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C++ Objects for Beam Physics 

LEO MICHELOTTI 
Fermilab’, P.O.Box 500, Batavia, IL GO510 

1 Introduction. 

Let us begin by admitting that the movement of physicists 
from FORTRAN to C++ has been less than a groundswell. 
At the same time, let me restate my opinion that, scientific 
programming can be facilitated by an extensible language 
-such as C++ , Objective-C, OI ADA one in which we 
can define, easily and naturally, new variable types that 
behave, in all respects, like frzllly funclional vnrinbles of 
ihe language. Ctt is tailored to suit programmers’ needs 
by creating “classes,” which specify (a) structures of data, 
(b) the functions and operators which act upon them, and 
(c) rules’ for creating and annihilating t.hem Among the 
advantages of working within such a language are: 

l user-friendliness Type checking, operator and func- 
tion overloading, and d&a hiding help in building user- 
friendly C++ classes that behave as close to “expect,ed” 
as possible. For example, operat,or overloading means that 
arithmetic on algebraic classes can be implemented with 
the usual tokens: +, -, *, and /. Function overloading 
means a statement like “y = cos(x)” will work regardless 
of whether x and y are of type double, complex, matrix, 
quaternion, or any other t,ype for which the st,atement 
makes sense. If data conversions are appropriate, such 
as might arise in mixed mode arithmetic, the class con- 
structors can handle this detail l~hernsclves. Other routine 
bookkeeping tasks can be imbedded wit,hin class i~nplemrn- 
tations, freeing the application program(mer) from t,hem. 

l inheritance and extcnsihility The class DA , which is 
discussed below, is an implementation of differential alge- 
bra in C++ Having built it, one can easily go on t,o define 
other classes, such as DAmatrix matrices whose elrments 
are DA variables - with arithmetic operators overloaded in 
the obvious way. Should it be useful to do so, we could 
also have DAquaternion or DAcomplex variables, and one 
could go on to develop toolkits for rational, group, or 
any mathematical object that might be useful. 
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‘The COuJtruCtol and dcrtlT~c,.or fr,ncha,s WlliC,, bring “ariilbles 
into and out of scope. 

l language support The advantages of working within 
a supported language should not be undervalued. Once 
defined, classes have the full Jundionalify of any oiher 
variable type within ihe language. Suppose that a class 
“zlorfik” has been defined. This functionality means 
that an applications programmer can: (a) declare zlorf ik 
variables just as easily as double, int, char, 01‘ any other 
t,ype of variable, (b) write functions which return a value 
of type zlorf ik, (c) declare zlorf ik aggregrates - multi- 
dimensional arrays, lists, trees, or whatever and (d) ap- 
ply class operators not only on explicitly declared zlorf ik 
variables but also on expressions which evaluate to type 
zlorfik. One gets all this for free - not even the class 
designer has to sweat the details - by working within a 
language designed to be erlensible. 

Dut enough missionary work. We shall describe below a 
few C+t cla3ses and applications that have been written 
recently at Fcrmilab for problems in accelerator physics.2 

2 MXYZPTLK 

In a paper for the previous IEEE PAC I described a C++ 
class, nstd, which directly and very straightforwardly in- 
plemented automatic dilfercntiation. Although it could 
(and did) do simple calculations, it was designed more for 
pedagogy than practical work. MXYZPTLK we designed 
to correct serious inadequacies of nstd. In it are defined 
two classes, DA and DAVector , which implement the “pra- 
longed numbers” of nstd as dynamically allocated (and 
deallocated) doubly linked Ii& - that is, they are derived 
from the container class dlist ~ with attributes defined 
at runtime. 

The DA and DAVector classes possess a “nary operator, 
.D and a function .dcrivativr, which correspond to per- 
forming and evaluating a derivative, as shown below. 

‘The new limit of three 8.5 x 11 pages has made it impossible 
to provide a bibliography, 50 there will be no detailed citalions of 
connected works. I~lowever, the major players in the games these 
took are meant for are: Alex Dragt, Ctienne Forest, Martin Ben, 
Filippo Neri. Johannes van Zeijts. Ron Roth, Robert Warno&, Yiton 
Ym and so forth. 



DA u, v; Concatenation is implemented in MXYZPTLK via a bi- 
double x; nary operator, *, applied to variables of type DAVector 
int mC1 = c 2, 1 >; Although it superficially acts like an array of DA variables, 

in fact a DAVectcr has extra structure. 
v = u.D( m ); // Line A 
x = u.derivative( m ); // Line B 

Line A corresponds to a functional equation, 
21 = @u/&~&l, while Liue B merely loads the value of 
this derivative into the variable x. It is the operator .D 
that makes DA objects into a “differential algebra,” in the 
sense of Berz. 

In addition to the nnary operator .D : DA -DA there is a 
binary operator ^ : DA x DA + DA which implements Pois- 
son brackets. For example, t,he program fragment below is 
used to evaluate the Poisson bracket of the two expressions, 

The first version of MXYZPTLK was released in Jan- 
uary, 1990. Source code can be obtained upon request, 
and a User’s Guide has been written. It is worth men- 
tioning that MXYZPTLK implements automatic differ- 
entiation by simple forward-mode algorithms and would 
probably not be suitable for large-scale problems requir- 
ing hundreds of coordinat,es. These may be handled better 
by reverse-mode methods incorporated into ADOL-C, for 
example. 

3 beamline 
a = ~14Pld, b = sin(z&;) 

DA xl, x2, pi, p2, a. b, pb; 

a = xi * (x2*x2) * pi * (p2*p2*p2); 
b = sin( xl * (pZ*pZ) * (x2*x2*x2) 1; 

pb = a-b; 
tout << pb.standardPart(); 

The very name of the class beamline suggests what it is. 
beamline is derived from two parents: dlist , a container 
class which implements a beamline variable as a doubly 
linked list, and bmlnElmnt, a base class that contains in- 
format,ion common to all beamline elements, such as geom- 
etry, pointers to circuits. or conversion factors (e.g., am- 
peres to Tesla). That beamline is derived from bmlnElmnt 
makes it easy to insert one beamline variable into another. 

The last line 1uint.s the value of the bracket to the screen. 
Because instances of C++ classes are fully functional vari- 
ables, this could have been done in one st,ep: 

A C++ program fragment that builds a lattice consist- 
ing of five identical FODO cells may look as follows. 

tout << ( ( xi * (x2*x2) * p1 * (p2*p2*p2) ) 
double length, focallength; 

( sin( xi * (p2tp2) * (x2*x2*x2) ) ) 
).standardPart(); 

drift 0 ( length ); 
thinquad F ( focalLength ) ; 
thinQuad D ( - focalLength 1; // Line 5 

which applies .standardPart l,o the rrpressio~~ obt.ained 
by taking the brxket of the two expressions formerly 
loaded into a and b. In this same vein, the Jncobi ident,ity 
can be tested among three expressions, a, b, and c with 
the line, 

( a-(b-c)) + (b-(c-a)) + (c-(a-b) ) .peekAt(); 

beanline A ( kF ); 
A. append ( k0 ); 
A.appand ( BD 1; 
A.append ( 80 1; 

beamline B; 

// Line 10 

which prints all non-zero members of t,he exprrssiou t,o t,he 
screen Indeed, the argument,? t,o t.he bracket, op”‘“lor (01 
any DA function) may also include funclior&s which relet 
a due of iype DA 

for( int i = 0; i < 5; it+ ) B.append( &A 1; 

Each DA variable keeps t,rack of it,s own attributes, such 
as accuracy and reference point,. Because the o&r of 
derivatives kept, in the list is necessnrily troncat,ed, the 
DA value resulting from an invoc&xl of .D or the Poisson 
bracket operation is not as accurate as t,he argumenta that 
went into it (its highest derivatives are missing). If I.his 
variable is used later in calcul&ions, t,he results are also less 
accurate. Such information is carried along and upgraded 
automatically across computat&x~s. If the applicat,ion pro- 
gram tries to different,iat,e a variable t,oo ma,ny t,imes, to 
access derivatives which are not, accurate, or to mult,iply 
two DA variables that have different refcrcnce points, au 
error message will be printed. 

Done in this way, any subsequent adjustment of the focal 
length of the F quad will take place simultaneously in all 
“five” cells of the lattice. An alternative to building the 
beamline variable element by element is to declare it with 
a string argument, which is interpreted as a lattice file. 
The statements, 

beamline Tevatron ( “lauBsta.synch” 1; 
beamline mainInjector ( “mi-17.flat” ); 

declare two beamline variables, the first defined in a 
SYNC11 file, the second in a FLAT format file. 

The beamline class interface contains the critical lines, 

virtual void propagate( double* 1; 
virtual void propagate< DAVectorS ); 



which establish that every specific beamline element must 
contain two .propagate member functions. The first, 
which accepts an array of (six) real variables as its ar- 
gument, does straightforward, element-by-element track- 
ing through the beamline; the second, which accepts a 
DAVector as its argument, constructs the polynomial map 
corresponding to concabenating the maps of its elements. 

The beamline class itself has .propagnte member func- 
tions that do the same. One of the extraordinarily use- 
ful features of the virtual statement is that we can do 
this sort of thing so easily. The enLire source code for 
the beamline: :propagate function consists of two decla- 
rations and one executable line. 

void beamline::propagate( DAVectorB x 1 C 
dlist-iterator g&Next ( *(dlist*) this 1; 
bmlnElmnt* p; 
while ( p = (bmlnElmnt*) getNext ) 

p -> propagate( x ) ; 
1 

The beamline is being told to go element by element and 
propagate x through each one. There is I)O secluence of 
decisions to determiue what to do based on type. Each 
type of variable knows itself what it is supposed to do. 

And how does it know? One feat,ure of the bmlnElmnt 
class is that all the physics is isolated and corrlailled in o 
collection of .physics files. For rxamplc, the .propagate 
implementation for a thin quadrupole element, cont,ains l.he 
line, 

C #include “thinquad.physics” ) 

which file is to contain all the physics associat,ed with p&5- 
sage through a thin quadrupole, ihe rest, being boilerplate 
and logist,ics. This file may contain only the lines 

upr = upr - ( ” / f ) ; 
vpr = vpr + ( ” / f ) ; 

where f is a part of the private data of a thinquad 
beamline element, represenl.ing to1e focal lengt~ll of the 
quadrupole. Now, someone may wry well object to us- 
ing this, as it makes no ment,iou of longit,udinal moma~- 
turn. Be haz the option of using an alternat,ive file from 
the thinQnad.physics library, say, 

upr = upr - ( u / ( f*( 1.0 + wpr ) )); 
vpr = vpr + ( ” / ( i*( 1.0 + wpr ) 1); 

where upr is to be interpreted as 6pfp. 111 addition, he can 
tinker with the files on his own. Suppose a user want.s to 
do something unforeseen, such as call on a new symplectic 
numerical integrator to go very carefully through a t,hick 
element. He has the freedom to create his own .physics 
file, and the changes would be compl&ly transpareot, 1.0 
any applicat,ion soft.ware using beamline TIIF lirackrt,s 
surrounding the #include stnt,ement, assure that, oarinhlrs 
declared or dynnmicnlly crentcd by such tinl;ering can never 

I/w class wwce code. The Ci-+ scoping rules will prevent 
it - another feature one ha for free when working within 
the language. Our hypothetical tinkerer need never look 
at boilerplate and logistics. 

A generic type of bmlnElmnt can exist in different fla- 
vows. For example quad is a derived bmlnElmnt , as are 
thinquad , DAOuad, and DAthinQuad. The implication of 
thinquad is obvious; the other two refer to a quadrupolr 
whose properties lengt,h and strength are themselves DA 
variables, enabling them to be used as control coordinates 
in optimization calculations or to appear in polynomial 
expansions. 

The above was written as though the design were already 
implemented. Some is; more is not. The first working 
version of beamline should be ready in Fall, 1991. 

4 AESOP and canvas 

AESOPa, was introduced and demonstrated at the last 
IEEE PAC, so we shall not dwell on it here, as space is 
getting short. Suffice it to say that AESOP is a Phigs- 
based, prototype graphics shell, programmed in C++ , for 
implementing “exploratory orbit analysis.” Its objective 
is easy, interactive exploration of four-dimensional phase 
space maps. AESOP’s “four-dimensional cursor,” imple- 
mented late last year, greatly facilitates the finding and 
tracking of four-dimensional separatrices through bifurca- 
Lions. (See Resonance Seeding of Stability Boundaries in 
Two and Four Dimensions, this Proceedings.) A script 
(VAX/VMS DCL command file) is provided for linking 
AESOP with any four-dimensional mapping routine, which 
may be writt,en in C++ , C, or FORTRAN. It has been 
used at Fermilab to explore the offset beam-beam interac- 
tion in the Tevat,ron, space charge in the boo&r, and in 
the Main Ring. 

AESOP was written originally for the Evans and Suther- 
land PS390, but I plan to port it to the Sun environment 
“soon.” The PS390 is a powerful, sophisticated graphics 
engine which is largely underutilized. The reason for this 
lack of ent~husiasnr is I.hat no scient,ist of sound mind would 
read, much less assinlilate, its seven-volume set of manu- 
als. To respond to this problem of making it easier to view 
two- three-, and four-dimensional data on the PS390, a 
C++ class, canvas, was built,. By simply declaring canvas 
variables application programs are provided with objects 
that accept (scatterplot, wireframe, or vector-field) data 
and display them automatically. The “real-time” trans- 
formation capabilities of the PS390 are activated in one 
step by “.counocting” its external devices, the dials and 
the puck, to the desired canvas. A rastercanvas class 
is also available for scanning two-dimensional regions (ala 
Mandelbrot, for example). 

3Analysir and Exploration af Simulated Orbits in Phasespace, or 
interfere with variables of the same spume in o/her 11ar.1.s of SOIIE SUCII thing. 


