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The steepest descent solution of the mth critical point of the Penner matrix model has 

an m-component eigenvalue support, consisting of symmetrically placed arcs in the complex 

eigenvalue plane. Criticality results when the branch points of this support coalesce in 

pairs to form a closed contour. We d erive the string equations of these matrix models 

for arbitrary m, using the orthogonal polynomial method. The double-scaled continuum 

solutions are described by non-linear finite-difference equations. The free energy of the 

mth model is shown to be the Legendre transform of the free energy of the c=l string 

compactified to a circle of radius equal to an integer multiple, m, of the self dual radius. 
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1. Introduction 

In this talk, I will give an overview of recent work done in collaboration with Hans 

Dykstra and Joe Lykken on multicut criticality in the Penner matrix model. I will partic- 

ularly enlarge on aspects that have not been elaborated upon in our earlier work. 

The Penner matrix model was first introduced as a means of computing the orbifold 

Euler characteristic of the moduli space of punctured Riemann surfaces [l][Z]. Penner’s 

basic observation, building on earlier work by Harer and Zagier, was to note that a tri- 

angulation of moduli space based on “fat” graphs leads very naturally to a combinatorics 

problem that is efficiently solved by the Feynman diagram expansion of a hermitian matrix 

model. (A very readable introduction to this work is given in [4][5].) Since in comput- 

ing topological invariants on mod& space one must include surfaces with infinitely many 

punctures, the diagrammatic expansion contains arbitrarily high order vertices, and the 

corresponding matrix potential is non-polynomial. Using the techniques of [6], Penner suc- 

ceeded in computing exactly the large N expansion for the sum over connected diagrams 

in this model. 

Distler and Vafa asked the question whether this (h) expansion could be made critical, 

and thereby identified with the continuum free energy of a theory of two-dimensional 

gravity. The surprising answer is that this is indeed possible. The double-scaled~ free 

energy coincides with the Legendre transformed free energy (the generating function of 

1PI amplitudes) of the c = 1 string with compact target space at the self-dual radius [4][7]. 

Recently, we discovered that this property extends to an infinite series of matrix model 

solutions that are polynomial perturbations of the Penner model [8]. Their free energy 

coincides with the generating function of 1PI amplitudes of the c=l string with compact 

target space of radius equal to some integer, m, of the self-dual radius. 

The earliest analysis of the phase structure of the Penner model, and an elucidation 

of its critical behavior was done by C-I Tan [9]. Two puzzles had been left unanswered by 

Distler and Vafa’s result. The first was the nature of criticality in the Penner model. It 

was unclear what feature of the large N behavior had been used to tune the couplings to 

criticality. The other difficulty was in the application of orthogonal polynomial techniques 

which would necessarily require the computation of matrix elements of non-polynomial 

operators, such as 4-l. 

In this talk, I hope to leave you with the answers to both of these puzzles. Unfortu- 

nately, I will not be able to discuss a much deeper mystery which is the meaning of this 
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curious correspondence between the c=l matrix model (a If1 dimensional field theory) 

and a matrix model in zero embedding dimensions (naively, a 1 dimensional field theory). 

But that is the subject of future work. 

2. The Multicut Solutions 

In general, the matrix integral 

cF - - 
J 

OMAN’ Tr(U(M)+log(l--M)) 
(2.1) 

is ill-defined in the neighbourhood of t = -1 both because of the branch cut of the 

logarithmand the possibility that the polynomial part of the potential U(M) is unbounded 

from below. Changing variables to @ = 1 - M, and diagonalizing the matrix G, we get 

,F zz 

where C is a suitably defined integration path over the eigenvalues Xi of a. In the Penner 

model, for example, one could restrict C to lie along the positive half of the resl axis (to 

avoid the branch cut) and define the integral by an analytic continuation in the overall 

coupling, t + -t, so that (2.2) defines an orthonormal measure for the associated Laguerre 

polynomials [3] [4]. 

In what follows, however, we use an alternative regularization of the integral that 

allows us to approach the critical point smoothly by analytic continuation from a stable 

large N solution of the generic complex potential [lo]. We define the matrix integral by 

choosing for each Xi a complex integration path C as follows. We first rotate Xi so that 

the polynomial part of the potential is bounded for large Xi. This determines the correct 

asymptotes for C in the complex Ai plane. The contour C must connect these asymptotes 

smoothly to the large N eigenvalue support, C., avoiding the branch cut of the logarithm, 

and passing only through regions in the complex plane where the large N solution is stable 

[lo]-[12]. 

2.1 Eigenvalue Analysis. Consider the case where U(M) is quadratic? which defines 

the KT model [S]. This has the potential 

v(*) = -;Q -log(%) 
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The model has a smooth, normalizable, and stable, large N solution for the eigenvalue 

distribution density, described by the generating function [6][11] 

F(X) z +‘(A) - G’(X)) = ; 
( 

-A - ; - 
J(X - q)(X - az)(X - a)(X - a41 

x > 
(2.4) 

where the a; are solutions to a4 + 2(1 + 2/i)az + 1 = 0. The action for a single eigenvalue 

(G’(X) is proportional to the eigenvalue density) is given by 

G(X) = $2 - 1) - log(X) + 2ni. (2.5) 

We have chosen the branch cut of the logarithm to lie along the negative real axis and 

fixed the integration constant so that G(X) runs from 0 to 2ni as we move just outside 

the piecewise connected square root branch cuts from al + a~, a4 + a~. The large 

N eigenvalue support, C,, is the contour Re(G(~X)) = 0, composed of two cuts whose end 

points ali, ali- CO&SCe in pairs at criticality, t +-1. Introducing a cut-off 6, t = -l-6*/~, 

in the limit 6 -t 0, the end-points of the two cuts approach each other in pairs parallel to 

the imaginary axis+ and the two disconnected pieces of the support join to form a closed 

loop. The large N support can be smoothly extended to the contour C shown in Figure 1 

[8]. It is easy to verify that the solution is stable under small shifts in the eigenvalue 

density (Re(G(X)) is positive) for any smooth deformation of C in the shaded region of 

the figure. Moreover, the planar free energy can be calculated directly from the integral 

PI 
Eo = J,. d%X)V(X) + ; J,. A J,. +4~)+Pg(~!+ - P)’ (2.6) 

and the leading order contribution can be shown to diverge logarithmically, 

as in the case of the Penner model [S]. 

t If, instead, we approach t, from above, the end-points approach each other along the 

real axis and consistency with the saddle-point equation would introduce a pole in the 

generating function. The appearance of the planar logarithmic scaling violations in this 

case is subtle [9]. 
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Finally, we recall a well-known expression relating the eigenvalue analysis and the 

orthogonal polynomial treatment [13]. The generating function F(X) is defined by the sum 

(we use the notation of [15]) 

F(X) = -g (ni (A - q-l In) 
n=1 

and can be computed in terms of the coefficients appearing in the three-term recursion 

relation satisfied by the orthogonal polynomials: 

$17~) = (S, + JTi,eie + e-isJ7i,)In) 

For a two-cut solution, the Hilbert space is composed of two sub-sectors and the operator 

4 is matrix valued [14]-[18]. The recursion coefficients converge to two distinct functions, 

depending on whether n is even or odd. In the large N limit, 

(A - 4) = ( e-ieJj&(si’+“)fie(z)eie 
eCisJEe(;) ;lvSo(~)=ie 

02 > 
(2.10) 

and the generating function is 

F(X) = l’ l&z 1’” g [@ _ 2x - (Se + So) 
&)(A - S,) - (R. + R,) - Jfi.Jii.(+@ + e-lie 

)I 

(2.11) 

We will shortly demonstrate that this expression does indeed reproduce (2.4)when we 

substitute for II+], S.[.] from the string equations obtained in the next section. 

2.2 Orthogonal Polynomial Analysis. The string equations are simple to derive except 

that they involve matrix elements of the operator 4-l due to the logarithmic piece in the 

potential. Evaluating this non-polynomial matrix element as a formal sum, we obtain [9][8] 

2n + 1 

Nt- 
(2.12) 

where g2 = t = -1 at criticality, and S,Z = 1, R, = 0. To take the double scaling limit, we 

introduce a cut-off 6, and define the renormalized variables [20]-[22] 

v-l =N6’, z=(zC-z)N, p=(tC-t)N (2.14) 
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Xote that the potential, and eigenvalue distribution, are symmetric under rotations X + 

e”‘X, but only up to shifts of the log branch cut. We will assume a scaling ansatz consistent 

with the symmetries of our two-cut solution 

S, = 1 + 642) + 6zal(z), L-1 = ~(1 f 642 + 1) + 6’al(z + 1)) 

R, = Q(z) + . ., R,-1 = 642 + 1) + . . . 
(2.15) 

where w = ezi. We note, then, that the string equations are identical for even or odd n, 

so that we have only two distinct equations to solve. To O(6), (2.12) gives the constraint 

u(z) = -; (P(Z) + P(Z - 1)) 

while the O(6’) condition simply allows us to solve for the function ol(z) in terms of u(z). 

(2.13) is trivially solved to O(6) with no new constraints, and at 0(6*) yields an equation 

for p(z): 

P(Z) lP(Z + 1) + P(Z - I)1 = 2dP + 2) (2.17) 

Now, we note that any solution to the equation 

p(z)p(z - 1) = v(p - ; + 2) (2.18) 

is a solution to (2.17). But a solution to (2.18) is easy to construct since this is nothing 

but a well-known gamma function identity. Shifting p -+ p + $ we find that 

p(z) = & r (+q 
.?+lr+1 r(T) 

(2.19) 

is a solution to (2.17), which allows us to reconstruct 

R,- 2 
$ 

r (N-n:p+2) 
F r (N-yfl) 

(2.20) 

A little algebra [8] then yields the complete free energy, in the double scaling limit, and in 

discrete form: 

N-l N/Z-l 

E = log n Rhdh + c kZog[( 2k + p + 1)(2k + P - 1)) (2.21) 
L=, L=l 

Finally, as promised, we will take the large N limit of our string equations and compute 

the generating function (2.11) 1x1 order to compare with what we obtained directly from 
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the eigenmlue analysis. In the large N limit, S, + S, = 0, S.S, s -S2, and Re = R, E R. 

Substituting in (2.11), and performing the 0 integration, gives 

J 
1 

F(X) = dr 
x 

0 [(AZ - (9 + 2R))2 - 4R2]“2 
(2.22) 

Now, in the large N limit, (2.12) and (2.13) reduce to 

S’+2R=-(?+I), 2Rf 
.(z + t) 

J&=-($+l) + R2= l2 (2.23) 

Substitution in (2.22) yields (2.4) after a trivial integration, exactly as expected. 

Our presentation of the KT model here differs slightly from that given in Ref.[B]. The 

derivation is more straightforward, and obviates the concerns raised in Ref.[23]. 

2.3 The General Case. It is easy to generalize these results to the case when U(X) is FL 

higher order polynomial. In general, we have an m-cut solution for the planar eigenvalue 

density with the arcs symmetrically placed about the origin, and coalescing at their end- 

points to form a closed loop at criticality. The locations of the pairs of end-points at 

criticality are given by the m distinct roots of unity, SF = -1, R, = 0, and the large N 

support is described by the transcendental equation Re(G(X)) = 0, where G(X) is obtained 

f&m the generating function. Corresponding to the potential V = (-l)“-‘Am/m-log(X), 

the generating function F(X) is given by 

F(A)=; (-~)“-‘-~-~J(x-a,)...(x-a2m) ( > 
or, equivalently, as will follow from the large N limit of the string equations, 

I 
1 

F= dx 
Am-1 

{[(-1)--‘Am - (1+ 2z!/9]2 - 42(2 + t)/P}‘P (2.25) 
0 

The recursion coefficients converge to 2m different functions in the continuum limit. How- 

ever, due to the special symmetry of these solutions they are related by phase rotations, 

and through translations of the argument: 

S,~r=w’(l+62~m~(~+Z)+64~m~~(~+Z)+...), Z=O,...,m-1 

R,-, = ~~‘(6~~‘“p(z + I) + 6+pl(z + I) + . .) 

where w = e2rifm. 

(2.26) 

(2.27) 



The string equations (2.12) and (2.13), with additional contributions from the poly- 

nomial part of the potential, can be solved in the double scaling limit as before. (2.12) 

allows us to eliminate u(z), Cl(z),. . . in terms of p(z), while (2.13) reduces to the equation 

m-1 
~P(z+l)p(z+I-l)...p(r+I--m+l) = vm(z+~) (2.28) 

In the large N limit, S,,,R, - S,R, the string equations will simply reduce to Rm = 

z(z + q/t2, 1 + 2z/t = (ni(-c$)“‘-‘In). The second of these equations is a polynomial 

equation relating S(z) to R(z). 

It is easy to check (after a shift of p-+p + i for even m) that the following expression 

is a solution to (2.28) 

r( ” > 
r+lr+l+(m--1)/Z 

P(z).dd = -6 

(2.29) 

which, on solving for the corresponding R,, yields the double-scaled free energy in discrete 

form 
Nl” ml= 

E ctren - 

= ix 

k log(nk + p + I) - log(mk + CL) 
*=1 1=-m/2 1 (2.30) 

E &d - $; k +?” log [mk + p + I] 
I=-(m-1)/2 

where we have dropped irrelevant divergent constants, and used similar manipulations as 

in [8]. The free energy is equivalent to the Legendre transform of the free energy of the 

c = 1 string with radius equal to m times the self dual radius. 

For completeness, let us apply this analysis to the first, non-trivial, odd member of 

this series, m = 3. The potential is invariant under rotations @J + e’*‘/s+. This leads to 

the large N eigenvalue distribution shown in Figure 2, consisting of three symmetrically 

placed cuts, which join at the ends at criticality to form a closed ring. The generating 

function can be expressed in the form: 

F(X) = ; 
( 

x2 _ ; _ J(X - 4;+ - aa) 
> 
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where the end-points are the solutions to as - 2(1 + 2/t)a3 f 1 = 0. For t = -1, these 

branch points coalesce in pairs at a = -w”, n = 0, 1,2 where w = t?~‘/s. 

As is appropriate for this three-cut solution, we assume that in the continuum limit, 

RJ”, &..+I, and Ran+2 approach different continuous functions, related by phase rota- 

tions and by shifts of the argument, and similarly for the S recursion coefficients. A 

straightforward expansion of the matrix elements yields the string equations 

2n+l 
- = sa(S; + =n(Rn + %a+~) + R,+I.%+~ + R,s,-,) - 1 Nt 

(2.32) 

n 
- = gdL(S, + .%-I) - 
Nt 

(233) 

. 

[n-+7&-1] + [?z+n+l]} + . ..) 

We put in the scaling ansatz (gs = 1 at criticality) 

S*-l = LJ 
( 

-1 - wb(* + [) - wal(z + I) + . . . 
> 

(2.34) 
R,-, = u” 

( 
d2’Jp(* + I) - cwpl(t+z)+.‘. ) z=o,1,2 

> 

Equation (2.32) gives equations relating g, 61 and p1 to p. Using these relations, (2.33) 

gives the string equation for p at order 6’: 

p(.z + 2)p(z + l)p(z) + ~(2 + l)p(z)p(z - 1) + P(z)P(~ - ~)P(z - 2) = 342 + P). (2.35) 

Note that all complex phases have cancelled out, and p( ) z is real. This equation is a simple 

generalization of the string equations for m=l and m=2, and is solved by the following 

form: 

(2.36) 

The pattern of string equations and their solutions for higher values of m is clear. Solving 

for the R, as before, we can determine the free energy. Manipulations similar to those 

performed for the KT model give: 

NO 
F - c klog[(3k + p + 1)(3k + p)(3k + p - I)] (2.37) 

E=1 
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which is equivalent to the Legendre transform of the free energy of the c=l string with 

radius equal to thrice the self-dual radius. Again, we can cross-check with our eigenvalue 

analysis by computing the generating function for this three cut solution. We have 

F(X) = dz 
I I 

2* de Q1,2,3)(X - Si)(X - .%+I) - (RI + Rz + R3) 

0 “{ 
ITiC' - si) - C(1,*,3)( X - Si)Ri+l + dm(e3’8 f c~w-3~~ 

)I 

112 

(2.38) 

where the sums are taken over cyclic permutations of the indices. The large N limit of the 

string equations, and our scaling ansatz, S1 + Sz + Ss = 0, S1Sz.73 = 1, and similarly for 

the Rip gives 
2n + 1 
- = 

Nt 
S; - 3wR,,S, - 1 (2.39) 

n 1 
Ivt =-T 

1 -sn/Ja 
> 

-wL% (2.40) 

which reduce to a cubic equation S(S’ - 3wR) = 1 + 2z/t relating S1 E S to RI z R, and 

the condition R3 = z(z + t)/t2. Inserting these back in (2.38) and integrating gives the 

expression (2.31). 

3. Conclusions 

The Penner matrix model with polynomial perturbations can support a large variety 

of multicritical behaviors. In this paper, we have focussed on a one-parameter sequence of 

multicut solutions, singled out by their evident connection to certain c = 1 strings. Criti- 

cality is achieved when the end-points oi the planar eigenvalue support coalesce in pairs to 

form a closed loop. An additional one-parameter sequence of one-cut multicritical behav- 

iors is obtained when extra zeroes on the real axis, collect on to one, or both, coalescing 

square root branch points of the eigenvalue density at criticality [8] [23]. It is tempting 

to speculate that these solutions may be related to the special states of the c = 1 matrix 

model [24]. Finally, it is ciear that one can construct solutions in the same universality 

class as the (p, q) minimal models obtained from the one-matrix model in Douglas’ classi- 

fication. For example, to obtain the kth model with susceptibility exponent yo = -l/k, 

one tunes k couplings in the potential such that the eigenvalue density has (k - 1) extra 

zeroes coalescing with the branch point (251. Of course, since c < 1, R, is non-zero and 

the branch points no longer coalesce in pairs at criticality. 
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Figure Captions 

Fig. 1. Contours of Re(G(X)) = 0 for the KT model, plotted in the complex X plane. 

The two arcs (a,, as), (~4, a~) form the piece-wise continuous planar eigenvalue 

support C,. Stability of the solution is ensured under any continuous deforma- 

tions of the full integration contour, C, into the shaded regions of the diagram 

(Re(G(Al) > 0). 

Fig. 2. Contours of Re(G(X)) = 0 for the three-cut solution. 
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