
e Fermi National Accelerator Laboratory

FERMIIAB-Conf-91/159

C++ Objects for Beam Physics*

L. Michelotti
Fermi National Accelerator Laboratory

P. 0. Box 600
Batavia, Illinois 60510

June 1991

* Presented at the 14th Biennid IEEE Particle Accelerator Conference, May 6-9,1991, San Francisco, CA

e Operated by Universities Research Association Inc. under contract with the Untted States Department of Energy

C++ Objects for Beam Physics

LEO MICHELOTTI
Fermilab’, P.O.Box 500, Batavia, IL GO510

1 Introduction.

Let us begin by admitting that the movement of physicists
from FORTRAN to C++ has been less than a groundswell.
At the same time, let me restate my opinion that, scientific
programming can be facilitated by an extensible language
-such as C++ , Objective-C, OI ADA one in which we
can define, easily and naturally, new variable types that
behave, in all respects, like frzllly funclional vnrinbles of
ihe language. Ctt is tailored to suit programmers’ needs
by creating “classes,” which specify (a) structures of data,
(b) the functions and operators which act upon them, and
(c) rules’ for creating and annihilating t.hem Among the
advantages of working within such a language are:

l user-friendliness Type checking, operator and func-
tion overloading, and d&a hiding help in building user-
friendly C++ classes that behave as close to “expect,ed”
as possible. For example, operat,or overloading means that
arithmetic on algebraic classes can be implemented with
the usual tokens: +, -, *, and /. Function overloading
means a statement like “y = cos(x)” will work regardless
of whether x and y are of type double, complex, matrix,
quaternion, or any other t,ype for which the st,atement
makes sense. If data conversions are appropriate, such
as might arise in mixed mode arithmetic, the class con-
structors can handle this detail l~hernsclves. Other routine
bookkeeping tasks can be imbedded wit,hin class i~nplemrn-
tations, freeing the application program(mer) from t,hem.

l inheritance and extcnsihility The class DA , which is
discussed below, is an implementation of differential alge-
bra in C++ Having built it, one can easily go on t,o define
other classes, such as DAmatrix matrices whose elrments
are DA variables - with arithmetic operators overloaded in
the obvious way. Should it be useful to do so, we could
also have DAquaternion or DAcomplex variables, and one
could go on to develop toolkits for rational, group, or
any mathematical object that might be useful.

*Operated by the Universities Research Association. Ix. under
mntrac1 with the U.S. DepartnxnL of Energy.

‘The COuJtruCtol and dcrtlT~c,.or fr,ncha,s WlliC,, bring “ariilbles
into and out of scope.

l language support The advantages of working within
a supported language should not be undervalued. Once
defined, classes have the full Jundionalify of any oiher
variable type within ihe language. Suppose that a class
“zlorfik” has been defined. This functionality means
that an applications programmer can: (a) declare zlorf ik
variables just as easily as double, int, char, 01‘ any other
t,ype of variable, (b) write functions which return a value
of type zlorf ik, (c) declare zlorf ik aggregrates - multi-
dimensional arrays, lists, trees, or whatever and (d) ap-
ply class operators not only on explicitly declared zlorf ik
variables but also on expressions which evaluate to type
zlorfik. One gets all this for free - not even the class
designer has to sweat the details - by working within a
language designed to be erlensible.

Dut enough missionary work. We shall describe below a
few C+t cla3ses and applications that have been written
recently at Fcrmilab for problems in accelerator physics.2

2 MXYZPTLK

In a paper for the previous IEEE PAC I described a C++
class, nstd, which directly and very straightforwardly in-
plemented automatic dilfercntiation. Although it could
(and did) do simple calculations, it was designed more for
pedagogy than practical work. MXYZPTLK we designed
to correct serious inadequacies of nstd. In it are defined
two classes, DA and DAVector , which implement the “pra-
longed numbers” of nstd as dynamically allocated (and
deallocated) doubly linked Ii& - that is, they are derived
from the container class dlist ~ with attributes defined
at runtime.

The DA and DAVector classes possess a “nary operator,
.D and a function .dcrivativr, which correspond to per-
forming and evaluating a derivative, as shown below.

‘The new limit of three 8.5 x 11 pages has made it impossible
to provide a bibliography, 50 there will be no detailed citalions of
connected works. I~lowever, the major players in the games these
took are meant for are: Alex Dragt, Ctienne Forest, Martin Ben,
Filippo Neri. Johannes van Zeijts. Ron Roth, Robert Warno&, Yiton
Ym and so forth.

DA u, v; Concatenation is implemented in MXYZPTLK via a bi-
double x; nary operator, *, applied to variables of type DAVector
int mC1 = c 2, 1 >; Although it superficially acts like an array of DA variables,

in fact a DAVectcr has extra structure.
v = u.D(m); // Line A
x = u.derivative(m); // Line B

Line A corresponds to a functional equation,
21 = @u/&~&l, while Liue B merely loads the value of
this derivative into the variable x. It is the operator .D
that makes DA objects into a “differential algebra,” in the
sense of Berz.

In addition to the nnary operator .D : DA -DA there is a
binary operator ^ : DA x DA + DA which implements Pois-
son brackets. For example, t,he program fragment below is
used to evaluate the Poisson bracket of the two expressions,

The first version of MXYZPTLK was released in Jan-
uary, 1990. Source code can be obtained upon request,
and a User’s Guide has been written. It is worth men-
tioning that MXYZPTLK implements automatic differ-
entiation by simple forward-mode algorithms and would
probably not be suitable for large-scale problems requir-
ing hundreds of coordinat,es. These may be handled better
by reverse-mode methods incorporated into ADOL-C, for
example.

3 beamline
a = ~14Pld, b = sin(z&;)

DA xl, x2, pi, p2, a. b, pb;

a = xi * (x2*x2) * pi * (p2*p2*p2);
b = sin(xl * (pZ*pZ) * (x2*x2*x2) 1;

pb = a-b;
tout << pb.standardPart();

The very name of the class beamline suggests what it is.
beamline is derived from two parents: dlist , a container
class which implements a beamline variable as a doubly
linked list, and bmlnElmnt, a base class that contains in-
format,ion common to all beamline elements, such as geom-
etry, pointers to circuits. or conversion factors (e.g., am-
peres to Tesla). That beamline is derived from bmlnElmnt
makes it easy to insert one beamline variable into another.

The last line 1uint.s the value of the bracket to the screen.
Because instances of C++ classes are fully functional vari-
ables, this could have been done in one st,ep:

A C++ program fragment that builds a lattice consist-
ing of five identical FODO cells may look as follows.

tout << ((xi * (x2*x2) * p1 * (p2*p2*p2))
double length, focallength;

(sin(xi * (p2tp2) * (x2*x2*x2)))
).standardPart();

drift 0 (length);
thinquad F (focalLength) ;
thinQuad D (- focalLength 1; // Line 5

which applies .standardPart l,o the rrpressio~~ obt.ained
by taking the brxket of the two expressions formerly
loaded into a and b. In this same vein, the Jncobi ident,ity
can be tested among three expressions, a, b, and c with
the line,

(a-(b-c)) + (b-(c-a)) + (c-(a-b)) .peekAt();

beanline A (kF);
A. append (k0);
A.appand (BD 1;
A.append (80 1;

beamline B;

// Line 10

which prints all non-zero members of t,he exprrssiou t,o t,he
screen Indeed, the argument,? t,o t.he bracket, op”‘“lor (01
any DA function) may also include funclior&s which relet
a due of iype DA

for(int i = 0; i < 5; it+) B.append(&A 1;

Each DA variable keeps t,rack of it,s own attributes, such
as accuracy and reference point,. Because the o&r of
derivatives kept, in the list is necessnrily troncat,ed, the
DA value resulting from an invoc&xl of .D or the Poisson
bracket operation is not as accurate as t,he argumenta that
went into it (its highest derivatives are missing). If I.his
variable is used later in calcul&ions, t,he results are also less
accurate. Such information is carried along and upgraded
automatically across computat&x~s. If the applicat,ion pro-
gram tries to different,iat,e a variable t,oo ma,ny t,imes, to
access derivatives which are not, accurate, or to mult,iply
two DA variables that have different refcrcnce points, au
error message will be printed.

Done in this way, any subsequent adjustment of the focal
length of the F quad will take place simultaneously in all
“five” cells of the lattice. An alternative to building the
beamline variable element by element is to declare it with
a string argument, which is interpreted as a lattice file.
The statements,

beamline Tevatron (“lauBsta.synch” 1;
beamline mainInjector (“mi-17.flat”);

declare two beamline variables, the first defined in a
SYNC11 file, the second in a FLAT format file.

The beamline class interface contains the critical lines,

virtual void propagate(double* 1;
virtual void propagate< DAVectorS);

which establish that every specific beamline element must
contain two .propagate member functions. The first,
which accepts an array of (six) real variables as its ar-
gument, does straightforward, element-by-element track-
ing through the beamline; the second, which accepts a
DAVector as its argument, constructs the polynomial map
corresponding to concabenating the maps of its elements.

The beamline class itself has .propagnte member func-
tions that do the same. One of the extraordinarily use-
ful features of the virtual statement is that we can do
this sort of thing so easily. The enLire source code for
the beamline: :propagate function consists of two decla-
rations and one executable line.

void beamline::propagate(DAVectorB x 1 C
dlist-iterator g&Next (*(dlist*) this 1;
bmlnElmnt* p;
while (p = (bmlnElmnt*) getNext)

p -> propagate(x) ;
1

The beamline is being told to go element by element and
propagate x through each one. There is I)O secluence of
decisions to determiue what to do based on type. Each
type of variable knows itself what it is supposed to do.

And how does it know? One feat,ure of the bmlnElmnt
class is that all the physics is isolated and corrlailled in o
collection of .physics files. For rxamplc, the .propagate
implementation for a thin quadrupole element, cont,ains l.he
line,

C #include “thinquad.physics”)

which file is to contain all the physics associat,ed with p&5-
sage through a thin quadrupole, ihe rest, being boilerplate
and logist,ics. This file may contain only the lines

upr = upr - (” / f) ;
vpr = vpr + (” / f) ;

where f is a part of the private data of a thinquad
beamline element, represenl.ing to1e focal lengt~ll of the
quadrupole. Now, someone may wry well object to us-
ing this, as it makes no ment,iou of longit,udinal moma~-
turn. Be haz the option of using an alternat,ive file from
the thinQnad.physics library, say,

upr = upr - (u / (f*(1.0 + wpr)));
vpr = vpr + (” / (i*(1.0 + wpr) 1);

where upr is to be interpreted as 6pfp. 111 addition, he can
tinker with the files on his own. Suppose a user want.s to
do something unforeseen, such as call on a new symplectic
numerical integrator to go very carefully through a t,hick
element. He has the freedom to create his own .physics
file, and the changes would be compl&ly transpareot, 1.0
any applicat,ion soft.ware using beamline TIIF lirackrt,s
surrounding the #include stnt,ement, assure that, oarinhlrs
declared or dynnmicnlly crentcd by such tinl;ering can never

I/w class wwce code. The Ci-+ scoping rules will prevent
it - another feature one ha for free when working within
the language. Our hypothetical tinkerer need never look
at boilerplate and logistics.

A generic type of bmlnElmnt can exist in different fla-
vows. For example quad is a derived bmlnElmnt , as are
thinquad , DAOuad, and DAthinQuad. The implication of
thinquad is obvious; the other two refer to a quadrupolr
whose properties lengt,h and strength are themselves DA
variables, enabling them to be used as control coordinates
in optimization calculations or to appear in polynomial
expansions.

The above was written as though the design were already
implemented. Some is; more is not. The first working
version of beamline should be ready in Fall, 1991.

4 AESOP and canvas

AESOPa, was introduced and demonstrated at the last
IEEE PAC, so we shall not dwell on it here, as space is
getting short. Suffice it to say that AESOP is a Phigs-
based, prototype graphics shell, programmed in C++ , for
implementing “exploratory orbit analysis.” Its objective
is easy, interactive exploration of four-dimensional phase
space maps. AESOP’s “four-dimensional cursor,” imple-
mented late last year, greatly facilitates the finding and
tracking of four-dimensional separatrices through bifurca-
Lions. (See Resonance Seeding of Stability Boundaries in
Two and Four Dimensions, this Proceedings.) A script
(VAX/VMS DCL command file) is provided for linking
AESOP with any four-dimensional mapping routine, which
may be writt,en in C++ , C, or FORTRAN. It has been
used at Fermilab to explore the offset beam-beam interac-
tion in the Tevat,ron, space charge in the boo&r, and in
the Main Ring.

AESOP was written originally for the Evans and Suther-
land PS390, but I plan to port it to the Sun environment
“soon.” The PS390 is a powerful, sophisticated graphics
engine which is largely underutilized. The reason for this
lack of ent~husiasnr is I.hat no scient,ist of sound mind would
read, much less assinlilate, its seven-volume set of manu-
als. To respond to this problem of making it easier to view
two- three-, and four-dimensional data on the PS390, a
C++ class, canvas, was built,. By simply declaring canvas
variables application programs are provided with objects
that accept (scatterplot, wireframe, or vector-field) data
and display them automatically. The “real-time” trans-
formation capabilities of the PS390 are activated in one
step by “.counocting” its external devices, the dials and
the puck, to the desired canvas. A rastercanvas class
is also available for scanning two-dimensional regions (ala
Mandelbrot, for example).

3Analysir and Exploration af Simulated Orbits in Phasespace, or
interfere with variables of the same spume in o/her 11ar.1.s of SOIIE SUCII thing.

