp = {x0, -5) X&@ = t* - 52 (1.2) 

We will adopt natural units throughout: h. = c = 1. In these units length, time, 
and l/energy have the same dimensions. For cross sections, (1 GeV)-* = 0.389 mb 
is handy, while for decay rates fi = 6.58 x lo-r5 GeV-set does the trick. There is no 
distinction among the uni$ for mass. momentum, and energy. 

The gradient 8, = G transforms like a lower index vector. A simple Lorentz 

transformation to a prime frame moving with velocity +v along the 3 axis is 

xv’ = air’ with ai = and y = (1.3) 

The Dirac equation in momentum space in this metric for a free positive energy 
electron reads 

(k - mbb) = 0, i? = YP,. (1.4) 

In coordinate space the form is (iy”8, - m)$(z) = 0, with p, = ia,. 
The adjoint equation is 

G(p)& - m) = 0. (1.5) 

where ii = uty’ and yp’ = y”y’y’. 



The corresponding negative energy spinor equations are 

(h+m)v(p) = 0, and C(p)(k + m) = 0. (1.6) 

The anticommutator of the g-a matrices is 

y'l7"+7"7# = 2g'Y. (1.7) 

Invariant variables first introduced by Mandelstam are very useful for describing 
the kinematics of reactions of the type A + B + C + D. QED formulas exhibit 
useful symmetries when written as functions of these variables. In terms of the four 
momenta of the particles, they are defined as follows: 

s = (PA + PB)' 

t = (PA - PCj2 

u = (PA - PD)* (1.8) 

with the constraint s + t + u = mi + m& + rng + m;. The rapidity of a particle is 
defined relative to the direction of motion of the AB rest frame bv the loga~th~c 

relation: 
y=iln E 

( ) E - Pll (1.9) 

Rapidities add algebraically when going from one Lorentz frame to another, as long 
as the motion is parallel to the original AB direction. Therefore rapidity differences, 
or shapes of rapidity distributions. are invariant under such Lorentz transformations. 
The maximum value of the rapidity for a particle of mass m in a system with total 
energy 6 is 

d ymar=ln - 
( ) m 

(1.10) 

Since at high energies the particle mass can be neglected, the pseudorapidity is often 

n=iln(~~~~S~) =-ln(,,i) (1.11) 

Psuedorapidity depends only on the polar angle. This definition is invalid for very 
small angles where the quantity in Eq (1.11) is larger than the allowed maximum of 
Eq (1.10). At the SPS and Tevatron colliders, pseudorapidity is never a good approx- 
imation for W and 2 bosons. They are too heavy, and so is the as yet undiscovered 
top quark. But it works well for everything else. Because of the invariance of rapidity 
differences, many detectors are segmented in constant bites in An. 

In order to perform calculations. we must know how to relate cross sections and 
decay rates to invariant matrix elements, which in turn are calculated from the Feyn- 
man rules. The decay rate formula will be introduced in Lecture III. The differential 
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cross section per unit solid angle for the process A + B -+ C + D in the AB rest frame 
is given bv the formula 

do 
~=&f;IM12 

. 
where M is the invariant matrix element for the reaction, and s = (pa + p~)~ is the 

Mandelstam variable. 

v;;Hc, u(3---&q 
42 EPC) 

Figure 1.1. Feynman rules for 
t?+e- + p+p-. 

Figure 1.2. Compton scattering diagram 
and Feynman rules. 

Figure 1.1 shows the Feynman rules applied to the basic reaction e+e- + p+p-. 
The invariant matrix element can be written down by applying the factors shown in 
the Fig.-the spinors, the vertex factors, and the photon propagator-as follows: 

- iM = iei&)y”u(pA) 7 ieG(pc)-/‘t~(p~) 
(‘) 

(1.13) 

where s = qz = (mass)2 of the intermediate photon. The Compton scattering diagram 
involves real photons and an electron propagator, as shown in Fig. 1.2. In this case the 
photon is characterized by a four momentum and a polarization four vector. Similar 
formulas will be obtained for real W’s and Z’s The use of the Feynman rules in this 
case gives the amplitude: 

- iM = ii +ey 
i(kA + ;F + m) 

(PA + ky _ ,zZe-fYtu ‘(?‘A) 
1 

(1.14) 

The amplitude for the crossed diagram must be added coherently to Eq (1.14) to 
obtain the correct expression for the cross section. 

The annihilation process e+e- + p+p- IS of fundamental importance in electron 
storage rings. In the high energy limit where all of the lepton masses can be ignored, 
the differential cross section is 

do 02 t2 +u2 
zi=2s 32 

(-) = ;(I fcossB), (1.15) 

e* 1 
where o = - = -. The total cross section is: 

47r 137 
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HOMEWORK PROBLEM: Use the Feynman rules to derive the differential and total 
cross sections for e+e- -+ ,u’p-, Eqs. 1.15 and 1.16 above. To perform the spin sums, 
use the trace theorems given in References 3 and 4. Note that the trace factors into 
two terms which have the same form. The Mandlestam variables of Eq. 1.8 have been 
simplified by the zero mass approximation. 

1.2 The Standard Model 

The standard model is built with six leptons and six quarks (and their antipar- 
ticles) given in Table 1. The quark varieties are called flavors, and each flavor comes 
in three colors. There are four gauge fields: y, 2, and W of the electroweak sector, 
and 9 for QCD. The photon and gluon are massless, while the 2 and W are very 
heavy. There are eight gluons carrying the colors of the 3 x 3’ octet representation 
of color SU(3). Leptons are restricted to electroweak interactions. The quarks share 
the electroweak forces, and in addition couple to gluons through the color charge to 
give QCD. Neutrinos are assumed to be massless. In fact, at ,/Z Z 1 TeV all leptons 
and quarks except for the t and perhaps the b may be considered massless. 

Table 1: “Standard Model” Ingredients 

Leptons Charge Quarks Charge 
ve VI1 VT 0 11 c t +$ 

e- p- T- -1 dsb -5 

A quark-antiquark pair can be produced instead of a lepton pair in the final state 
after efe- annihilation. The cross section for this process in its simplest form is just 
like Eq. 1.16, weighted by the square of the quark charge and multiplied by 3 for 
color, which gives a formula for the ratio R: 

R= 
o(e+e- -+ q@) 

f7(e+e- + p-p+) 
=3x&;. 

f 
(1.17) 

R = 2 below charm threshold; R = 3; between charm and bottom thresholds; and 
R = 3: above bottom threshold. The top quark threshold would cause a step in R of 
1; units. There are QCD corrections to these numbers, and in the resonance regions 
near the J/T), upsilons, and 2 there is sharp structure in the ratio, but the trend in 
R, shown in Fig. 1.3 (Ref. 7), foil ows expectations. The lower part of Fig. 1.3 shows 
R above the upsilon region. where a search has been made for the top quark threshold 
to no avail. The rise above 50 GeV is due to the tail of the 2 pole, which is centered 
at (91.161 f 0.031) GeV! 
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Figure 1.3. R = (e+e- - hadrons)/(e+e- - p+p-) 

The Electroweak theory specifies how the 2 propagator and the photon propa- 
gator interfere. The formula for the cross section obtained by the coherent sum of 
amplitudes for these two intermediate states 

e+e- + qq= w + >--T--< 2 

charge Q/ 

is given by 

da 
- = g [4??(1 t 
dR 

~0s’ 8) - 2Q,x1{ VV,( 1 t cos’ 6’) - 2a, cos 6’) 

tX2{(V,?+a~)(l t Vz)(1+cos2fJ) -SVV,a~cosB)] (1.18) 

The first term is the same as Eq. 1.15. The second term, involving the real part 
of the Breit-Wigner amplitude ~1, is the interference between the photon and the 
2. Here the vector-vector interference is symmetric, while the vector-axial vector 
part is linear in cos 0, the angle between the electron and the outgoing fermion, and 
results in a front-back asymmetry. The third term, multiplied by the square of the 
Breit-Wigner amplitude x2, is the 2 amplitude squared. Here the vector and axial 
vector parts of the 2 coupling to fermions contribute to the (1 $ cos* 0) term, while 
the vector-axial vector interference of the 2 itself gives an asymmetric part. As we 
shall see, the 2 coupling is almost pure axial vector, so the x2 asymmetric term is 
small. The yr term can be large, but it changes sign as the energy increases through 
the 2 pole, and vanishes on resonance. The variation of the coefficient of cos0 as 

6 



the energy passes through the 2 resonance is shown in Fig. 1.4. These properties are 
clear from the formulas below: 

0.5 

‘: y 0.0 
L&u 

~0.5 

1 

xl = 
s(s -l@) 

16sin’Ow co9 Ow (s - M:)* + rz~; 
1 s= 

X2 = 256 sin4 0~ co& Bw (s - Mj?)? + PM; 

V = -1+4sin*Bw (leptonic vector term) 

af = 2T3, (at = -1) 

VI = 2T3, - 4Qr sins&; T3 = 
+t for ue,ulrru,c,t 

-; for e-,p-,r-,d,s,b 
(1.23) 

/ 

/ 
/ 

‘L, \ 
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70 so 90 100 110 120 
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L 

Figure 1.4. Asymmetry of e+e- - ,u+p- as 
a function of energy. 
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Figure 1.5. Z resonance line shape 

In the following lectures we will attempt to justify these assignments. The Wein- 
berg angle 6w is a parameter of the theory. The first measurements of 0~ were 
performed by studying the neutral current cross sections in neutrino scattering, with 
the result sins Bw = 0.23, which results in a vector coupling constant for leptons of 
0.08, about 10% of the axial vector coupling. 

Figure 1.5 (Ref. 7) shows the cross section for e+e- annihilation into hadronic final 
states--i.e., alI quark final states which then dress themselves into jets of hadrons-as 
the energy is varied through the 2 resonance. The plot shows the consistency of the 
cross section data with the hypothesis of three neutrino families, and gives reality to 
the above formulas characterizing the 2 as a massive intermediate state. In the next 
lecture we will see how these formulas apply to hadron colliders. 
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Lecture II 

2.1 The Drell-Yan Process in Hadmnic Collisions 

In the quark-parton model, hadrons are assumed to consist of free point particles 
with negligible mass, dubbed partons by Feynman. These partons have been iden- 
tified as fractionally charged quarks and neutral gluons. This picture is valid in an 
impulse approximation: the hadron is probed for a very short time span, correspond- 
ing via the uncertainty principle to a very large energy transfer, during which only 
one parton participates in the reaction, and the other constituents of the hadron act 
as spectators. The incident projectile, which is a lepton in lepton-hadron collisions 
(deep inelastic scattering) and another parton in hadron-hadron collisions, strikes a 
parton which carries a momentum fraction 0 < z < 1 of the total momentum of the 
target. The collision occurs between point particles, analogous to e+e- annihilation, 
except that the kinematics are determined by zr and zs, while for e+e- zt = zs = 1. 
The probability distributions of parton momenta in the hadron are called structure 
functions? More will be said about them later. 

Equation 1.18 for the process e+e- -+ @can be time reversed without any changes 
to describe the inverse reaction 44 -+ e+e-, which in the parton model is the sub- 
process for the observed reaction p + p + e+e- f X, and is called the Drell-Yan 
mechanism, shown in Fig 2.1. We proceed with the kinematics of the reaction in the 
pp rest frame, which coincides with the laboratory frame at the SPS and Tevatron 
colliders. The parton model differs from e+e- annihilation in two important ways: 

a) the qq rest frame does not in general correspond to the pp rest frame, so that the 
lepton pair can be moving in the laboratory along the beam direction (Trans- 
verse motion also happens, but can be neglected in first approximation.); and 

b) although the Fp system is neutral, the Qq system need not be, which permits the 
production of not only the 2 boson, but single W+ or W- as well. Production 
of Wf, at least until LEP 200 begins operation, is the sole province of hadron 
colliders. 

The qq collision is collinear, with total momentum 

and energy 

p'g t & = i (2.1) 

Eq t Eq = Ec, (2.2) 

Now introduce the momentum fractions z1 and .rr: 

& = 2, P. and $@ = ZZ( -F) (2.3) 
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where P and -P are the proton/antiproton incident momenta, and xl, .rs are dimen- 
sionless variables. Momentum conservation then gives the momentum fraction of the 
intermediate state (or the lepton pair) as 

k=( 5, - z*)P or I = 51 - 52. 

Since Ek = (x1 + ss)P, M2 = Ei - i* = 4z1z2P2, resulting in 

(2.4) 

2112 = M21s, (2.5) 

where s = 4P*. The rapidity of the produced state y is given in terms of zr and x2 
by 

q,2 = $eiy I 
S I’ I”’ WI 

‘03 B’? 

t 
\ XUW 1 

1’ \ 

Figure 2.1. Drell Yan mechanism in the 
Parton Model 
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Figure 2.2. Field and &nnan structure 
functions U, d, s for the proton. 

The Dreh-Yan cross section for an intermediate photon, i.e. well below the Z 
resonance, can be written down from the definitions of the structure functions and 
the basic formula of Eq. 1.16. Thus 

d2Gp --, e+e-,Y) = $$ C&~[q.(2,)q,(12)dlld~*] 
a 

v-7) 

where A@ is the square of the mass of the lepton pair, and Q. is the quark charge. The 
factor of l/3 is for color, because only color. neutral qq pairs are allowed in the sum, 
and the structure functions are identical for the three quark colors. For simplicity 
the quark is assumed to reside in the proton and the antiquark in the antiproton, 
although it is possible for the two to be reversed. Antiquarks occur in the proton 
only as vacuum fluctuations of qq pairs. The proton structure functions are u and d 
valence quarks, plus ZLu , dd, and Ss sea quarks. The gluons play no direct role in 
either deep inelastic scattering or the Drell-Yan mechanism-a reason why the gluon 
structure functions are not as well known as those of the quarks. Quark structure 
functions for the proton obtained by Field and Feynman’a are shown in Fig. 2.2. 
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With a change of variables Eq. 2.7 can be written in terms of dM* ds: 

d% 4xa* 

dM*dx = 9~2~~~2 f 4M2,s11,2 F Q:q.(~lka(d (2.8) 

HOMEWORK PROBLEM: Show that this expression follows from Eq. 2.7, 

2.2 The Structure Functions 

Deep inelastic lepton scattering experiments (e’s, p’s, and Y’S) have been the 
sources for the structure functions: which are obtained by fits to the data. The 
structure functions cannot be derived from first principles, and must be calculated 
empirically. Examples of deep inelastic scattering in the parton model together with 
the kinematics are shown in Fig. 2.3. The cross section is linear in the structure 
functions (only one hadron), so by assuming charge conjugation invariance-u in the 
proton equals ri in the antiproton-the Drell-Yan cross section can be written down 
directly in terms of measured proton characteristics. This is the interpretation of 
Eq. 2.8. Unfortunately this procedure does not quite work, as the cross section so 
calculated is about 2/3 of the experimental value. To fix things up, a “I( factor” of 
1.5 is applied to the right hand side of Eq. 2.8. This factor can be calculated in QCD. 

q2 = t = (P.~ - pc)*; v = EA - EC 
z = -q*/2mpv > 0 

Figure 2.3. Deep inelastic scattering in the parton model 

The motion of bound nucleons in a spinless nucleus is spherically symmetrical, and 
related to the Fourier transform of a nucleon wave function. Do the quark structure 
functions in the proton arise from similar considerations? The answer is yes, but 
there is a fundamental difference between nucleons and nuclei. 

Consider a nuclear analog of the proton with its three valence quarks (rr, u, d)- 
He3 (p, p, n). The negative binding energy of He3, about 6 MeV, is much smaller 
than the masses of the constituents. so we may safely write the mass formula for the 
nucleus as: 

M=3m (2.9) 
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Now boost the nucleus to very high momentum: 

P=7M=3yn (2.10) 

Now each “parton” has l/3 the momentum of the nucleus, and hence I = l/3. The 
nucleon motion smears this delta function out a little bit, the width being equal to 
the nucleon motion in the transverse plane. 

The proton is a very different object. We are told that the quarks are confined- 
they cannot escape as free particles-and that the quark masses are negligibly small. 
Hence a formula like Eq. 2.9 is not valid. Hadrons, unlike any other materials, weigh 
more than the sum of their constituent masses. Nothing else does this - atoms, nuclei, 
lead bricks, etc all weigh less than their parts. The energy which forms the proton 
mass in its rest frame is kinetic, so we write the analog of Eq. 2.9 as follows: 

M = C Ei 
i 

(2.11) 

where E; is the kinetic (or total) energy of the massless ith constituent. To conserve 
momentum, there must be at least two partons, and the maximum value of A?, for 
any parton is 

(&Lx = M/2 (2.12) 

Now boost the hadron to high momentum by multiplying both sides of Eq. 2.11 by 
the Lorentz factor: 

Since Cipiil = 0 in the proton rest frame, it can be added to the right hand side of 
Eq. 2.13 without penalty: 

P = YC(E +pill) (2.14) 

The longitudinal momentum of the ith parton in the boosted frame is Pi = Y(Ei+pill), 

and the momentum fraction I = p, where both terms are proton rest frame 
quantities. Note that since E,, = pllmax = M/2, and plf can be plus or minus, the 
range for z is 0 < z < 1. This is Feynman’s I. The Lorentz invariant transverse 
momentum can be ignored. 

Thus confined massless partons are the key to understanding the structure func- 
tions. The binding of the partons and the fact that the number of partons is not fixed 
play a role, in fact it is the binding that gives the shape of the I distribution, but 
these considerations are not fundamental to obtaining a momentum fraction anywhere 
between zero and one. Free massless particles will do that very nicely. If we knew 
how to solve the Dirac equation and obtain wave functions for the bound massless 
partons, then their distributions in momentum space would permit the calculation of 
u(z). So far we are not able to solve this bound state problem?’ 
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,?.3 Hadronic Z production 

The Drell-Yan formula Eq. 2.7 can be readily adopted to the case where the 
intermediate photon and Z interfere. Equation (1.18) when integrated over the solid 
angle gives the cross section for 4. + Q,, -+ e+f?X as: 

- 2QaVKx1+ (v,2 + a:)(1 + v*)~~] (2.15) 

where S is the square of the mass of the lepton pair, Q. is the quark charge, and 
(V,,a,) are the vector and axial vector coupling coefficients for the quarks. The Z 
Breit-Wigner terms are xr and ~2. The details are given in Eqs. 1.19-1.23. It follows 
then that in the parton model the cross section for pp + e+e-X is given by (neglecting 
the sea quark contributions): 

Po(fip + e+e-x) = taa2 K 3p-j- ~[Q~-2Q.Vv,x~+(V~+~~)(l+V2)x,],(~,)~~(rz)dz~dr2. 
(2.16) 

On resonance S = i$$, the Qz term is negligible and the x1 term vanishes, so that 

V,’ + a:)(1 + V2)xzqy(ll)9,(22)dsld12 (2.17) 

The variables can be changed to rapidity and M* by using the identity dzldsz = 
dydM’/s, where s refers to the pp system. The result is 

v,’ + d)(l + V2)X*Qohka(+2) (2.18) 

Integrating over the Breit-Wigner and using the partial width formula T(Z -+ e+!-) = 
GF@(I + I’*) 

241,&r 
grves the result 

do -=----L 
dy 

r,f, Gd&tw2 [(I - $w t 3&)451)4x2) + (1 - T&v t $z$)d(z,)d(~,)] 
(2.19) 

where sin* 0 = zw, and & = I?&. Here we have introduced the Fermi coupling 
constant GF, the characteristic strength of the weak interactions, which is derived 
from the muon lifetime. This agrees with the equation on p. 252 of Ref. 2. 

HOMEWORK PROBLEM: Derive Eq 2.19 from Eq 2.18. Hint: 

J idi ~Mz 
o (i -&if;)* + PM; = 7 
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Lecture III 

3.1 Hadronic W Production 

In the last lecture we learned that the hadronic reaction to produce a high mass 
lepton pair, pp -+ !+f-X, proceeds via the parton model through the subprocess 
qq -t e+t!-, which is the inverse of the e+e- annihilation into qq (two jets). 

Since the 44 pair can have a net charge, single W’s can also be produced in 
pp collisions by an extension of the Drell- Yan mechanism to include weak charged 
currents. The analog to Eq. 2.19 for pp -t W+X -+ efvX is: 

$(pp + w+ + e+v) = ~~Br.I(lizzu(ll)d(lZ). (3.1) 

BC, = Ply/F is the branching ratio for the decay of the W into a (!, v) lepton pair. 
Eq. 3.1 produces a W+ by the simplest parton model process: a u quark in the proton 
annihilates a d quark in the antiproton to produce a W+ plus spectator debris. In a 
similar fashion a W- would be created by the annihilation of a d in the proton and a 
ii in the antiproton. This model gives similar interpretations for neutral lepton pair 
(e+, e-) and charged lepton pair (e*, U) production in fip collisions. 

The missing neutrino in W* decay complicates the reconstruction of the events 
in the laboratory. The transverse momentum of the neutrino can be inferred from 
measured quantities and momentum conservation, but the longitudinal momentum is 
unknown. In principle pll could be determined by conserving momentum in the beam 
direction, but it is usually not possible to do this because measurements cannot be 
made close to the direction of the colliding beams. As a result, there are two solutions 
for cos0 the polar angle of the charged lepton in the W rest frame. Transverse 
momentum balance gives: 

-M& sin2 e $4 = -6~. , or 7%~ IL = 4 

Hence the two solutions for cos 6’ are symmetric about 7r/2 in the W rest frame: 

4PL ( ) 
l/2 

cosf?=& l-- 
M& 

(3.2) 

These two values correspond to two W momenta in the laboratory. This is a kinematic 
ambiguity, characteristic of a zero constraint fit. 

Figure 3.1 shows the W+ rapidity distribution calculated with the W-PROD pro- 
gram described in the APPENDIX for ,,6 = 1800 GeV (the Tevatron). Eq. 3.1 and 
the simple structure functions of Feynman and Field were used for these calculations. 
Figure 3.2 shows the charged lepton rapidity distribution, which, in contrast to that 
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of the W’s, is directly measurable. In proceeding from 3.2 to 3.1, there are two pos- 
sible W momenta-a higher value, and a lower one. Over the central range fl unit 
of rapidity these two values are equally probable at 1800 GeV, which means that 
it is impossible from this information to determine whether the charged lepton was 
emitted in the forward or the backward hemisphere in the W rest frame. 

Figure 3.1. Wf rapidity distribution at Figure 3.2. Lepton rapidity distribution 
1.8 TeV. at 1.8 TeV. 

Figure 3.1 also shows a slight shift towards positive rapidity for W+. Positive 
rapidity is defined in the proton direction. Thus there is a preference in W production 
to preserve the flow of charge. In the parton model this preference is accommodated 
by an I dependence to the ratio u(z)/d( ) f t I o s ructure functions. Figure 2.2 shows 
that d(z) damps out faster than u(z) with increasing I. The lepton distributions in 
Fig. 3.2 are shifted slightly the other way-towards negative rapidity for e+. This 
is because while the Drell-Yan mechanism preserves the flow of charge, the weak 
decay of the W preserves the direction quark + lepton, and antiquark -+ antilepton. 
Since antiprotons carry the antiquarks, and antileptons are positively charged, the 
flow of charge is reversed. The observed lepton rapidity distribution is a result of the 
competition between these two oppositely directed phenomena. 
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$1” = -P;jet - P;f Q=P+P’ 

Figure 3.3. Vectors in the transverse Figure 3.4. Feynman rules for 
plane for Mf u+d+ W+i?+u. 

3.2 The Transverse Mass 

The kinematic ambiguity resulting from a zero constraint fit to W decay assumes 
that the W mass is known. If measurement of the W mass is the experimental 
objective, then one constraint goes away, and the events are no longer reconstructable. 
It is possible, however, to work with transverse variables. and define a transverse mass 
by the equation: 

M: = 2PClP,l(l - cm 4b) (3.4) 

where the measured and inferred vectors in the transverse plane are shown in Fig. 
3.3. From the definition it is apparent that the maximum value of Ml is the true 
mass. There is another transverse mass sometimes used in kinematics, defined by the 
formula rn: = m2 + p:, which has a minimum value of the true mass. Do not confuse 
the two. 

Equation 3.1 is the cross section per unit rapidity times the branching ratio, 
integrated over angles and over the Breit-Wigner formula for the W line width. We 
can now derive this relation from first principles, following the procedures of Lecture 
II for the 2 production and decay, and borrowing the matrix element from muon 
decay given by Eq. 3.20 below. The Feynman rules for the reaction u + d -+ !+ + v 
are shown in Fig. 3.4 The matrix element for this reaction is given by: 

,(/f = s2(WW(l - 75)4P)+,(qr (1 _ y5)u(k)), 
8 i--M&+iM~r p (3.5) 
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In writing down Eq. 3.5 we have added an imaginary term to the propagator to 
account for the line width of the W. The momentum terms in the numerator of the 
propagator do not contribute because of the Dirac equation. If the dimensionless 
constant g* and the Fermi constant GF are related by 

-=- (3.6) 

then in the low energy limit 3 < M& E q. 3.5 has the same form as Eq. 3.20. If 
we substitute g*/8 = GFAI$/J~ into Eq. 3.5, introduce the Mandelstam variables 
.? = (p + p’ )’ and C = (p - k)*, and evaluate c IMI*, we get the result: 

srhn 

c lMI* = 64 
spins 

(3.7) 

Dividing by four to average over the u and d quark spins (the wrong helicities do not 
contribute to the cross section), and using the cross section formula Eq. 1.12 gives 
the expression 

dc? 1 GFM$ 

4 ) 

2 

%=i = 16x2 
q 1 - cos 0)’ 

fi (i - M&)2 + M&P (3.8) 

Here the angular distribution factor (1 - cos O)*, mentioned above in the discussion 
of the asymmetry in lepton rapidity, follows from the helicity rules. The cross section 
for pp, in terms of the structure functions, the K factor, and the l/3 for color is 

du K 

c-E=3 (3.9) 

The differential cross section per unit W rapidity per unit solid angle can be obtained 

from this expression by substituting the Jacobian dxldsz = dye. The result is: 
s 

(3.10) 

where the structure functions are evaluated at x1,* = (I”’ f 
.3 

efy, The integration 

over the Breit Wigner line shape then gives the cross section 

da K GF -- - = 48. a dydfl i;wz+++2)(1 - ~0~4~. (3.11) 

Finally, integration over the solid angle produces Eq. 3.1 
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HOMEWORK PROBLEM: Go through the steps from Eq. 3.7 to Eq. 3.11, and then 
to Eq. 3.1. You will need the W partial width into eu: 

1 GFI~$ qw + ev) = - 
6* & (3.12) 

The derivation of Eq. 3.7 will be sketched below in the section on muon decay. 

The angular distribution Eq. 3.10 can be transformed into an expression in terms 

of transverse mass. Using M* - 4 * &. 
I - p,, and pl = -smB grves the Jacobian of this 

transformation 
2 

dcOsB= p& (3.13) 

This relation exhibits a singularity in the denominator for A4: = i, which is called 
the Jacobian peak. Although the distribution is singular, the integral is well behaved. 
The term linear in cos 8 in the angular distribution (1 - cos 0)’ averages to zero in 
the transverse mass expression, because the transverse variables are independent of 
the sign of cos 8. The transformed formula then becomes 

i(l - cosB)‘dcosB = 2 - ws dhf2, 

&xi@ L 
(3.14) 

This derivation follows the discussion on pages 259 and 260 of Ref. 2. Equation 3.14 
can be substituted into Eq. 3.10 to give the transverse mass distribution smeared 
by the Breit-Wigner line shape. Since the transverse mass does not depend on the 
rapidity of the lV, the expression can be evaluated at y = 0. In addition, as the 
energy is varied over the W line width, the structure fuctions u(z) and d(z) can be 
assumed constant in first approximation. The results of a Monte Carlo calculation 
based on these assumptions are shown in Fig. 3.5. The sharp peak at Ml = Mw 
comes from the denominator in Eq. 3.13. The program which produced this curve is 
described in the .APPE,NDIX. 
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Figure 3.5. Transverse mass distribution Figure 3.6. Transverse mass distributions for 
for the perfect detector. CDF data. 

Experimental distributions for the W transverse mass are dominated by detector 
resolutions, which broaden the Jacobian peak considerably. The published results of 
CDF (12) are reproduced in Fig. 3.6. A cut on the lepton pi > 25 GeV has been 
made on these data to reduce low Ml background. The smearing of the curve is 
well described by modelling the detector response, as is apparent from the agreement 
obtained between the data and the expected shape. Very little sensitivity to the 
W line width remains in the measured leading edge. The W line width has been 
measured by an indirect method ?3 In this paper the cross section times branching 
ratio g(ji + p -+ CI/* + X)B( W -+ e*y) was divided by the corresponding expression 
for Z’s: cr(p + p + Z + X)B(Z -+ e+e-). The cross section ratio, believed to be less 
sensitive to theoretical uncertainties than either cross section alone, was calculated 
from the standard model. Then using the standard model for the partial width 
l?(W + ev), and the direct measurements of B(Z + e+e-) from LEP and SLC gave 
the value F = (2.19 +I 0.2) GeV, in agreement with expectations. 

3.3 Quark Decays of W’s 

The inverse of W production by qq is the decay of the W into quarks: CV+ -+ 
u + 2. According to the standard model 64% of all W’s decay this way. The leptonic 
channels W + ev and W + pv represent about 22% of W decays, so the detection 
of the qq final state would be beneficial for two reasons: a) it would increase the 
detection efficiency by a factor of 3; and b) it would give a constrained fit to the Ck’ 
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mass, since there is no missing energy. 
Unfortunately, although the @J pair is color neutral, the individual quarks are not, 

and are prohibited from appearing as free particles by confinement. As the quarks 
separate, the color field creates ijq pairs, which combine to form color singlet mesons 
(and qqq triplets which form baryons a few percent of the time). These mesons ap- 
pear in the laboratory as jets of particles. This process, which is called fragmentation, 
cannot be derived from first principles, but rather must be described phenomenolog- 
ically. Two approaches have been successful: the independent fragmentation model 
of Feynman and Fieldi4; and the correlated string model of the Lund group?5 The 
descriptions of the jets of particles are very similar in the two models. When there 
are differences between the predictions, the experimental data favor the Lund model. 

Fragmentation models are based on extensive empirical data regarding the pro- 
duction of hadrons. It has been known for a long time that, as s increases, the mean 
transverse momentum (pl) remains roughly constant, and the average number of 
charged particles (n) increases only logarithmically with s. Thus the extra energy 
goes neither into more particles, nor into more pl. These observations lead naturally 
to the introduction of the scaling variable z = 2pll/&, or the related variable y of 
Eq. 1.9, and the expression of the cross section for hadron production as a Gaussian 
in pl times a function of y. In fact, the y dependence is almost constant, as can 
be seen from the logarithmic dependence of the multiplicity. Since the end points in 
rapidity increase logarithmically with s (Eq. l.lO), the multiplicity grows like log(s) if 
dn/dy is a constant. In this very simplified picture the multiplicity per unit rapidity 
is energy independent-like teeth in a comb. The length of the comb increases like 

l%(S). 
The physical characteristics of a jet-its multiplicity, average pl, cone size. etc.- 

depend upon the transverse energy of the jet. Longitudinal motions arising from the 
structure functions have no effect. The definition of a jet in terms of (An,&%) is 
independent of the polar angle. See Fig. 3.7. 

Figure 3.7. Two jets with same ET but different thetas 

In the APPENDIX a program which generates jets using the simpler technique of 
Ref. 14 is outlined. and some of the results are shown. 

The fragmentation process greatly complicates the experimental task of identifying 
the W + qq decay for two reasons: a ) Quark fragmentation to produce jets is not 
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perfectly understood; and b) The response of a detector to jet energy is not very 
good. These effects combine to give a rather poor mass resolution in the expression 

MZ = (EI + J%)* - (p; + p;)” (3.15) 

where one and two refer to the jets. Resolution smearing results in a poor signal to 
noise ratio, where the noise comes from a continuum of QCD dijet events. The UA2 
group at CERN has studied the dijet mass range from 50 to 130 GeV in search for an 
enhancement in the W/Z mass region?’ (The 2 is 11 GeV heavier than the W, but 
the mass resolution is unable to split the line.) The resulting distribution is shown 
in Fig. 3.8, and the background subtracted signal is shown in Fig. 3.9. 

There are lots of jets in hadronic reactions, but very few line sources, which is 
one reason for the interest in these results. Another reason is that W’s and Z’s are 
expected to be signatures of new physics beyond the standard model, and so the 
detection of W’s with good efficiency through a kinematically constrained channel is 
important for the future. 

I 

28oor 
4 -,r 

I I 1 I k ' 1 

60 80 100 I20 
m,, (GW 

Figure 3.8. WA2 jet-jet mass between 50 
and 130 GeV. 

Figure 3.9. Data from 3.7 after background 
subtraction. 

There is one complication in the quark coupling, which we have ignored in Eq. 
3.1. Namely, the flavor eigenstates (u.d) and ( c,s are not the states that couple at ) 
the weak vertex. This mixing phenomenon was first noted by Cabibbo before the 
c quark was discovered. Cabibbo introduced a mixing angle 8, and wrote the weak 
current (in modern notation) as 

I I 

600 c 

0 /Y 
1 T -“- 

-zoo/+ 1 

w 120 
ml, IGNI 

J’= (c ,)Y”(12-:5)GI ( ;) 

where the mixing matrix U is 

fJ= 
( 

cos 8, sin 8, 
- sin 19, cos tic ) 

20 

(3.17) 



Experimentally sin8, = 0.22. All f o our amplitudes involving W’s coupling to u and 
d quarks should be multiplied by cos BC = 0.975. This idea has been extended to six 
quarks and a 3 x 3 unitary mixing matrix by Kobayashi and Maskawa. 

3.4 Weak Interactions 

We now turn to the phenomenology of leptonic weak interactions in the pre 
W/Z era. We want to show how particle decays and neutrino interactions can be 
described by a point four fermion interaction without an intermediate bosom how the 
divergence of the neutrino cross section with increasing energy can be avoided by the 
introduction of W* of unknown (but large) mass; and how the neutral current weak 
interactions were first observed in neutrino scattering. Then later we will learn that 
the standard model of Weinberg and Salam is able to predict the masses of the W and 
2 bosons in terms of the Fermi coupling constant G F, the fine structure constant a, 
and the Weinberg angle 8w obtained from the strength of the weak neutral current. 
But first we need to review the traditional theory of weak interactions. 

The decay rate formula in terms of the invariant matrix element, the companion 
to the cross section Eq. 1.12 describes the decay A +l+2+3+...+nisasfollows: 

(2y;$E (2x)‘Q@‘(PA -P* -p* -. .P”) (3.18) (2~)~2E, (27~)~2& n 

This is Eq. 4.36 in Reference 3. To describe the matrix element for muon decay via 
the Feynman rules, define the momenta 

and the matrix element 

p- i e- 0, Yir 

p --t p’+k+k’ (3.19) 

M = $ [GW‘U -Y%(P)] [4~‘)7,(1 - -r%(k’)] 

This can be expressed as the dot product of two four dimensional currents: 

In our metric, the parity violating operator y5 = i-y”7’7*y3, and has these properties: 

7 
5t = 75; (7”y = 1; 7’75 $-f-y’ = 0. (3.22) 

Left handed and right handed spinors are defined by the following projection opera- 
tors: 

i(l - 7s)u = UL; i(l + 7s)u = un. (3.23) 
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Evaluation of Eq. 3.18 for this decay gives the energy distribution of electrons as a 
function of E = E/E,,,, = 2p’/m,: 

dI- G;m:, 2 
- = y$r-pe (3 - 2E) 
de 

(3.24) 

The integral of this expression from zero to one gives the total decay rate, or the 
reciprocal of the muon lifetime, as 

G;m; _ I 
q/L- + e-&v,) = - - - 

1927rs rg 

This is a very useful formula. It describes the decay of any spin l/2 fermion into 
three massless spin l/2 fermions. 

HOMEWORK PROBLEM: Derive the formula Eq. 3.25 by evaluating the &, jMIZ 
and integrating over the phase space. Hint: The Capins factors into the contraction 
of two tensors which have the same form. Drop the final lepton mass terms. Check 
your intermediate result with Eq. 12.35 in Ref. 3: 

; sg IM I2 = 64%~ k’)(k P’) 

This equation is handy for working out the W production problem started in Eq. 3.5. 

Equation 3.25 defines the Fermi coupling constant GF. The numbers are tabulated 
in Ref. 7: 

mLl = 0.105658387 (34) GeV 

l/T, = (0.455160 (8)) x 10s set-’ 

= (2.99592 (5)) x 10-i GeV (3.27) 

which combine to give GF = (1.16380 (2)) x 1O-5 GeV-‘. This number differs by 
2/1000 from the Fermi constant quoted in Ref. 7: 

GF = (1.16637 (2)) x 10-s GeV-*. (3.28) 

The difference arises from two small corrections to the muon decay rate: a) a phase 
space term of about 2/10000 due to the finite electron mass; and b) radiative cor- 
rections which alter the electron energy distribution, and when integrated affect the 
rate by 4.2/1000, and hence GF by half as much. The details of these calculations 
are discussed by Marshak. Riazuddin. and Ryan!7 
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Lecture IV 

4.1 Neuttino Scattering 

In his Nobel address Mel Schwartz ls described how the idea of attempting an 
experiment with high energy neutrinos came about. T.D. Lee raised the question at 
a coffee hour at Columbia: How does one study the weak interaction at high energy? 
Various ideas involving weak interactions of hadrons and charged leptons were raised 
and discarded, because of the unfavorable signal to noise. Neutrinos seemed the best 
choice to Schwartz, since they had only weak interactions. If enough neutrinos could 
be produced, and if backgrounds from other sources could be suppressed, then the 
signal in a massive detector would be observable, the signal to noise ratio would be 
tolerable, and T.D. Lee’s question could be answered. 

Since the principal sources of high energy neutrinos are pi and K decays, muon 
neutrinos predominate over electron neutrinos in the beams. A typical beam has a few 
percent electron neutrinos. The neutrino/antineutrino ratio can be changed by charge 
selecting the pions and kaons. The basic reactions have the form vu + d + p- + u, or 
the conjugate ‘/,, + u -+ pt + d. The Feynman diagram, shown in Fig 4.la , is similar 
to beta decay. The matrix element for the process is: 

M = 3 (G+Y’(~ -Y%(P)) (~(dh,(l - r”)u(k)) 

The sum over spins leads to an isotropic subprocess: 

; c IM/* = 64G;(k .p)(k’ p’) = 16G$* 
SPW 

(4.2) 

Note the similarity to Eq. 3.26. The factor of l/2 is for the quark spin-the vP has 
only one spin state. Then the cross section in the (v,, d) rest frame according to Eq. 
1.12 is 

db(u,d --) /J-U) 1 
dR 

= $G$d and 6 = -G;;. 
iT (4.3) 

The conjugate reaction can be readily calculated by substituting i for i in Eq. 4.2, 
which results in an angular dependence 

g = $1 + cos8)2. 

This can be understood by the heiicity rules, which forbid the (V,,u) reaction at 
6’ = K, while (v,, d) has no problem reversing both fermion momenta. The total cross 
section is 

&(F,u -+ P+d) = z. (4.5) 
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The subprocess i = IS , where + is the momentum fraction carried by the struck 
quark. If E, is the incident neutrino energy in the laboratory, and the target nucleon 
(N) is at rest, then s = 2M,E,. The ( v,,N) cross section depends of course on 
integrals over the structure functions, but the result is proportional to the incident 
neutrino energy. Experimentally 

o(vp + N -+ ,a- +X) = 0.67 x 10mss cm* E, 

and u(Vp + N + pt +X) = 0.34 x 1O-ss cm’ E,, (4.6) 

where & is in GeV. 
The fact that the ratio of these numbers is two rather than three is a reflection 

of the antiquark content of the nucleon. If the nucleon were made of three valence 
quarks, the ratio predicted by Eqs. 4.3 and 4.5 would obtain. See Section 12.8 of 
reference, 3 for more details. 

The analogous purely leptonic reaction v,, + e- + v, + pL- has a very small cross 
section. Eq. 4.3 is correct, with S = s = 2m,E, at high energy, which gives the cross 
section 

o(v,e- + v.p-) = 1.7 x 10e4i cm* E,. (4.7) 

This is .0025 times the cross section of Eq. 4.6. The enhancement of the nucleon cross 
section is an example of quark binding and the structure functions. The masses of a 
u quark and an electron are not that much different, and yet the quark cross section 
is 400 times larger, because the quarks live inside a heavy object, so that MP rather 
than mp appears in the formula. 

k % 

p- k’ J’ 

x 

y* w+ 

d u 
P 

P, ..A+---“ 
Figure 4.la. Feynman diagram for Figure 4.lb. Same with Wft channel 

u,+d-p-+u. exchange. 

A cross section which increases linearly with E, cannot continue indefinitely, so 
there must be something wrong with the four fermion point interaction. (No roll 
over has been observed for neutrino energies up to 200 GeV.) It has been recognized 
for a long time that the introduction of a massive intermediate state as shown in 
Fig. 4.Ib would give a cross section which becomes a constant as s -+ co. Now we 
began these lectures with massive intermediate bosons. putting the cart before the 
horse from a historical standpoint. so the exchanged object in Fig. 4.lb is not big 
news. The vector boson propagator and the dimensionless vertex factors for charged 

24 



weak currents were introduced in Fig. 3.4, and used in Eqs. 3.5 ff. To summarize the 
structure. the vertex factor is 

which corresponds to icy’ in QED. The matrix element for the neutrino reaction 
given by the diagram in Fig. 4.lb is then 

,75)u(p) ,75)~(k) 
)) (4.9) 

where the W propagator is 

w,, = -i(gw + 9dYIwv) 
qz-M& 

We know from Eq. 3.6 that, given GF, g and Mw are not independently specified. The 
standard model of Glashow, Weinberg, and Salami9 relates g to the electric charge 
e and the Weinberg angle Bw. This model, by combining electromagnetic and weak 
forces in the same scheme, requires the introduction of weak neutral currents. 

4.2 Weak Neutral Currents 

The discovery of weak neutral currents makes an interesting story, which has 
been reviewed by Galison. r” A brief description of the early history, and the influ- 
ence of what is now called the Standard Model on experimenters is given also by 
Steinberger. _ s’ Vuch of our knowledge of weak interactions comes from the study of 
decays of particles, but nature conspires in these decays to hide the weak neutral 
currents from view. For example, a neutral current decay like Co -+ AYV (u + uvv 
at the quark level) is energetically possible and violates no selection rules, but is 
swamped by the electromagnetic channel Co -+ Ay. Only flavor changing neutral 
currents like I(+ -+ atuP, which are forbidden by electromagnetic selection rules, 
are not overwhelmed. But alas flavor changing neutral currents are forbidden in first 
order by the GIM mechanism. ** So far no first order neutral current weak decays have 
been experimentally observed. 

Weak neutral currents were discovered in neutrino reactions. Examples include 
elastic scattering like vLi + p + Ye + p, and v,, + e- + vP + e-, or inelastic scattering 
like v,, + p -+ v,, + X. These have all been observed and extensively studied. The 
cross section is not that small, being about 20% of the total neutrino cross section, 

i.e., (4 -+ V”) 
(v, + p-1 + (VP -+ 4 

= 0.2. One might ask why it took over ten years of 

experimental work to find these effects ? This question is pursued in Ref. 20. In a 
nutshell, it was a combination of two factors: 
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4 

b) 

Until the early 1970’s, when the renormalization of the new theory had been 
proven, there was not a strong conviction that the weak neutral currents should 
really be there, and that the experimenters should search for them with vigor; 
and 

Since neither the initial nor the final lepton can be observed, the signature of a 
neutral current reaction is a small amount of recoil energy, which can be lost in 
neutron background. Recent neutrino experiments have fine grained targets to 
observe the recoil energy, and employ timing and spatial distributions of events 
to discriminate against neutron background. 

The neutral current vertex factor is written in terms of the Weinberg angle and 
the coupling constant g introduced in Fig. 3.4 and in Eq. 4.8: 

-G yp w - ad) 
cos ew 4 

(4.11) 

where Vf and al were introduced in Eqs (1.22) and (1.23). The neutral current 
reaction 

VW + e- --t VP + e- 
k i-p +k’+p’ 

can be described by extending the Feynman rules to cover 2 exchange, and writing 
the matrix element analog to Eq. 4.9: 

- iM = ,c;;;, (+‘)y“(l -r5)4k)) Z,v (fi(~‘)-f(~ -;‘75)u(~)) (4.12) 

where the Z propagator Z,,, is 

z 
w 

= 4%” + WY/G) 
q= - hf; 

The matrix element can be simplified by approximating Z,, + igIIy/Mj in the low 
energy limit, by substituting cos* 6’~ = (M&/MS), a relation obtained in the standard 
model, and using Eq. 3.6 to eliminate Mw. The result is 

iti = 5 (ii(k’)y,(l q+(k)) (~(p’)-f(~ -2af75)u(p)) (4.14) 

Performing the average i CSpins IM 1’ and substituting into the cross section formula 
Eq. 1.12 leads to the total cross section for (~,,e) scattering: 

o(v,e- + u,e-) = G;me& 
27r 
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This equation involves the Weinberg angle in the vector coupling. The ratio of this 
cross section to its companion charged current cross section at the same neutrino 
energy is 

a(v,e- + v,e-) 
C&e- + P-4 

= $(1-4sinZB~++jsin4B~). (4.16) 

A measurement of this ratio gives the Weinberg angle. Although these formulas 
avoid the complications from the structure functions which clutter up the companion 
formulas for V~ + N + V~ + X, the nucleon reactions are much more probable, 
as discussed above. The systematic uncertainties inherent in the parton model are 
smaller than the statistical errors in the purely leptonic channel, so that the best 
current values for the Weinberg angle from neutrino scattering come from the ratio 
of neutral current to charged current neutrino nucleon scattering. 

A global analysis of these data gave the result sins 0~ = 0.233 i O.OOS(23). 

HOMEWORK PROBLEM: Derive Eq. 4.15 from the Feynman rules for the neutral 
current t channel exchange reaction 

k vp k’ 

iZ 

p e-A Cp’ 

Hint: Read the text above, and follow the steps outlined therein, 

4.3 The Standard Model 

We have now assembled the following ingredients of the standard model: 

a) The charged current weak interaction which is responsible for beta decay is 
described by a vertex with two fermions and a massive charged intermediate 
boson rather than by the four fermion vertex of the Fermi theory. The ratio of 
the coupling constant to the W mass is known from muon decay (Eq. 3.6), but 
the 5%’ mass is arbitrary, although large compared to experimentally observed 
momentum transfers. 

b) There are flavor conserving weak neutral currents. A third weak intermediate 
boson, the 2, is postulated to couple neutral leptonic currents. The Z coupling 
diagram resembles that of the photon in QED, except that the 2 is presumed 
also to be very massive. Since the cross sections for charged current and neutral 
current interactions are comparable, the W and 2 masses are comparable as 
well. A real mixing parameter, the Weinberg angle, was introduced in Eq. 4.11 
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in the neutral current coupling. An important consequence of the standard 
model is that the ratio (Mw/Mz) = cos&, so that the 2 must be heavier than 
the W. 

The standard model was constructed to generate weak and electromagnetic inter- 
actions from a common source. The resulting structure relates the coupling constants, 
and gives predictions for the W and 2 masses in terms of the Weinberg angle. The 
theory begins with four massless vector fields, two charged and two neutral. Three of 
these fields transform like a vector under SU(2), w K h’ h 1s a symmetry group of the La- 
grangian, and the fourth field is an SU(2) scalar. The left handed fermions-leptons 
and quarks-are SU(2) doublets. This group is called weak isospin. The right handed 
fermions, which do not couple to the charged intermediate bosons, are assigned weak 
isospin zero. All of the fermions are initially massless. The weak isospin and the elec- 
tric charge are related to a number Y, the weak hypercharge, by a formula identical 
to the Gell-Mann Nishijima relation of strong isospin: 

&=T3++Y (4.17) 

The fourth IVB field is coupled to the weak isospin Y. The relationship between Q 
and Y is arbitrary, but works conveniently. 

Following Chapter 13 of Ref. 3, we label the spinors of the leptons by their particle 
symbol, write the left handed states (defined by Eq. 3.23) in a weak isospin doublet: 

XL= ; 

-/+I+ ____ <y ( !‘.-;: 

(4.18) 

The currents shown in Fig. 4.2 are then written 

J, =,YLY~~+XL and J,' =XLY,,T-XL (4.19) 

where the Pauli matrices 7+ = $(r= f T,,) have been introduced to interchange the 
spinors e tt v as required. The corresponding neutral current is 

JW = - 1 
LI xL^IPpxL> (4.20) 

so we may write 
J!’ = gLTrrpxL (4.21) 

where J; = J$” + iJf). Th e e ec romagnetic 1 t current (in units of the elementary 
charge) mvolves both left and right handed parts: 

J;” = -ey,e = --ZRY~.CR - ~LT,,~L. (4.22) 

28 



A weak hypercharge current can be defined in terms of Eq. 4.20 and 4.22 with the 
aid of the charge rule 4.17: 

J;“= Jf’++J,’ (4.23) 

We now introduce the four massless vector fields, three coupled to the weak isospin 
current, called Wf), and one coupled to the weak hypercharge, B,,. To do this two 
dimensionless coupling constants g and g’ are inserted to give the basic electroweak 
interaction: 

- jg J(‘bW(‘) 
P 

-~(JY)‘B, (4.24) 

This equation involves charged current terms for i = 1,2, coupled via g, the same con- 

stant introduced in Fig. 3.4, and two neutral current terms -igJ (3bW;,3)-% (J’)‘B,, 

So far so good, but we have a small problem since nature does not seem to need 
four massless electroweak vector fields. One of them, the photon field, is massless, 
but the other three are very heavy. The eigenstates of the coupling in Eq. 4.24 cannot 
be the mass eigenstates. The mass is generated by machinery known as spontaneous 
symmetry breaking and the Higgs mechanism, which will be sketched in Lecture V. 
For the moment, let us accept the fact that it is possible to transform the two massless 
neutral fields into one which remains massless: 

A, = B, cos 0~ + W@) sin &; 9 (4.25) 

and one which becomes massive: 

Z, = Wf) cos Bw - B, sin Bw. (4.26) 

While this is going on, the two charged fields W* = (W(r) * iI+‘( /fi also acquire 
a mass. The mixing angle 0~ in Eqs. 4.25 and 4.26 is the Weinberg angle. 

Equations 4.25 and 4.26 can be inverted and substituted into Eq. 4.24 to give the 
neutral current expression: 

-igJc3)“WF) - ig (J’)‘B,= -i 

i- (4.27) 

The first term on the right hand side is the electromagnetic interaction. To get the 
correct coupling we must identify 

gsinBw = g’cos8w = e (4.28) 

This identification can be combined with Eq. 3.6 to give a formula for the W mass in 
terms of the Fermi coupling constant G F, 
the Weinberg angle !3Lv: 

the fine structure constant a = e2/4x, and 

Mif = fiG~Tsln2 0~ 
(4.29) 

29 



This is historically an important formula, since as we have seen the neutrino weak 
neutral current experiments supplied a number for the Weinberg angle, and of course 
GF and (I were also known, so that a prediction could be made of the W mass before 
its discovery at the CERN SPS collider?4 Substituting sin* 6’~ = 0.233 into Eq. 4.29 
and taking the square root gives Mw = 77.3 GeV, which is about 3 GeV below 
the current best experimental value for the W mass. This difference is explained 
by radiative corrections to Eq. 4.29, which will be discussed-but not derived-in 
Lecture V. Equation 4.29 clearly served as an invaluable guide to the experimenters, 
telling them where to look. Before this result was obtained, it was only known that the 
W had to be massive compared to experimentally studied weak interaction energies, 
which left a lot of room to search. 

The companion 2 coupling term can be derived by substituting Eq. 4.28 back into 
Eq. 4.27 and retaining only the part proportional to 2,: 

- i gJc3) cos Ow - g ( Jy )’ sin 0w Z,, = sin ,,Fos Bw ( Jc3)” - sin’ BwJe”‘s) Z, 

(4.30) 
It is a straightforward task to obtain the vector and axial vector terms of Eq. 2.18 for 
Z + e+e- from this expression. For the electron with Q = -1 and 7’, = -+ we have 

-ie 
sinew cos Bw 

[(-+ t sins Bw)?ny,er, + sin* BwzRTDcn] 2’” 

= sin ,,z, Bw [(-a + sin’ Bw)ey,e t $y,-f5e] Z’ 

-ie 
= 

sin 0~ cos 0~ [ 

VfiV,e - afV,-?e z’, 
4 1 (4.31) 

In the last line the substitutions Vf = 2Tsf - 4Q, sins 0~ and of = -2T3, have been 
made, in agreement with the conventions adopted in Eq. 1.23. 

By accounting for the e+e- annihilation formula of Eq. 1.18, we have come full 
circle, and are now back to the beginning of the lecture series. There are some missing 
pieces, however. We have not described what takes place in the theory to generate the 
heavy IVB masses, nor have we discussed the present experimental situation. These 
topics will be sketched in Lecture V. 

HOMEWORK PROBLEM: Calculate the partial width for the decay of the Z into 
two neutrinos: 

(2 -+ v,Y,) = aMz 
24 sins Ow COG Bw 

Hint: Replace 2, by its polarization vector sir, which can be taken as the four vector 
t,, = {O,O, 0,l). The decay rate is independent of the polarization direction, so the 
calculation for one choice equals the average value. 
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Lecture V 

5.1 Symmetries and Lagmngians 

In this lecture we will sketch the origin of the masses of the W and Z intermedi- 
ate vector bosom according to the Electroweak Theory of Weinberg and Salam. We 
learned in the previous lecture how the weak current could be constructed with two 
charged fields (Wj+l, W$-)), initially massless, which acquire equal masses via spon- 
taneous symmetry breaking; and two neutral fields (Wrl, B,), also initially massless, 
which mix to form one massive vector field, Z,, and one massless field, the photon 
A,,. There also is a neutral scalar field of unknown mass in the theory, called the 
Higgs field. The Higgs particle, so far unobserved experimentally, plays no direct role 
in the first order calculations of the theory of quarks and leptons, but is of critical 
importance for the spontaneous symmetry breaking mechanism to work. Other mass- 
less particles, called Goldstone bosons. appear and then conveniently disappear along 
the way. 

Broken symmetries are a familiar theme in particle physics. Strong Isospin was 
proposed as as SU(2) symmetry of the nuclear force (charge independence), which was 
assumed to be valid when the electromagnetic interaction was ignored, but explicitly 
broken by the electric charge. Invariance under space inversion (parity) was assumed 
to be valid for both the strong and electromagnetic interactions, but violated by the 
weak interactions. In this way one could imagine a hierarchy of interaction terms, 
the strongest being the most symmetric. As the strength of the force decreases, the 
number of valid symmetry operations decreases also. 

There is another way to break symmetries, however, called spontaneous symmetry 
breaking. To understand this phenomenon it is desirable to use the language of 
Lagrangian field theory. One can do without it, but something is lost in translation, 
as with Pushkin’s poetry. This may be unfortunate, because, although most readers 
are conversant with the Feynman rules and other apparatus used in these lectures so 
far, they may not be fully at ease in Lagrangian field theory land. Mindful of this 
possibility, and not too comfortable in this territory ourselves, we will tread carefully. 
The discussion presented here, which is adopted principally from Ref. 4, is essentially 
classical in nature. There are no field operators or commutation rules, nor, indeed, 
are any needed to describe how things work. 

Lagrangians are useful in relativistic field theories because, unlike Hamiltioni- 
ans: they are relativistically invariant. The symmetries-SU(2), SU(3), CP, etc.-are 
symmetries of the Lagrangian density, which is invariant under the appropriate trans- 
formations. For a scalar field d(r) the Lagrangian is defined as the space integral of 
the Lagrangian density: 

L = 
/ 

d3z L(4(z), 8,$(z)). (5.1) 

The Lagrangian density is a function of the field 4(z) (the potential energy), and its 
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spacetime derivatives a,,d(z) (the kinetic energy). The differential equation for the 
field can be derived from the Lagrangian density via the Euler-Lagrange equations, 
which follow from a minimum principle: 

aL: a~ 
awz(tg) - &i = O- (5.2) 

Because of the utility of this formalism for subsequent discussions, it is useful 
to review what the Lagrangians (it is convenient to drop the “density”) look like 
for more familiar particle/field wave equations. Some simple examples of free field 
Lagrangians are as follows: 

1.) Scalar field ,C = + [(P$)(a,$) - mrc~] 

Substitution into Eq. (5.2) gives the Klein Gordon equation 

where 

cl4 +m*cb= 0 

cl= 3-v. afia, = aT 

(5.3) 

(5.4) 

This relativistic wave equation was first written down by Schroedinger, but he already 
had another equation in his name. 

2.) Dirac field L: = $(z)(ir’a,, -m)+(z). (5.6) 

Substitution into Eq. (5.2) gives the adjoint Dirac equation 

ia,?j(s)y’ + m?j(s) = 0. (5.7) 

3.) Electromagnetic field L: = -iF’“F,, (5.8) 

where the antisymmetric field tensor which gives the electric and magnetic fields is 
defined in terms of the four vector potential A’ = {V, i} as 

F” = a“A’ - ij’“A”. (5.9) 

In this case the Euler-Lagrange equations give the wave equation 

d”&A, - Q3”Ay = 0, (5.10) 

which has the familiar form q A,, = 0, provided 

?A, = 0. (5.11) 
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This is called a gauge condition. That the gradient of a scalar function can always 
be added to the vector potential in order to satisfy Eq. 5.11, and that the field tensor 
Eq. 5.9 is unchanged by such a transformation, is called gauge invariance. 

4.) Massive vector field l = -iF,,,F“” + iM2AYA,. (5.12) 

where F’” is defined by Eq. 5.9. In this instance the Euler-Lagrange equations give 
the wave equation 

&(iY’A” -PA”) + M*A = 0. (5.13) 

Here the presence of the M2 term guarantees that a,,AJ’ = 0 (take the derivative of 
(5.13)), so there is no longer the freedom to choose the gauge condition. Equation 
5.13 can then be written in the form 

cl A, + M’A, = 0. (5.14) 

This is called Proca’s equation, which is not gauge invariant. 

HOMEWORK PROBLEM: Verify th e f arms given for the free particle spin zero, spin 
l/2, massless spin 1, and massive spin 1 Lagrangian densities. 

Gauge invariance plays a central role in the EWK theory. A local gauge transfor- 
mation of the electromagnetic vector potential has the form 

A” + A”’ = A” + tY‘a(z), (5.15) 

where o(z) is an arbitrary, suitably behaved function of the spacetime coordinates. 
Since the field tensor Fpy is antisymmetric in p and v, it is invariant under the 
transformation Eq. 5.15. If in addition no(z) = 0, then if A’ satisfies 8,Ap = 0, 
8,A”’ = 0 also. 

The interaction of an electron with an electromagnetic field is incorporated in the 
Dirac equation by substituting p” -+ p” - qA’, 
gives the equation 

where q is the electron charge. This 

-/“(it’,, - qA,)$(z) -m+(s) = 0. (5.16) 

This equation is invariant under the gauge transformation Eq. 5.15 provided that the 
wave function is simultaneously altered by a spacetime dependent phase: 

T)(z) --* W’(z) = e-““(‘4)(Z). (5.17) 

This works because the two i3,cx(z) terms which appear in the Dirac equation cancel, 
leaving e--iqo(r) as an overall phase factor. Thus if r“(i8, - qA,)$ - m$ = 0, and 
AL = A, + ~?~a, while $’ = eYiq”$, then ~“(;a,, - qAL)$’ - m$ = 0. Note that 
the free particle Dirac equation, without the qA, term, is not invariant under the 
phase transformation Eq. 5.17. The interaction term has to be there. One can 
imagine using the argument backwards. That is to say, the requirement of spacetime 
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dependent phase invariance can generate an interaction with the Dirac particle. The 
interaction so generated is a vector field, because of the vector nature of the gauge 
transformation. It is also a massless field, since the MZ term in Eq. (5.14) destroys 
its invariance under the transformation Eq. (5.15). 

Gauge invariance and the Dirac equation can be summarized by the definition of 
the covariant derivative 

D, E i3, + iqA,. (5.18) 

The Dirac equation then reads ($D, - m)ll, = 0, and DL$’ = e-‘qaD,,$ as we 
have shown above, so that the phase function factors out of the equation, leaving 
$Db$’ - m$’ = 0 also. The electric current j“ = q&“$ is obviously invariant 
under the gauge transformation. 

HOMEWORK PROBLEM: Show that the Klein Gordon current ju = iq(d’(8’4 - 
(8‘4)*4) is invariant under C$ --t $’ = e-iqo(z)~ provided that D’ replaces a“, and A’ 
is also transformed. 

This group of gauge transformations is commutative, or Abelian, in the sense that 
the result of two phases a(z) and ,3(z) is independent of the order. The group is called 
U(l), and as we have seen guarantees that the photon is massless. 

It is perhaps not immediately obvious how this helps us construct a theory of 
electroweak interactions, since at least one symmetry group is weak isospin. which is 
not Abelian, and since at least some of the vector fields are not massless. We will 
attack the massive field problem first. The non Abelian nature of the symmetry group 
is not really a fundamental problem. 

5.2 Spontaneous Symmetry Breaking 

“Spontaneous” is the name given to an alternate method of symmetry breaking. 
The first method is the hierarchical one described previously, where terms in the 
Lagrangian become less symmetric as their strength decreases. In spontaneous sym- 
metry breaking the Lagrangian retains its symmetry. The symmetry instead is broken 
by the states of the system, beginning with the lowest energy state-called the vac- 
uum. 

The most oft cited example of this phenomenon in classical physics is ferromag- 
netism, where at the domain level a favored direction in space is chosen, even though 
the Lagrangian is rotationally invariant. Applying pressure to a vertical knitting 
needle also works. The needle, which is cylindrically symmetrical and subjected to 
forces which also possess this symmetry, pokes out in one direction under the pres- 
sure. The ammonia molecule is an example of two states of opposite parity-one with 
the nitrogen on top of the three hydrogens in the tetrahedron, and one with it on the 
bottom. Transitions from one configuration to the other by tunneling are strongly 
suppressed. The ammonia molecule effective one dimensional potential resembles the 
Higgs potentials discussed below. 
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Following Chapter 5 of Ref. 4, we consider the application of this idea to a La- 
grangian first studied by Goldstone: 

L = (D’d)*D,d - p’m’cj - Ixl(m’#~)’ -OF&?‘” (5.19) 

The charged scalar $ is a two component complex field 

$qz) = h+ +2 
v5 

) g = 41 Sd2 (5.20) 

The covariant derivative includes the interaction term between the charged field 4 
and the electromagnetic field 

Dp = a, + iqA, (5.21) 

The second and third terms, quadratic and quartic in 141, form -V, the potential 
energy, while the last term is the free photon field. The Lagrangian is invariant under 
rotations about the axis perpendicular to (&,i&), or to transformations of the form 
4 + efw& for constant w. 

HOMEWORK PROBLEM: Use the Euler-Lagrange equations to show that Eq. 5.19 
gives the correct equation for a scalar particle in an electromagnetic field if 1x1 = 0. 

[(a, + +,)(a' + iqA')+ $1 $ = 0. 

For a certain range of choices of the real parameters pL2 and /XI, it is possible 
to pick a ground state which has a favored orientation in (&,i&) space. Small 
oscillations about this vacuum state will be described by the same Lagrangian, but 
it will be transformed in such a way that the “electromagnetic” vector field acquires 
a mass. The mass term will be proportional to the ground state offset-i.e., to the 
symmetry breaking. Of the two components of the motion, the radial term remains 
massive-the Higgs; the azimuthal term is massless, and is made to vanish by a 
gauge transformation-the Goldstone boson. This toy model therefore has many of 
the important ingredients of the EWK theory. It is not quite complicated enough to 
handle four vector fields and give masses to three of them, and it has no fermions, 
but it is interesting nonetheless. 

In the spirit of a classical Lagrangian, we identify the potential V(d) = $64 + 
IAl(V If CL* > 0, the minimum of V is at 4 = 0. The potential is a smooth 
bowl, and nothing interesting happens, since the lowest state is at the origin. On 
the other hand, if p* < 0, then $$ = 0 at 4 = 0 and at 141’ = -p*/2lXI. In this 
case the potential is shaped like the bottom of a wine bottle, as shown in Fig. 5.1. 
The Lagrangian is cylindrically symmetrical. The lowest value of V = -#/4(X1 
at 141’ = -@*/2/X1. The complex field (4) has the same ground state energy for 
any location on this circle, and is therefore degenerate. If $i and & were space 
coordinates. and this were a quantum mechanics problem, then the ground state 
would indeed be cylindrically symmetrical; the uncertainty principle would forbid 
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localization of the wave function in some region of the circle. But the b’s are fields. localization of the wave function in some region of the circle. But the 4’s are fields, 
so perhaps we so perhaps we can select a state which breaks the symmetry. 

l”“I,“‘,““,““,‘- 

Figure 5.1. V(4) = -101~$/* + 5/# 

Thus suppose that the ground state (the vacuum) picks a particular direction in 

(&,i&) space--the real axis for example: (4)s = U/I/?, where v2/2 = 3. To 
WI 

consider small oscillations about this equilibrium point, we introduce the shifted field 

g+’ = $4 - (&) = 9 

or 

#J= 
v+iC+v 

d 
(5.23) 

The radial amplitude is 7, while the azimuthal one is C, Substitution of (5.23) into 
(5.19) gives many terms. In the small oscillation approximation, 7, C and A, are all 
small, so we keep only terms up to second order in these fields. Constant terms can 
be dropped. Some key cancellations occur because of the relation u* = -$/IXI. The 
Lagrangian in this approximation is 

L: = ;(a*7a,rl +2$$) + +(aya,c) 
2 

++4%3,CV + %~@,4$ - $F,,F~” (5.24) 

We see that the mass term 2~’ is retained by the radial amplitude 7. This is called 
=v2 

the Higgs field. The vector field A,, has acquired a mass M2 = !-- while the C field 
is the massless Goldstone boson, and couples to the vector pot?&al via qA”a,Cu. 
The A’ parts of the covariant derivatives do not appear because of the small oscilla- 
tions approximation, so the gauge invariance of the complete Lagrangian is no longer 
manifest. 
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The terms in Eq. (5.24) involving < and A,, can be factored as follows: 

+‘(a,,< + 2(4<)A” 
qw +APA’)=~($+A+)(~+A~). (5.25) 

4J” 

Therefore, if a gauge transformation is made 

A: = $%c + A,, 

F,,” remains the same, and the Lagrangian becomes 

’ = i (dp?a~~ + 2p2q2) + yA;Ati’ _ +FpyFev 

(5.26) 

This is Eq. (5.3.15) in Ref. 4. The Higgs field n has a mass; the A,, field has a mass 
proportional to u , and the C field has disappeared. The degree of freedom represented 
by the C field was used to form the extra polarization state of the massive vector field. 
The number of polarization states for a vector field changes discontinuously from two 
to three as the mass becomes nonzero. 

HOMEWORK PROBLEM: Substitute Eq. (5.23) into Eq. (5.19) to obtain the efffec- 
tive Lagrangian Eq. (5.27). 

So what happened? Perhaps this all went by too fast. The hand is quicker than 
the eye. Certainly this discussion should be considered suggestive rather than a proof 
of anything. We started out with a perfectly respectable Lagrangian, although the 
IXl(d’+)* term is something we have not seen before. Then we were free to choose a 
vacuum state which broke the rotational symmetry because of the degeneracy. Clever 
definitions of the constants led to nice looking formulas for the Higgs mass and the 
mass of the vector field. Although this procedure does not have to be carried out in 
every gauge theory-indeed QCD is a gauge theory of the SU(3) color group where the 
gluons remain massless and this machinery is not used-there are no inconsistencies 
encountered in doing so. 

5.3 The Standard Model Again 

The standard model, while more complicated than our toy, is nevertheless the simplest 
one which does the job. Since we are not dealing with a problem uniquely specified 
from first principles, whatever that means, the possibilities are endless. We have seen 
that there must be an SU(2) gauge symmetry group, weak isospin, because of the 
charge changing weak interaction. Models have been constructed using this group 
alone, and a Higgs field with three real components (isospin one). This produces two 
massive charged IVB’s, and one massless neutral one, which could be I$+), I+‘:-), 
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neutral currents exist, such a model can be discarded as too simple. Something else 
must be added. 

A U(1) symmetry, weak hypercharge, is introduced as well, to give SU(2) xU( l), 
and four vector gauge fields as described in Lecture IV. The Higgs field is a complex 
doublet in weak isospin with four real components 

#+I 
4 = #a ( ) 

4+) = ($6 + idQ)/fi 
P) = (4s + id,)/fi 

(5.28) 

This structure gives two charged fields and two neutral fields. The (e, V) EWK La- 
grangian before the spontaneous symmetry breaking is: 

c, = p,y’[ia, - g$?. bcp - g’( -3)B,]xL. 

+eRy[ia, -g’(-l)B,]eR - ~I+~~. *By - +Bpy~fiu. (5.29) 

Here -7. GO = Eli .W~’ ’ IS a sum over SU(2) indices. The extra terms in the 
id 

square brackets are the covariant derivatives, which for the non Abelian SU(2) gauge 
group involves an operator. The field tensor for the U(1) field B,, looks like the 
electromagnetic tensor: 

B,m = a,& -U,, (5.30) 

while the SU(2) W,,, field has a more complicated form, involving a commutator in 
SU(2) space: 

w,, = &ww -&w, + ig [W,, WV]. (5.31) 

A complete discussion of how these terms arise is given in Refs. 3 and 4. The Higgs 
field Lagrangian is 

&= i8g-$.@,,-g’gB,, 

where V(4) has the familiar form: 

V(d) = PZP4 + Ixl(~+d)‘. (5.33) 

The vacuum expectation value of the Higgs field is chosen real and neutral: 

0 wo=$ v ( ) (5.34) 

There are three massless Goldstone bosons, two charged and one neutral, which 
get absorbed by gauge transformations to become the third components of the JV 
and Z polarization vectors. There is one massive neutral field remaining, which is 
the Higgs particle. The masses of the IV* are related to Eq. 5.34: 

Mw+ = gvJ2. (5.35) 
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Similarly, the mass of the 2 is 

Mz = u(g2 + g”)“‘/2 

= it&( 1 + g’*/g*)“s 

= Mw/cosBw. (5.36) 

Here we have used Eq. 4.28 and Eq. 5.35. As in our toy model above, the Hias mass 
becomes 

MQ = -2p* > 0: (5.37) 

which is an undetermined quantity in the theory. 
This outline completes our discussion of the standard model. All of the important 

relations have either been derived, or made plausible by simpler derivations. 

5.4 Ezperimental Situation 

The standard EWK model with heavy W’ and 2 intermediate bosons has been 
well established by a decade of experimental activity, beginning with the discovery 
experiments at the CERN SPS collider, and continuing at the Fermilab Tevatron, 
LEP at CERN. and the Linear Collider at SLAC. It is beyond the scope of these 
notes to review every aspect of these studies, but it is safe to say that so far. after 
intense experimental scrutiny, there are no data inconsistent with the model. 

The cross section formula for e+e- + jJ through the Z resonance (Eq. 1.18), 
has been checked, and the number of neutrino families-three-has been obtained 
from the peak cross section. The neutral current coupling assignments for quarks 
and leptons given in Eq. 1.23 have been verified. The energy dependence of the Z 
decay asymmetry, Fig. 1.4, has been observed. 

Hadronic production of Z’s and H”s, described in Lectures II and III, is in accord 
with theoretical expectations. At 1.8 TeV the contribution from sea quark structure 
functions cannot be neglected, so the formulas have more terms than those displayed 
in Eqs. 2.19 and 3.1, but the concept is unchanged. Data for the W transverse mass 
distribution were shown in Fig. 3.6. In order to obtain a value for the W mass from 
these data points, Monte Carlo programs were written which included all experimental 
resolution effects. Expected curves were then generated for various values of j\fu, with 
the width fixed at the standard model value: P w = 2.1 GeV. The best fit W masses 
extracted in this way by the UA2 and CDF groups were averaged to obtain the value 
for ~Mw quoted below. 

The Standard Model was constructed to be consistent with experimental results 
in weak decays and neutrino reactions. discussed in Lectures III and IV, and although 
searches are ongoing for lepton number violation, charged right handed currents, etc., 
there are so far no contradictions. 

There are two missing particles: the top quark, and the scalar Higgs. Experimen- 
tally the b quark appears to have Ts = -i, which implies a doublet partner with 
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The Standard Model was constructed to be consistent with experimental results 
in weak decays and neutrino reactions, discussed in Lectures III and IV, and although 
searches are ongoing for lepton number violation, charged right handed currents, etc., 
there are so far no contradictions. 

There are two missing particles: the top quark, and the scalar H&s. Experimen- 
tally the b quark appears to have Z’s = -i, which implies a doublet partner with 
Ts = +i. The mass difference m, - mb > M W, making the top quark very heavy, 
which leads to a small production cross section expected for jjp + tt + X at the 
Tevatron. The discovery of the top quark is anticipated in 1992 or 1993. 

Finding the Higgs will probably be more difficult. This particle, which is required 
by the dynamical symmetry breaking, does not affect the weak interacions of quarks 
and leptons in lowest order. If m+ < Ms, then Z -+ 4 + e+e- is possible; the signal 
at LEP would be a peak in the e + - e final state mass spectrum below the 2 mass 
when the storage ring is set at the Z resonance. The absence of such a signal leads 
to the limit m+ > 57 GeV. LEP 200 could extend this search to the 85-90 GeV mass 
range by searching for e+e- + Z’ + Z + 4. 

The Higgs contributes to higher order loop diagrams, and hence does affect the 
standard model formulas through radiative corrections. Equation 5.36 can be used to 
eliminate the Weinberg angle term sin* 0~ from E,q. 4.29. The result is a quadratic 
equation for &$, which has the root 

(5.38) 

where A = --& = 1389.83 GeV’. This formula gives Mw in terms of three very well 

known quantitifes: o, GF and Mz. Substituting Mz = 91.161 f 0.031 GeV’ gives 
Mw = (80.91*0.03) GeV, within 1% of the experimental number Mw = (80.15kO.31) 
GeV? Although small, this 1% difference is statistically significant, and is attributed 
to a radiative correction term to the constant A. The constants a and GF are defined 
by very low energy processes, much smaller than the masses of the W and the Z. A 
correction term can be inserted into the formula for M& to allow for changes in cy 
and GF as a result of the large increase in energy scale. This term, Ar, modifies Eq. 
(4.29): 

ML= 
A 

sm* 6’,( 1 - Ar) 

This can be solved for Ar to give 

(5.39) 

A 

A’ = ’ - M&(1 - M&,/M;) 

The radiative corrections depend upon all of the masses in the theory, two of which, 
the t quark and the Higgs, are unknown. The dependence on the t quark mass is 
quadratic, whereas the Higgs mass enters logarithmically. Figure 5.2 shows the result 
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of a calculation of Ar as a function of m, for two different choices of m+ Setting Mw 
to the experimental number quoted above in Eq. 5.40 gives Ar = 0.048 f 0.018. With 

this number the top quark mass can be read from Fig. 5.2: m, = 130 ‘t: GeV. As 

the error in J4w improves, so will this prediction, although eventually the unknown 
rnb will dominate the error on the high mass side, unless the Higgs is discovered in 
the meantime. When the top quark is found, it will be interesting to see if the result 
is consistent with expectations from the Standard Model. 

Figure 5.2. AI. vs. top quark mass. 
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Appendix 

This is a brief description of the I\;lonte Carlo technique applied to some simple 
calculations in collider physics. Many effects encountered in the comparison of ex- 
perimental data with theoretical expectations either become very cumbersome when 
expressed analytically in closed form, or cannot be written down at all. Typical ex- 
amples are: the folding of two different angular distributions, like particle production 
and decay; the effects of quark and gluon structure functions on particle kinematics 
in the laboratory; fragmentation of partons into observed particles, and the clustering 
into jets; and distortions of the theoretical curves due to experimental resolutions, 
detection efficiencies, etc. 
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The programs described here are simplified toys, as emphasized in the lectures. 
The real stuff is considerably more complicated, but the principles are the same. 

The Monte Carlo technique means in this instance the generation of “events” using 
random numbers?’ The computer produces a random floating point number between 
zero and one. A histogram of 1000 such numbers binned in 0.1 unit bins would 
have 100 f 10 events per bin. Thus continuous curves calculated this way exhibit 
statistical fluctuations. If the angular distribution of a reaction is isotropic, and if r 
is the random number, then choosing cos(0) = -1 + 2 *r produces the desired events. 
There are two ways commonly used to generate events according to a distribution 
f(z) which is not flat. We will call them A and B. Method A works as follows. If the 
indefinite integral 

F(z) = j f(d) dd (A.11 
0 

exists, and if F(1) = 1, then the inversion 

2 = F-‘(r) (A.21 

where r is a random number, generates events according to f(z) in the range 0 < 
z < 1. This works because the distribution in r is flat, and Ar = f(z)Az. Since 
quadratic functions are quite common. one often has to solve a cubic equation for the 
inversion Eq. A.2. 

Method B is less efficient in computer time, but is often used when the inversion 
of the integral in Eq. A.1 is not convenient. Suppose that f(z) is a smooth function, 
and that the maximum value &AX = 1, in the range 0 < zr < I. Then pick a 
random number ri, evaluate J(Q), and compare f(ri) to a second random number 
rr. If rs < f(ri), the event is retained; otherwise it is rejected. Looping through this 
procedure to generate 1000 events, say, produces the desired curve f(z). 

Another useful property of random numbers is that the sum of 12 of them is 
Gaussian distributed with mean six and variance one: 

cri - 6 = I generates cVz’/* 

The probability of being outside 16~ is of course zero, but normally this is not 
a serious defect. The number 12 has the same origin as the relation between a flat 
distribution of width a and the Gaussian equivalent 0: o = u/m. 

What follows are descriptions of the Monte Carlo programs which generate W’s 
and allow them to decay into leptons, and fragment quarks into jets of particles. These 
programs use the appropriate functions and the random number techniques outlined 
above. Rather than actually presenting the FORTRAN code. which is terribly boring, 
we will simply go through the steps necessary to get the job done, and the reader can 
write her own code. 
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function G(z) in the form: 

zG(z) = g(z) e(a + v’h)Cdz) (A.41 
k0 

where g(z) = (1 - 2)“. The exponent is an integer which depends on quark flavor: 
Q, = 3, ad = 4, and Q, = 8. Cl(z) is the Chebyshev polynomial 

Ck(Z) = cos(kcos-‘(2s - 1)). (A.51 

As discussed in Chapter 28 of Ref. 25, Chebyshev pol.ynomials are really cosine 
functions-cos( &)-masquerading as something more complicated. They satisfy a 
differential equation very similar to Legendre polynomials. It is straightforward to 
evaluate the expressions for z u(z) and z d(s) gi ven the coefficients of the fits in Table 
IV of Ref. 10. They are plotted in Fig. 2.2. 

The program first evaluates z u(z) and z d(z) in 100 bins from 0 < z < 1. It finds 
the maximum values of the functions, and plots the functions by MC B described 
above. Then it picks the rapidity of the W at random: yw = --y- + 2 + y- * P? 
where ymsl is given by Eq. 1.10; and calculates zi and 12 from Eq. 2.6. With these 
numbers it evaluates the product zizsu(zi)d(zs), and declares the chosen value of 
yw successful if it satisfies the criterion of MC B. Looping through this procedure 
generates the distribution of Fig. 3.1. 

While in the loop calculation of yw, the program generates the leptonic decay 
W + .! + Y. The angular distribution is given in Eq. 3.11. Here it is convenient to 
integrate (1 - ~0~6)~ and use MC A. The rapidity of the charged lepton in the W rest 
frame is calculated from Eq. 1.9 with Et = Mw/2, and the rapidity in the laboratory 
is the sum yc = yi + yw. The results are shown in Fig. 3.2. A lepton pt cut can be 
imposed at this stage. 

W- TRA NSJA SS 

A separate bit of code was used to generate the transverse mass distribution of 
Fig. 3.5. Since 1Lf~ is independent of the longitudinal motion of the W1 we let the l,I; 
be at rest in the laboratory: zi = zr = z. Then the parton level variable g = x*5, 
where s is a constant. Let C = ~\fl/&. Then Eqs. 3.7 and 3.10 may be rewritten 
apart from constant factors in the form 

dN ((2 - CZ) x u(x) + d(x) 

x = (1 - <*)I/* (2% - J$) + i@“P (‘4.6) 

As defined, C depends on z. Now assume that the structure functions can be consid- 
ered constant over the width of the Breit-Wigner. Then we can integrate the B-IV. 

and pick z according to the MC A prescription. The function f(C) = (‘(2 - C’) 
(1 - ~2)1/2 can 
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As defined, C depends on z. Now assume that the structure functions can be consid- 
ered constant over the width of the Breit-Wigner. Then we can integrate the B-W, 

and pick z according to the MC A prescription. The function f(C) = c(2 - ‘s) can 
(1 - cs)r/* 

also be integrated, resulting in a cubic equation for C*. Setting the equation equal to 
a random number, and solving it for Cz (it has one real root) picks Cs according to 
MC A. 

The transverse mass is given by 

iv& =x&c 

This is the histogrammed variable. 

(A.7) 

FRA GGER 

This program is based on the algorithm of Ref. 14. The fragmentation function 
used by these authors is 

f(z) = 1 -a + 3 *a * ((1 - z)Z), with o = .77. (A.8) 

Starting with an initial quark of momentum p, a (q,q) meson is formed with mo- 
mentum z + p, leaving behind a quark with momentum (1 - z) + p. The function 
f(r) is then used to make a second meson with the left over quark. This process is 
repeated until the produced meson momentum is below some threshold value-set 
to the pion mass in the program. An upper limit of 50 is placed on the number of 
particles from a single quark, although this cutoff is rarely reached in the calculation 
with p = 100 GeV. The transverse momentum of the meson so created is chosen at 
random in azimuth relative to the parent quark, and with a Gaussian distributed pt 
of variance D = .3 GeV. The pt of the meson and the remaining quark are balanced. 
Their polar angles differ, since they have different longitudinal momenta. while their 
azimuthal angles are 180“ apart. 

Equation A.8 can be integrated to give a cubic equation, which then is set equal to 
a random number and solved for z according to the method of MC A. The pt is picked 
using Eq. A.3. The only complicated part of the calculation is the rotation operation, 
The polar and azimuthal angles of the meson are given relative to the parent quark 
direction, which moves from one fragmentation process to the next. The components 
of the momentum of the meson relative to the primary quark direction-the z axi- 
are the desired quantities. The situation is sketched in Fig. A.l. Sequential rotations 
through the Euler angles 4 and 0 are required. If the (I’, y’, 2) frame is oriented at 
angles (+,0) relative to the (I, y, z) frame-rotate first about z through b, and then 
about y’ through 8; and if the components of a vector are (pz’,py’,pz’) in the rotated 
frame. then (pz,py,pr) are given by the operation 

cosdcos8 -sin4 
sin 0 co5 e cos qi 

- sin 6 0 
(A.91 
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The first meson requires no rotations. Subsequent meson momentum components 
must be rotated according to Eq. A.9, where (4,0) 
relative to the primary quark. 

are the angles of the parent quark 

Results for this program are shown in Figs. A.2 and A.3 for an initial quark 

momentum of 100 GeV. Although very simplified, this model reproduces the char- 
acteristics of 100 GeV jets-multiplicity, invariant mass, .z distribution-reasonably 
well. 

Figure A.l. Two vectors for subsequent parent quarks. showing the angles 

Figure A.2. >Iieson z distribution. Figure A.3. Particle multiplicity distribution 
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