
* Fermi National Accelerator Laboratory

FERMmAB-conf-9lm

UNMTM in High Energy Physics:
What We Can Learn from the Initial

Experiences at Fermilab

J. N. Butler
Fermi National Accelerator Laboratory

P. 0. Box 500
Batavia, Illinois 60510

March 1991

* Presented at Computing and High Energy Physics Conference, KEK, Tsukuba, Japan,
March 10-15, 1991.

srated by Universities Research Association Inc. under contract with the United States Department 01 Energy

UNIXTM in High Energy Physics:
What We Can Learn from the Initial

Experiences at Fermilab

Reported by J.N. Butler
Fermi National Accelerator Laboratory

March 21, 1991

Abstrut

The xc- why Fmnilah decided to .upport the UNM operating syr
tern ue reviewed ad pl.ced i,, the context of a,, oremU model for high
energy physia data umlysis. The strength. .nd dcficiaka of the UNIX
envlronmat for high eaeqy physic. ue dknued. Fermilab’s early upr
riawe in de.lb,g with. LII *open m&ivcmda, en.ir onmat, both for corm
puten and for periphad., L dweribed. The h- resmuces required
to fuIly exploit the opportmdtiu arc clearly poring. The pouibility of
kctping the development and support efkrt. within reamn.ble bounds
may depend on our ability to collaborate or at least to share information
even more ei?ectivcly than we have in the put.

1 Introduction

In 1989, the UNIX operating system had virtually no presence at Fermilab.
In 1990, after a wica of meetings with major collaborations, the general user
community, and vendon, Fermilab decided to officidly support, and even to
caconmge, computcm running UNIX. In 1991, our work is ‘dominstcd’ by ac-
tivitiu associ akd with making UNIX useful for a wide variety of applicationa in
high enugy physics. In thin paper, we will dircu~ why this happened so quickly
and where we think it might lead.

la mcction II, we praent a model of high energy physics data analysis and
indicate where UNIX bra made major inroads and where it has not. We discuss
whether this is jut an ‘accident of the moment’ or whether it ia driven by some
fundamental dynamic. We describe the insua related to the areaa where it has
not caught 0x1 aad speculate on whether it will eventually emerge victorious in
those ueaa aa well. In section III, we discnrs the strengtha and aeaknesra of the
‘UNIX environment’. We include discnasions of command language interfaces
(shells), 1eao11rce allocation and management, system admix&ration, applick
tion language support, development environment, and network environment. In
section IV, we discusa the opporttities and pitfalls of the ‘open’, multivendor
UNIX marketplace. We express some concern about the level of support that is
required to fully exploit these ‘opportunities’. We touch briefly on timilar prob-
lema aasociatsd with third party peripherdn, which, while not strictly a UNIX
iuue, ia definitely part of related drive towarda openncu and interoperability.
In section V, we m&e some suggestion. for increased cooperation and perhaps
even for outright collaboration to help ded with the ‘new culture’ of openness in
order to capitalire on the opportunities and avoid the pitfdla described earlier.

2 How Fermilab wound up supporting UNIX

The three main reasons why Fermilab ‘decided’ to support UNIX systems were:

1. Economica

2. Economics

3. Economics

To understand this, we need to remind ourselves about how we do physics
sndysi. in HEP. Figure 1 presents a model of high energy physics analysis
as practiced at Fermilab and, undoubtedly, et the other HEP labs. The raw
data sets collected by experiments are in the range of 1 to 10 terabytes. The
ultimate god of these experiments is to produce papers that tell us something
new about the fundamental interactions of matter and they will finally do that
in a collection of papers that will rurely be less than 2.5 megabytes (about 1000
printed pages). The skillful and expeditious reduction of the massive amounts

2

Figure 1: Physics Analysis Model

of I~W data to the few (at most) megabytes of printed worda and and some plots
is what we call ‘data analysis’.

The enterprise divider up into neveral parts:

1. Event Reconstruction.

2. Interesting event or ‘candidate’ selection. Thia atep may be divided into
aereral parts and may be asaodated with data compression and reformat-
ting. Major physics judgementa have to be made at this point.

3. Event serving- the provision of samples of events, usually sorted by physics
topic, to individuals. The individuala are frequently organired in teams
which attempt to coordinate data set needs.

4. Physics analysis- the aewch for signals and the extraction of physics in-
formation from them.

5. Report/paper preparation.

3

Table 1

1

CPU MIPS/megabyte/s for various analysis activities (estimated)

group reconstruction strip/filter dst microdstf

CDF80 ken;;gxl) 22 2. anafysi

DO 250 5 - -
DOMC 5000
ET06 760 60 -

E665 1200 m-600 50 50
E&37 2000 500 50 50

Each part is characterized by a somewhat different range of compute cycle
and IO requirements. In parallel with all these activities, of course, .arc the
never-ending activities of program development and communication. The gen-
eration and analysis of simulated data (Monte Carlo) occurs at every step of
the proees,.

2.1 UNIX for event reconstruction

Table 1 shows the compute/IO ranges of typical Fermilab programs at the var-
ious analysis stages, measured in MIPS/megabyte/s of IO. For comparison, a
MicroVar III connected to an Ethernet can do about 3 MIPS/megabyte/s so
any task requiring (L higher number would be compute bound on a MicroVax
III. The reconstruction step is typically very compute intensive and the analysis
activities at the ‘downstream end tend to be IO limited. It is interesting that
some experiments move from CPU limited to IO limited as they move down the
analysis chain until they get to the final physics analysis, where there are many
highly compressed events that still need significant computing cycles to process.
At that point, they may become CPU limited at their workstations. This hap
pens, for example, in fixed target programs with vertex detectors where there
usually is a pass over the vertex assignments which involves a large number of
fits per event. The issue of how much computing is required for the find physics
analysis is a very important one. Table 2 shows estimates of the CPU cycle re-
quirements in VAX-years for several Fermilab experiments. It is clear Fermilab
could never support this activity at the cost of $50,000 per VAX equivalent
that we paid for our last mainfksme acquisition. Even the present day cost of a
Microvax III type machine, approximately $1500/VAXi’gO-yera leaves us with P.
bill of many millions of dollars. Figure 2 shows the cost of computing on various
platforms. It was clearly the low cost of cycles on the RISC processors and the
steep derivative which aroused our interest in these processors. Because they
all seem to run UNIX, we were forced to get interested in that as well. We will
discuss late? the nature of the connection between RISC and UNIX.

When WC look back over the last year, one of the major turning points in

4

Table 2: Estimated CPU requirements for first pass event reconstruction in
1990-1992 time frame

Figure 2: Cost of Computing Cycles

5

computing at the lab was CDF’s decision to use RISC/UNIX machines in their
level three trigger. Since the desire WIU to make selections based on a very
sophisticated calculation, this required the collaboration to commit itself to
porting a significant fraction of all its code. Early in this process, CDF reached
the conclusion that it should bite the bullet and port its entire &line analysis,
which is by far the biggest code at Fermilab.

2.2 UNIX for interactive programming and graphics ap-
plications

There is a second front for UNIX at Fermilab. This beachhead is not in the HEP
physics data analysis area but in the area of technical and scientific computing
and drafting. Fermilab haa a great number of CAD users, drafters doing draa-
ingr and engineers doing solid modelling and finite element analysis. These
activitia require major CPU cycles and good graphics capabilities. Most of
these groups started with VMS and used commcrcie.l products such as IDEAS
from SDRC. As they begin to suffer from poor response time, they are begin-
ning to move to more powerful UNIX systems which can run the same software.
These groups do not do very much applications development. Other groups,
such as the accelerator theory group and the astrophysics groups, that develop
application8 which employ aophistieated graphics and require significant CPU
resources also use UNIX platforms. Whether the issue is interactive response or
availability of ‘production batch’ cyclea, the choice is driven mow by coat issues
than a basic love of the UNIX operating system

The point of all this is that the progrns of UNIX systems in Fermilab is
driven from the two ends of the analysis chain- the compute intensive recon-
struction demand at the top of my picture and the graphics application on Ihe
desktop. We do not know whether UNIX will achieve dominance for physics
analysis. It probably will for those users who arc CPU limited on MicroVAX
type processors, but those who arc IO limited will probably not feel any pres-
sure to switch. The middle ground in the analysis model involves heavy ‘event’
and fle serving. The application of UNIX engines to this area is very uncertain.
VMS 01 VM may offer a fine way to provide data and tile service to both VMS
And UNIX workstations and may achieve dominance in that area.

2.9 The relation between RISC and UNIX: accident or
inevitability?

All the reesons why UNIX was making progress at Fermilah were tied not to
desirable features of the UNIX operating system but to its association with the
new RISC technology. In looking towards the future, one is compelled to ask
whether thin rusociation was an accident or whether is WIU an inevitable match.
One can then ask whether this situation will persist or whether it is e. transient
phenomenon.

6

We would argue that the match is inevitable and will endure for the forsee-
able future (i.e. the next few years). UNIX achieved its acceptance during a
period of rapid development of new CPU%. If one compares the time it takes to
develop a new generation of CPU compared to the time it used to take to write
(L proprietary operating system, one aen that certain characteristics of UNIX
make it especially suitable for * period of rapid introduction of new technology.
These are:

. Its portability. There are several aspects of this. First, you can get it
running on your system in a short amount of time so that you introduce
complete systema at the pace determined by the technology. Second, if you
introduce a ‘better’ machine, people can move to it easily. They are not
locked in by their mar&e development in existing, non-portable software.
Tbia is, of COIIIIC, a double-edged sword.

l Ita svailabiity. It is easy and inexpensive to get the UNIX source code
and the right to use and modify it. You have an almost open environment.

l Its suitability. Its not a bad system and many of its problems can be
covered up with ‘value-added’ user interfaces-just the area where vendors
like to differentiate their products anyhow.

These are advantages for the vendor. The use, realisu many advantages
aa well. He can move between system an tastes and needs change and M new
products offer new opportunities. He is not bound to one company which might
lose its creative energy or move in a direction which is not interesting him.
Competition will certainly result in lower prices and better products. With the
potential for a bigger market, more software developers will write code for these
systems.

We believe, then, that UNIX poasesaed features that guaranteed that it
would succeed in a era of rapid development of CPU’s. That trend will con-
tinue no we think UNIX, or some successor which empharises portability and
av8il*biity, will continue to grow in importance.

In this section, we have emphasised the attractive featurea of this dynamic,
competitive environment. It har a downside that will be diacnsscd in a later
section.

3 The UNIX environment: The Good, the Bad,
and the Ugly

In this section, we discuss the UNIX system from the perspective of an unso-
phisticated UNIX applications programmer(me) and from the viewpoint of a
UNIX system administrator (several of my colleagues at FNAL).

7

3.1 Good aspects of the UNIX environment

3.1.1 Intrinsically good features about UNIX

UNIX was originally written to support a software development environment.
It haa many strength8 with respect to other operating systems, including VMS.
Some of these are:

. The ability to sit at a system from a vendor you’re not accustomed to and
find that the system norkn pretty much the same wa, your own system
works. There will certainly be differences and they shouldn’t be minimized
but usue.lly there is enough commonality in the way the two systems are
organised (10 that by snooping around looking in directories you can get a
good idea of what rcsoureea are available and how they are organircd. The
various ‘UNIX’es (prononnced UNICIES ??) sm like different dialects of
the same language rather than different languages.

l An emphasis on extending the base operating system with user defined
command procedures. Comma& are executed Erom II search list, called
a ‘PATE’, which can include directories of user supplied command files
or applications. The emphasis on ‘tool building is deeply rooted in the
UNIX outlook.

. An emphasi. on using low level tools to build higher level tools. Constructs
like ‘pipes’ and ‘filters’ together with very powerful text processing, com-
mand interpreting , and lexical analyring facilities permit one to make
very powerful proccdurcs quickly.

l Ease of output and input redirection. It is very easy to send output to
a tile from a screen-oriented application or to send input from a file to
an application that was written for interactive input. This is more natu-
ral, and therefore more frequently used, than the approach of redefining
logical. to redirect IO.

l The ability to run proceases in ‘background’ while continuing your intersc-
tive session. Used in coqjunction with IO redirection, this makes it easy to
keep several pruallcl activitin going. UNIX, in general, expects a user to
have many processes going at once and makes liberal use of subprocesses
in its normal operation.

l The availability of a powerful utility for generation of up to date exeeuta-
bles with minimal recompilation- the xzxake utility.

l The availabiility of a ‘preprocessor’ for source code, the C preprocessor,
which can also be used to advantage even in a FORTRAN environment.

l The incorporation of performance profiling tools in a very straight forward
way into the compiler and run time environment.

. The ability to ‘archive’ fles in a standard format which allows them to be
red by UNIX systems from other vendors.

. Good network access. UNIX networkiig, based on the TCP/IP protocol,
hsr developed rapidly and is well supported by facilitia available to the
umr. ‘Trusted host’ operations, such as remote login ‘r1ogi.n’ , remote
Sle transfer ‘rep’, and remote procedure execution ‘rsh’ are widely used.
Data may be shared between systems by products such as NFS which are
widely available. Support of these protocols is now available on VAXes so
that access to data on VAX/VMS systems is available. ‘Non-trusted’ host
tooh, loch as T&et and FTP, arc also available.

. Task-to-task communication across the network. Socket interfaces are
rauonably easy to implement. I have seen more interest amongst risen in
doing this on UNIX syntems for databra access than I observed on VMS
systems using DECNET task-to-task communication.

Many of these features of UNIX are available in VMS. The features noted
above seem to me to be more ‘natural’ in their UNIX form than in their VMS
incarnations. It has been my experience that physicist/programmers have an
easier time getting started on a VMS system but rapidly plateau in their capa-
biities. In UNIX systems, it takes longer to get started but people routinely
achieve competence with powerful facilities such as MAKE and the PROFILER.
The corresponding tools in VMS, CMS/MMS and PCA, are rarely mastered by
the amrage phy&ist/programmcr.

3.1.2 Features that come from RISC

There are other aspects of programming on UNIX systems that emerge from
their close association with RISC systems. Since the connection is not acciden-
tal, these should be counted as advantages of the UNIX environment. These
include:

. The availability of efficient FORTRAN compilers which support most of
the popula, VAX extensions.

. The speed with which compilation and linking can be done.

l The speed with which bugs can be ‘reached’.

l The speed with which graphics can be generated and screens updated.

. The availability of of standard Graphical User Interfaces and the CPU
power to USC them.

l The availability of graphical interfaces to the UNIX system itself which
use pull down menus and other such devices to eliminate the need to
remember the somewhat obscure UNIX commands and options.

9

l The ability to support several windows efficiently.

These sdvautages exist mainly because the most powerful CPU’s available
for interactive use are RISC/UNIX systems.

3.2 Bad stuff about UNIX

The UNIX environment has many frustrating features. Some of these arc mere
annoyances that can be routinely overcome after a few days of use. Some,
however, have lasting impact and can result in lost productivity.

From au application programmer’s viewpoint the most annoying features
UC:

s Obscure command names. Command names such as ‘grep’,%ii’, ‘awl;‘,
‘df’, ‘du’, ‘ls’, ‘chmod’, etc. are not very helpful. Some have interesting
stories behind them. I have not found this to be a terrible problem since
you can ‘alias’ sensible names to them and, anyaay, you get used to them
8fter 8 while.

l Command non-orthogonality. Many of the commands have overlapping
functionality and limited ‘scope’. This sometimes gives you several options
to chose Gem which menus you also have more ways to make mistakes.

s Totally obscure and inconsistent options. Commands may be followed by
oue or more optious. No attempt has been made to make the options
consistent acmxs commands. For example, in the command, ‘ps’, which
returns process status (not too bad)

the ‘u’ gives me the status of processes run under ‘u’sername ‘myname’.
That seems to make sense. However, in the remote lcgiu command,‘rlogin’,
the option which allows you to supply a username (so you cau logiu to the
remote system under a different user name) is ‘-1’. Under VMS, when such
a parameter is required it appears rather consistently, in many commands,
8s

Moreover, options seemed to have been added by the requirements of the
moment and Gequently you can’t do what you want even though you could
probably do almost everything else. I view thin u a serious problem. You
ce.11 ‘alias’ you favorite command strings including options but this gets
messy.

10

I Case sensitivity, This is new LI~I VhlS and Vhl useri and results in wnie
problems but you eventually get nst-d to it and may even use it to advnn-
rage.

I ‘Launch and Pray’ command line editing. The command line editing i’
~mnecessarily obscure but the main problem is that after y~ou isslle what
I,cacks like a ‘old fashion’ line editor (TECGlikej command, you can’t set
the new command befxe it executes without doing really arcane things.
This probltm waj fixed by providing a procedure, ‘cedir’, at Fermilab LI,
make ‘VAX-like’ command line editing ava~ilable under the Cahell. This
was not very difficult IO achieve hot appnrencly is in violation of the ‘right
way IL, da ~UNIX’. Fortuna~ttly, at Fermilab we haven’t been able to locate
rhe man page on ‘the right wav to do UNIX’ 50 we can move ahead in
<AU ignorance. Which brings me to my ne.xt pwn

- keally crummy documentation. The mau pages are not all that great.
The options, which is what you realty usually want to know abour, are
not alphabetized!! There was a rumor that somronr had invented the
concept of ‘the example’ in UNIX men pages bur ir turned out TO be
unfounded. (You can tix this by reading ‘UNIX for VXlS Users’ by Philip
E. Bourne[l], ‘The LXIS Programming E,nvironment’ by Kernighan and
f’ikt[Z:, and many other excellent books). In the former, the author at-
wmpts LO ease the shock of transition f6r VMS users by actually giving
examples of commands and procednres.)

I ‘I’lii I;uit ,A(line vsriivn 01 each tilt. This turns out nl~ll lu IbC iOCh a
twrrible drawback and probably saves some disk. \%.hen I srarred using
TrVlX systems, I thought this would hr a very severe problem.

- The failure til sopptizt filename rxtensions. You can legally include ‘.abc’
ar rhe end ofthe filename but the system orilities, for the mosx part, do nor,
suppsrr any system of defaults. Many granps adapl standard ‘extensions’
for use on UNIX systems so that they can keep track of their files even
tliaugh Lhey have ‘tcl keep typing the extra characters all rhs cimc. The
yruups invariably choose extensions which took suspicioustv like ‘default‘
VIS filename extensions.

I 1:‘ilename length limitati,ons. CNIX originally limited fitenamcs r~ 1-1 char-
ac~ers. Most syswms have done aray with this but some still have utilities
that dv curious things if the filename exceeds 14 chararters.

- L;cry serious limitaiions in the way ya cw ier, up your rwvirr,nmrrrt i%r
example, UN1.X suppcrrs ‘environment variables’ which can act sort oflike
1:-1X Logical names bnt the space available for Ihem is limited to 512ii
characrers/process. OK for a single, lonely user. Xot good for sameone
rrving IO set up rhe ‘CDF environmeni’, i& example.

. A somewhat strange view of file structure. UNIX filu are viewed by
the systems as ‘byte streams’. This is simple and elegant but totally
inconsistent with, for example, FORTRAN’s record oriented approach to
flea. FORTRAN covers the distinction up for you and makes it look like
there are records. But there are some curioun effects. For example, there
(UC no ‘headers’ in the file system that tell you about record structure
so yen had better remember how you wrote those files. You run into
situations where you move flea from a VAX to a UNIX #y&m (looming
some information about the structure on the way), then move them back
and discover that you can no longer read them (at leaat in the same way).

l A somewhat atrange view of devices. Every device is associated with a
iile and all operations on the device arc treated as operations on the file.
This producea some really strange behavior. One gets used to this but it
can be very confusing to a novice.

l The occasional tendency of the system to move you out of the ‘shell’
(command interpreter) that you are working in- at Fermilab typically the
&hell into some other shell, usually the Boumc ahell. This is akin to
falling out of VMS and into VM.

l The occasional tendency of the system to move your job into ‘background’.
To a novice, this is like falling off the end of the earth.

9.3 The UGLY: Things either completely missing or done
so badly that you wish they were

Under the category of things missing completely or done really badly we have:

l Security. This ir the stuff out of which legends are made. Also, reputa-
tions! You can read about this in ‘The Cuckoo’s Egg’ by Clifford Stoll[S]
and in many other popular booka. Many obvious holea have been closed.
But, be warned that many UNIX systems come ‘out of the box’ with moat
of their security features disabled. Specific issues are eight character pass-
words, readable pas.wor& in several placea on the aystcm, and lack of
Ancgmined granularity in assigning privileges.

l Cluster management: UNIX doer not have a true ‘cluster’ scheme. This
places a major burden on support staff. Tbia is somewhat mitigated by
the fact that much of the infmstructnre for making (L kind of duster en-
vironment, such M NFS and Yellow Pages, are in place and solve some of
the problems. Much better facilities are incorporated into SVR4 and are
planned for future releases. The keepem of UNIX have acknowledged the
problem and are moving towards solving it. They arc not there yet.

12

l System management. Utilities are often poor. There are no individual user
disk quotar and no ACL’s (in some UNIX’cr). Many of the utilities have
‘bugs’ which are not Axed but rimply documented and achieve the atatns
of featwes. Some parametcn which nhould be adjustable are ‘hardwired
into the kernel and would require a rebuild (assuming you had a source
UCCMC).

. There is no reel batch system (although third party products are becoming
available).

. There is no real resource management or allocation scheme.

l Tape support is very poor. There is no tape drive allocation scheme.
Then is no mpport for labelled t&pm in the system (so this ia done from
within the application).

. Backup in cumbersome especially in a large system of workstations.

. There is really no one who taker respondbiity for the problcmr with UNIX
commands and featurea since ‘your’ vendor didn’t write it.

l There are two competing org&ations trying to determine the future
development of the rydem.

3.4 How does it all add up?

We have come to believe at Fermilsb that UNIX is ‘acceptable’ and that we
can live with it. We are drawn to it because of its association with the only
coat-effective solutions to part of our computing problem and NOT BECAUSE
OF ITS INHERENT DESIRABILITY AS AN OPERATING SYSTEM. In the
grand balance sheet, it not so bad ea to erase the economic advantage that it
brings.

4 The Joys and Agonies of the OPEN MULTI-
VENDOR environment

Once Fermilab decided to support UNIX, it became inevitable that we were
going to support more than one vendor and, therefore, several ‘UNIX’es. The
readona for this arc:

. Law. We are bound by competitive bidding rules so it was impossible to
really restrict ouraelf to a single vendor even if we had wanted to. In fact,
Silicon Graphics and SUN each won major bids in the early going.

13

. Opportunity. Once you build a ‘UNIX infrastructure’, the cost of adding
an additional vendor, while not by any mew negligible, is not large eom-
pared to your original investment and, at least within limits, you can reap
some benefits by promoting competition for yonr business. Much more
will be said about this in the remainder of this section.

l Circumstance.

1. A national lab like Fermilab is part of an ‘extended’ enterprise which
includes other laboratories around the world and many universities.
Choices made by thae institutions, especially our university collsbo
raton, must affect what we choose to support because making them
efflcicnt is one nay to advance the lab’s sdentilk goals.

2. A nstiond lab like Fermilab is composed of many groups which have
their own unique needs and possns the computing skills to reach
their own conclusions on what platforms are best for them.

The sum of all these forces proved to be irresistible and Fermilab has already
become a multi-vendor lab for UNIX.

Whatever the perceived benefits of supporting a multi-vendor, multi-platform
environment, there an many, many problems which should not be ignored or
minim&d. Obviously, there are major support problems. The basic point is
that the answer to every simple question is now a ‘vector’ and the arwver to cv-
cry complex question is at least a two-dimensiond ‘matrix’ or table. Tom Nssh
r&n to these as ‘MATRICES OF INCOMPATIBILITY’. Every entry into one
of these matricw represents a significant effort. A few examples will illustrate
this point.

4.1 How good is your FORTRAN compiler?

Thin question haa several components. How many bugs are known to exist
in the present relcw? How many will yoo discover w you port your code?
Which VAX extensions are supported and are they REALLY supported? Is the
FORTRAN ‘environment’ adequate to the largest codes you anticipate running
and does it have all required facilities? How efficient is the compiler for your
application? Each of these questions must be answered for each vendor.

In order to get even an approximate answer to these questions, you must
develop a ‘benchmark suite’ of applications which represents the typical codes
you really plan to mn and you most develop a checklist of useful features and
extensions which you can verify. We did this for a recent acquisition and it took
several months and the cooperation of many people. For example, this is the
collection of ‘benchmark coda’ which wen contributed:

1. ‘QCD calculation’, a code that emphasized floating point calculations in
a few tight loops.

14

2. GEANT simulation of the DO detector- B very large computationally com-
plex code which reflects the activities of a large collider program.

3. EBB1 tracking code- a ‘fired target ’ event reconstruction code. This read
from and wrote to 8mm tape.

4. E400 tracking code- & ‘Axed target’ event reconstruction code. This read
to and wrote 8mm tape.

There are many other worthy candidates for inclusion into such a suite. We
may add to it in the future. We are also likely to get some ‘standard’ suites-
like the SPECMARK suite- for comparison. It is important to note that we
were doing much more than just testing compiler and machine pcrformsnce. We
were checking that the platform supported the peripherals we were interested in
and that it supported very large codes. We were, in particular, very concerned
about the ability to handle progmms with many thousands of subroutinea and
to successfully read and write gmm tapes. We have developed a standlud list of
mandatory and desirable propcrtia of the so-called ‘developer’s environment’
to make sun that the system is really ‘uscable’ in an BEP environment. This
includes, for example, a list of third party products that we expect to be avail-
able.

At Fermilab, we have a large number of VMS-based applications program-
mers. These people use VAX extensions in their code. We can hardly fault them
on this since most vendors have acknowledged the valne of these extensions and
supported some or all of them in their FORTRAN compilers. Moreover, most
of these extensions have been included at least functionally in Fortran 90, a
tacit acceptance of the reality that VAX FORTRAN bar been a de facto semi-
standard for the late 1980’s. Fermilab attempted to define a set of ‘mandatory’
extensions for acquisitions and a set of Lsemi-mandatory’ extensions (you were
allowed to miss two) based on a study of various compilers. Below are lists of the
mandator& and semi-mandator& and a table showing which VAX extensions,
of this subset, are NOT supported on each of several systems. There is much
more variability in the VAX extensions that fell outside this list.

A program, called Alice, wm written to verify that these extensions really
worked (u cIaimcd[rl].

Of comse, even this table doesn’t tell the whole story. Something as simple
as the ‘OPEN’ statement has all kinds of ‘features’ that affect its ‘portability’.
One amusing one (except to people who discovered it) is that the one compiler
uses a ‘byte-count’ for all logical record lengths where- a VAX sometimes used
a byte-count and sometimes a (long) word count. However, you cm make the
compiler look ‘just like a VAX’in this respect by using a special compiler switch.

15

Tabta 3: Fermilab Mandatory Requirements
1 Symbolic namn
2 INCLUDE statement
3 Data Types INTEGER.2, REAL*4, REAL*8
4 Optional DO-loop LabeI
5 Crosdanguage Acceu
6 Read/Write 32,760 bytes
7 Read/Write Unblocked Tapes

1
2
3
4
5
6
7
a
B

10
11
12
13
14
15
10

Table 4: Fermilab Semi-Mandatory Requirements
Comment indicator
Debugging Statement Indicator
Tab format lines
Byte Data Type
Ha, Octal Data Conrtants
Mixed COMMON BLOCK
IMPLICIT NONE statement
NAMELIST Statement
DO WHILE Statement
IfoIIerith Constant
BniIt-in Functions %VAL() and %REF()
0 Field descriptor
Z Field Dencriptor
Bit Manipulator Routines
ANSI Flag
ProfiIer utility

Table 5: F&ran ‘semi-mandatory’ web&ion for various vendors
system Failed Feature

SUN Bu8dedmd constant
DEC Ultrix HoIIcrith constant, ANSI flag

IBM AIX INTEGER’2 or similar function type, TAB formatting
SGI BoUcrith constant, ANSI

Sony NEWS-OS NAMELIST, IIoUerith Constant,ANSI flag

16

I VMS Amdahl
, I

X X

DI-3000 X X

TopDrawer X X

GKS X X

Printing X X

Figure 3: lBS9 Graphics support matrix

4.2 How do you support graphics applications under UNIX?

Graph& needs to be avaiLable on a variety of UNIX workstations. Even those
platfoma that are being used mainly as reconstruction farms need to have devel-
opment environments and people immediately request graphics for ldstogram-
ming and event display. These tools can really facilitate program debugging and
validation. Figure 3 shown 0111 ‘graphics’ support matrix about a year and half
ago. Figwe 4 shows our present ‘graphics’ support matrix. Life ain’t getting
no simpler!!!

4.5 How does 8mm tape support work on UNIX systems?

The use of gmm tapes for recording data and the output of reconstruction
passa is now ‘standard’ at Fermilab. This medium is also employed at the
workstation level because the driven are so inexpensive and they arc also used
for system backup of both central and local systems. Smm is now available on
every centrally supported Fermilab platform, including the Vax Clusters and the
AMDAEL, and on ACP I farms. We are therefore required to understand the
behavior of these devices on UNIX platforms. There are many aspects of this
problem. There are two modes of recording- fixed and variable block. There are
two kinds of flc marks- long and short. There are several options for controllers.
Firmware is always changing. Figure 5 shows a matrix, one of many that must
be considered, of ‘Smm features seen in different environments’, at one particular

17

“MS AVd.ht SC, SUN “I,* IBY I

CBSN x x x x x x

Dt-mOs x x x x x x

TOpDrweI x x

“SC.CKs x x

SUN-CKS x

‘I.2sss x x x x x x

P”lCS x x x x x

Prh11.* x x x x x x

x Window. x x x x x

x ,mdu* x x x x x

Figure k Present Graphics support math

moment in time. Some of these entria ue now already out of date. Figure 8
shows another matrix of how various platforms interface with various controllers
and flrmwan versions. The point of this is that much more work haa to go into
thee efforts if we really want to capital&e on the opportunities zepraented by
the open UNIX cnvironmenl and the open peripherals mslketplacc.

4.4 The MULTI VENDOR environment revisited

The point of presenting all these tables is that you have to work hard to r&ix
the benefits of a multivendor environment. While this may seem like an obvious
point, then an two reams far harping on it:

. It may not be obvious how diEcult it really is. If you underestimate the
problem, you will runly get yourself in trouble. If you overestimste, you
will scare yourself out of real opportunities.

l It may be very hard to control the number of platforms no matter how
hard you try, for the reasons described above.

18

3Sl33kldWl
39 OJ.

H9llON3
13V~lS9V *

~s~ualuuoJpul~
tuaw#!cl

U! uaas se
samteazj tug

5 Major issues for the future

5.1 How extensively will UNIX/RISC systems permeate
the analysis model?

At the moment, UNIX systems arue dominating the reconstruction and Monte
Carlo cntelpriscs at Fermilab. They are making great progress on the physi-
&t’s de&top and for phydu analysis at Fermilab’s collaborating institutions.
They are ‘natndd for compute wnm for norkgoop clusters. We can not
tell whether they will succeed at ‘event/f& sewing’, especially where VMS file
compatibility is required, but UNIX networking seems to be leading the way
towarda this I don’t think the issue is yet settled but it would not surprise me
if UNIX came to dominate all aspects of the analysis model at Fermilab. Even
if it doesn’t t&c over the ‘event/Sk sewer’ btina, it is dear that whatever
sydcm does must connect easily to systems running UNIX.

5.2 How will UNIX develop?

The UNIX community is attempting to address many of the same issues that
concern us. The workgroup cluster concept, discussed by Tom Nash, is being
developed by ~eveml institutions. The recent dircnssions of ‘PLAN 9’[7j center
on just the same issues. that ought to concern ns.

53 How will users adjust to UNIX?

There are b&ally three nays to cope with the deficiencies of the present UNIX
environment:

1. Learn to love it aa an ‘acquired taste’.

2. Fii what we don’t like. We can do this because we don’t have any loyalty
to UNIX. This would include:

. Hiding the variations, in the manner of the FERMI UNIX ENVIRONMENT[S].

. Fig the deficicnda with II layer of procedures, such such M Fcr-
milab’a ‘cedit’ program.

l Adding third party products such aa EDT+ or NQS to improve what
is there or provide something which is missing.

l Developing what is missing, such M labelled tape support.

3. Hide it. Thin can be done by developing ‘application environments which
sit on top of the operating system and shield the user from it. The CERN
Physics Analysis Workstation (PAW) package [6] is an example of this
approach.

20

5.4 How can we control and mitigate the escalating sup-
port requirements?

5.4.1 Limit the number of platform.

Fermilab ha, decided to limit the number of ‘fully supported’ UNIX platforms
to three. It may be necessary to add partial support for a fourth. We will
review the supported system* periodically to undentand whether one ought to
be dropped and another added. We will nndoubtedly forgo some ‘opportunities’
but hope that competition in the marketplace will force our selected vendors
to day attmctive. The association with three or four companies should assuze
that at least mme will stay dynamic.

5.4.2 How can we lighten the load?

The key nays that we cm manage the aitnation arc:

l Devote some mourcea to constant evaluation of new platforms, products,
etc. Keep on top of your preferred vendors and any potentially interesting
competitors. You have to know the market, if for no other reason than to
defend your choice of selected vendors.

. Communicate information widely, both formally and informally, so studies
don’t have to be repeated within the organisation.

l Ponue smrcea of information st other labs, universities, and with industry
wherever possible.

l Try to standsrdixe the systems support environment as much as poaaible.
Thin includea adduser utilities, backup utilities, printing, etc. The FERMI
UNIX ENVIRONMENT addressen this issue.

. Try to develop a standard user environment so the different flavors of
machine look limillv to an applications programmer. The FERMI UNIX
ENVIRONMENT addresser thin isaue, M well. This helps the users and
simplifies support and consulting.

. Adopt proprietary tools which can be made available on all supported
platforms. Try to chose tools the will be within the budgets of university
groups. Always support at leaat one solution that ia non-proprietary.

Each of the items above could be applied across the HEP laboratories (u
well. If we can work in collaboration, we can achieve two major goals:

l We can distribute the load so that we don’t wind up supporting the same
functionality several times.

21

l We can creak an environment in which physicists, computer scienrists,
and engineers can move from lab to lab and work with a familiar envi-
ronmen~. This will be especially important in the SSC!LHC era where
people will be working on existing programs at Fermilab and LEP while
participating in start up efforrs at the new machines.

6 Conclusion

The UNIX world is filled with opportunity. The low cost and high power of
these systems can open up new possibilities at any stage of the data analysis. To
realize these advanragcs, we nmsr apply more effort to evaluation and support.
We must chose carefully so that we can stay within the limits of the available
manpower. I would like to summarize the situation by reminding you of the
caption from an old POGO cartoon:

‘W era solllronted mirh unsnrmoun%abla oppO~uni%i~s”

At Fermilab and elsewhere, we are beginning to overcome the obstacles and
realize the opportunities. HEP is already benefitting and will continue to do so.
It is worth the effort!

Aekmoldg8mmn~s :

Many people at Fermilab have contributed to my knowledge of UNIX and of the
issues discussed in this paper. I would like to thank the following groups: AC-
CESS Liaison Group (leader Judith Nicholls); Online Support Group (leader
Ruth Pordes); Central Computing Departmcnr (leader Peter Cooper); Dis-
tributed Computing Department (leader Al Thomas); Physics Analysis Tools
Group (leader Paul Lebrun); and Computer Research and Developmenr(leader
Joseph Biel). The fact that this list includes every software group in the Fer-
milab Compuring Division reflects the breadth of our efforr on UNIX. I would
like to thank rhe following individuals for specific discussions that were used in
preparing this paper: Frank Nagy; Tom Nash; Randy Herber; Matt Wicks; Don
Petravick; Dick Adamo, Jack Pfister, Irwin Gaines, and Vicky White.

References

[l] Phillip E. Bourne,UNIX for VMS Users,Digital Press,1990

[2] Brian Kernighan and Rob Pike,The UNIX Programming Environment,
Prentice-Hall, New Jersey, 1984

[3] Clifford Stall, The Cuckoo’s Egg, Doubleday, New York, 1989

22

[4] F. Abarghoui,O. Evans,U. Pabrai,H. Shah, FORTRAN Compiler Evalua-
tion of Fermilab Mandatory Requirements, Fermilab, TNOO57, 1991

[5] J. Nicholls, Fermi UNIX Environment, contfibuted paper to CHEPOI,
Tmnknba, Japan, 1991

[6] R. Brnn, 0. Couet, C. Vandoni, P. Zansrini, PAW, Physiu Analysis Work-
station, CERN Compute Center Program Library, Long Writeup, QlZl

[7] R. Pike, D. Presotto, K. Thompson, If. T&key, Plan 9 from Bell Labs,
AT&T technical memorandum

23

