*1 e Fermi National Accelerator Laboratory

FERMILAB-Conf-91/91

UNIX™ in High Energy Physics:
What We Can Learn from the Initial
Experiences at Fermilab

J. N. Butler
Fermi National Accelerator Laboraiory
P.O. Box 500
Batavia, Illinois 60510

March 1991

* Presented at Computing and High Energy Physics Conference, KEK, Tsukuba, Japan,
March 10-15, 1991.

Operated by Universities Research Association Inc. under contract with the Uniled States Department of Energy

UNIXTH in High Energy Physics:
What We Can Learn from the Initial
Experiences at Fermilab

Reported by J.N. Butler
Fermi National Accelerator Laboratory

March 21, 1991

Abstract

The reascns why Fermilab decided to suppart the UNIX operating sys-
tem arc reviewed and placed in the context of an overall model for high
energy physicas daia analysis, The strengths and deficiencies of the UNTX
environmenat for high enetgy physics are discussed. Fermilab's early expe-
rience in dealing with a an ‘open’ multivendor environment, both for com-
puters and for peripherals, is described. The human resources required
to fully exploit the opportunities are clearly growing. The possibility of
keeping the development and support efforts within reasonable bounds
may depend on our ability to collaborate or at least to share information
even more effectively than we have in the past.

1 Introduction

In 1989, the UNIX operating system had virtually no presence at Fermiiab,
In 1990, after & series of meetings with major collaborations, the general user
community, and vendors, Fermilab decided to officially support, and even to
encourage, computers running UNIX. In 1991, our work is ‘dominated’ by ac-
tivities associated with making UNIX useful for a wide variety of applications in
high energy physics. In this paper, we will discuss why this happened so quickly
and where we think it might lead.

In section II, we present a model of high energy physics data analysis and
indicate where UNIX has made major inroads and where it has not. We discuss
whether this is just an ‘accident of the moment’ or whether it is driven by some
fundamental dynamic. We describe the issues related to the areas where it has
not canght on and speculaie on whether it will eventually emerge victorious in
those areas as weil. In section III, we discuss the strengths and wenknesses of the
‘CNIX environment’. We include discussions of command language interfaces
(shells), zesource allocation and management, systems administration, applica-
tion language support, development environment, and network environment. In
section IV, we discuss the opportunities and pitfalls of the ‘open’, multivendor
UNIX marketplace. We express some concern about the level of support that is
required to fully expioit these ‘opportunities’. We touch briefly on similar prob-
lems associated with third party peripherals, which, while not strictly a UNIX
issue, is definitely part of related drive towards openness and interoperability.
In section V, we make some suggestions for increased cooperation and perhaps
even for outright collaboration tc help deal with the ‘new culture’ of openness in
order to capitalize on the opportunities and avoid the pitfalls described earlier.

2 How Fermilab wound up supporting UNIX

The three main reasons why Fermilab ‘decided’ to support UNIX systems were:
1. Economics
2. Economics
3. Economics

To understand this, we need to remind ourselves about how we do physics
analysis in HEP. Figure 1 presents a model of high energy physics analysis
as practiced at Fermilab and, undoubtedly, at the other HEP labs. The raw
data sets collected by experiments are in the range of 1 to 10 terabytes. The
ultimate goal of these experiments is to produce papers that tell us something
new about the fundamental interactions of matter and they will finally do that
in a collection of papers that will surely be less than 2.5 megabytes (about 1000
printed pages). The skillful and expeditious reduction of the massive amounts

AW FARMS
-

expts ~dy DATA

00

DESKTOP analysis/

NN sy
event stripping/
‘\server event

/'
AN - selection
~<s30 .\foo:J
st's

Figure 1: Physics Analysis Model

of raw data to the few (at most) megabytes of prinied words and and some plots
is what we call ‘data analysis’.

The enterprise divides up into several paris:

1.
2

Event Reconstruction.

Interesting event or ‘candidate’ selection. This step may be divided into
several parts and may be associated with data compression and reformat-
ting. Major physics judgements have to be made at this point.

- Event serving- the provision of samples of events, usually sorted by physics

topie, to individuals. The individuals are frequently organized in teams
which attempt to coordinate data set needs.

. Physics analysis— the search for signals and the extraction of physics in-

formation from them.

Report/paper preparation.

Table 1: CPU MIPS/megabyte/s for various analysis activities (estimated)

group | reconstruction | strip/filter | dst | micro-dst/
(generation) analysis
CDF3&9 2100 22 20 -
Do 250 5 - -

DoMC 5000

ET08 750 60 - -

E68s 1200 80-600 50 50

EB87 2000 500 50 50

Each part is characterized by & somewhat different range of compute cycle
and IO requirements. In parallel with all these activities, of course, are the
never-ending activities of program development and communication. The gen-
eration and analysis of simulated data (Monte Carlo) occurs at every step of
the process.

2.1 UNIX for event reconstruction

Table 1 shows the compuie/IO ranges of typical Fermilab programs at the var-
ious analysis stages, measured in MIPS/megabyte/s of I0. For comparison, a
MicroVax III connected to an Ethernet can do about 3 MIPS/megabyte/s so
any task requiring a higher number would be compute bound on a MicroVax
IIL. The reconstruction step is typically very compute intensive and the analysis
activities at the ‘downstream’ end tend to be IO limited. It is interesting that
some experiments move from CPU limited to IO limited as they move down the
analysis chain until they get to the final physics analysis, where there are many
highly compressed events that still need significant computing cycles to process,
At that point, they may become CPU limited at their workstations. This hap-
pens, for example, in fixed target programs with vertex detectors where there
usually is & pass over the vertex assignments which involves a large number of
fits per event. The issue of how much computing is required for the final physics
analysis is a very important one. Table 2 shows estimates of the CPU cycle re-
quirements in VAX-years for several Fermilab experiments. It is clear Fermilab
could never support this activity at the cost of $50,000 per VAX equivalent
that we paid for our last mainframe acquisition. Even the present day cost of a
Microvax III type machine, approximately $1500/VAX780-year leaves us with a
bill of many millions of dollars. Figure 2 shows the cost of computing on variouns
platforms. It was clearly the low cost of cycles on the RISC processors and the
steep derivative which aroused our interest in these processors. Because they
all seem to run UNIX, we were forced to get interested in that as well. We will
discuss later the nature of the connection between RISC and UNIX.

When we look back over the last year, one of the major turning points in

Table 2: Estimated CPU requirements for first pass event reconsttuction in
1990-1992 time frame for selected experiments

group | total VAi—yeara for
| reconstruction
CDF91 1200
E665 350
E887 4060
ETT1 2000
D091 250
ET91 2000-5000
Cost/MIP
1000000 +
100000 +
= mme |
10000 + D Main Frame ¢
* wore VAX i
1000 +

!
100 +

1987 1982 1983 1984 1985 1984 1087 1048 1982 1990

Figure 2: Cost of Computing Cycles

computing at the lab was CDF’s decision to use RISC/UNIX machines in their
level three trigger. Since the desire was to make selections based on a very
sophisticated calculation, this required the coilaboration to commit itself to
porting a significant fraction of all its code. Early in this process, CDF reached
the conclusion that it should bite the bullet and port its entire offline analysis,
which is by far the biggest code at Fermilab.

2.2 UNIX for interactive programming and graphics ap-
plications

There is a second front for UNIX at Fermilab. This beachhead is not in the HEP
physics data analysis area but in the area of technical and scientific computing
and drafting. Fermilab has a great number of CAD uasers, drafters doing draw-
ings and engineers doing solid modelling and finite element analysis. These
activities require major CPU cycles ard good graphics capabilities. Most of
these groups started with VMS and used commercial products such as IDEAS
from SDRC. As they begin to suffer from poor response time, they are begin-
nirg to move to more powerful UNIX systems which can run the same sofiware.
These groups do not do very much applications development. Other groups,
such as the accelerator theory group and the astrophysics groups, that develop
applications which employ sophisticated graphics and require significant CPU
tesources also use UNIX platforms. Whether the issue is interactive response ot
availability of ‘production batch’ cycles, the choice is driven mote by cost issues
than a basic love of the UNIX cperating system

The point of all this is that the progress of UNIX systems in Fermilab is
driven from the two ends of the analysis chain— the compute intensive recon-
struction demand at the top of my picture and the graphics application on the
desktop. We do not know whether UNIX will achieve dominance for physics
analysis. It probably will for those users who are CPVU limited on MicroVAX
type processors, but those who are IO limited will probably not feel any pres-
sure to switch. The middle ground in the analysis model invoives heavy ‘event’
and file serving. The application of UNIX engines to this area is very uncertain.
VMS or VM may offer a fine way to provide data and file service to both VMS
And UNIX workstations and may achieve dominance in that area.

2.3 The relation between RISC and UNIX: accident or
inevitability?

All the reasons why UNIX was making progress at Fermilab were tied not to
desirable features of the UNIX operating system but to its association with the
new RISC technology. In looking towards the fuiure, one is compelled to ask
whether this association was an accident or whether is was an inevitable match.
One can then ask whether this situation will persist or whether it is a transient
phenomenon.

We would argue that the match is inevitable and will endure for the forsee-
able future (i.e. the next few years). UNIX achieved its acceptance during a
period of rapid development of new CPU’s. If one compares the time it takes to
develop a new generation of CPU compared to the time it used to take to write
& proprietary operating system, one sees that certain characteristics of UNIX
make it especially suitable for a period of rapid introduction of new technology.
These are: ‘

¢ Its portability. There are several aspects of this. First, you can get it
tunning on your system in a short amount of time so that you introduce
complete systems at the pace determined by the technology. Second, if you
introduce a ‘better’ machine, people can move to it easily. They are not
locked in by their massive development in existing, non-portable software.
This is, of course, a double-edged sword.

¢ Its availability. It is easy and inexpensive to get the UNIX source code
and the right to use and modify it. You have an almost open environment.

e Its suitability. Its not & bad system and many of its problems can be
covered up with ‘value-added’ user interfaces-just the area where vendors
like to differentiaie their products anyhow.

These are advantages for the vendor. The user realises many advantages
as well. He can move between systems as tastes and needs change and as new
products offer new opportunities. He is not bound to one company which might
lose its creative energy or move in a direction which is not interesting him.
Competition will certainly result in lower prices and better products. With the
potential for a bigger market, more software developers will write code for these
systems.

We believe, then, that UNIX possessed features that guaranteed that it
would succeed in a era of rapid development of CPU’s. That trend will con-
tinue so we think UNIX, or some successor which emphasizes portability and
availability, will continue to grow in importance.

In this section, we have emphasized the attractive features of this dynamic,
competitive environment. It has a downside that will be discussed in a later
section.

3 The UNIX environment: The Good, the Bad,
and the Ugly

In this section, we discuss the UNIX system from the perspective of an unso-
phisticated UNIX applications programmer(me) and from the viewpoint of a
UNIX system administrator (several of my colleagues at FNAL).

3.1 Good aspects of the UNIX environment
3.1.1 Intrinsically good features about UNIX

UNIX was originally written to support a software development environment.
It has many strengths with respect to other operating systems, including VMS.
Some of these are:

* The ability to sit ai a system from a vendor you’re not accustomed to and
find that the system works pretty much the same way your own system
works. There will certainly be differences and they shouldn’t be minimized
but usually there is enough commonality in the way the two systems are
organised so that by snooping around looking in directories you can get a
good idea of what resources are available and how they are organized. The
various ‘UNIX’es (pronounced UNICIES ?7) are like different dialects of
the same language rather than different languages.

® An emphasis on exiending the base operating system with user defined
command procedures. Commands are executed from a search list, called
a 'PATH’, which can include directories of user supplied command files
or applications. The emphasis on ‘tool building’ is deeply rooted in the
UNIX outlook.

¢ An emphasis on using low level tools to build higher level tools. Constructs
like ‘pipes’ and ‘filiers’ together with very powerful text processing, com-
mand interpreting , and lexical analysing facilities permit one to make
very powerful procedures quickly.

¢ Ease of output and input redirection. It is very easy to send output to
a file from a screen-oriented application or to send input from a file to
an application that was written for interactive input. This is more natu-
ral, and therefore more frequently used, than the approach of redefining
logicals to redirect IO.

o The ability to run processes in ‘background’ while continuing your interac-
tive session. Used in conjunction with IO redirection, this makes it easy to
keep several parallel activities going. UNIX, in general, expects a user to
have many processes going at once and makes liberal use of subprocesses
in its normal operation.

* The availability of a powerful utility for generation of up to date executa-
bles with minimal recompilation— the make utility.

¢ The availability of a ‘preprocessor’ for source code, the C preprocessor,
which can also be used to advantage even in a FORTRAN environment.

¢ The incorporation of performance profiling tools in a very straight forward
way into the compiler and run time environment.

e The ability to ‘archive’ files in a standard format which allows them to be
read by UNIX systems from other vendors.

* Good network access. UNIX networking, based on the TCP/IP protocol,
has developed rapidly and is well supported by facilities available to the
user. ‘Trusted host’ operations, such as remote login ‘rlogin’ , remote
file transfer ‘zcp’, and remote procedure execution ‘rsh’ are widely used.
Data may be shared between systems by products such as NFS which are
widely available. Support of these protocols is now available on VAXes so
that access to data on VAX/VMS systems is available. ‘Non-trusted’ host
tools, such as Telnet and FTP, are also available.

o Task-to-task communication across the network. Socket interfaces are
reasonably easy to implement. I have seen more interest amongst users in
doing this on UNIX systems for database access than I observed on VMS
systems using DECNET task-to-task communication.

Many of these features of UNIX are available in VMS. The features noted
above seem to me to be more ‘natural’ in their UNIX form than in their VMS
incarnations. It has been my experience that physicist/programmers have an
easier time getting started on a VMS system but rapidly plateau in their capa-
bilities. In UNIX sysiems, it takes longer to get started but people routinely
achieve competence with powerful facilities such as MAKE and the PROFILER.
The corresponding tools in YMS, CMS/MMS and PCA, are rarely mastered by
the average physicist/programmer.

3.1.2 Features that come from RISC

There are other aspects of programming on UNIX systems that emerge from
their close association with RISC systems. Since the conpection is not acciden-
tal, these should be counted as advaniages of the UNIX environment. These
include:

» The availability of efficient FORTRAN compilers which support most of
the popular VAX extensions,

¢ The speed with which compilation and linking can be done.
o The speed with which bugs can be ‘reached’.
e The speed with which graphics can be generated and screens updated.

¢ The availability of of standard Graphical User Interfaces and the CPU
power to use them.

e The availability of graphical interfaces to the UNIX system itself which
use pull down menus and other such devices to eliminate the need to
remember the somewhat obscure UNIX commands and options.

» The ability to support several windows efficiently.

These advantages exisi mainiy because the most powerful CPU’ available
for interaciive use are RISC/UNIX systems.

3.2 Bad stuff about UNIX

The UNIX environment has many frustrating features. Some of these are mere
anncyances that can be routinely overcome afier a few days of use. Some,
however, have lasting impact and can result in lost productivity.

From an application programmer’s viewpoint the most annoying features
are:

e Obscure command names. Command names such as ‘grep’,‘biff’, ‘awk’,
‘df?, ‘du’, ‘ls’, ‘chmod’, etc. are not very helpful. Some have interesting
stories behind them. I have not found this to be a terrible problem since
You can ‘alias’ sensible names to them and, anyway, you get used to them
after a while.

e Command non-orthogonality. Many of the commands have overlapping
functionality and imited ‘scope’. This sometimes gives you several options
to chose from which means you also have more ways to make mistakes.

» Totally obscure and inconsistent options. Commands may be followed by
one or more options. No aitempt has been made to make the options
consistent across commands. For example, in the command, ‘ps’, which
returns process status (not too bad)

Ps -u mynane

the ‘u’ gives me the status of processes run under ‘u’sername ‘myname’.
That seems to make sense. However, in the remote login command,‘rlogin’,
the option which allows you to supply a username (so you can login to the
remote sysiem under a different user name) is *-1’. Under VMS, when such
& parameter is required it appears rather consisiently, in many commands,
as

/username=mynams

Moreover, options seemed to have been added by the requirements of the
moment and frequently you can’t do what you want even though you could
prcbably do almost everything else. I view this as a serious problem. You
can ‘alias’ you favorite command strings including options but this gets
messy.

10

= ("ase sensitivity. This is new 1o VMS and VM users and results in some
problems but vou eventually get used to it and may even use it to advan-
tage.

= ‘Launch and Pray’ command line editing. The command line editing is
unnecessarily obscure but the main problem is that after you issne what
looks like a “old fashion’ line editor (TECO-like) command, vou can’t see
the new command before it executes without doing really arcane things.
This problem was fixed by providing a procedure, ‘cedit’, at Fermilab 1o
make ‘VAX-like' command line editing avaitable under the C-shell. This
was not very difficuit to achieve but apparently is in violation of the ‘right
way to do UNIX'. Fortunately, at Fermitab we haven’t been able to locate
the man page on ‘the right wav to do UNIX® s0 we can move ahead in
our lgnorance. Which brings me to my next paint.

« Keally crummy documentation. The man pages are not all that grear.
The cptions, which is what you really usually want to know about, are
not alphabetized!! There was a rumor that someone had invented the
concept of ‘the example’ in UNIX man pages but it turned out to be
untounded. (You can fix this by reading ‘UNIX for VMS Users’ by Philip
E. Bourne[l], ‘The UNIX Programming Environment’ by Kernighan and
Pike[2], and many other excellent books). In the former, the author at-
tempts 1o ease the shock of transition for VMS users by actually giving
examples of commands and procedures.)

e The Lumit of one version ol each file. This turns cul not tu be such a
terrible drawback and probably saves some disk. When I siarted using
TINTX systems, I thought this would be a very severe problem.

e The failure to support filename extensions. You can legally include “.abe’
at the end of the filename but the system utilities, for the most part, do not
support any system of defaults. Many groups adopt standard ‘extensions’
for use on UNIX systems so that they can keep track of their files even
though they have to keep typing the extra characters all the time. Tle
groups invariably choose extensions which look suspiciously like ‘defanlt’
VAX filename extensions.

« lilename length limitations. UNIX originallv limited filenames to 14 char-
acters. Most systems have done away with this but some still have utilities
that do currous things 11 the filename exceeds 14 characters.

e Very serious limitations in the way you can sel up your environmeat. For
example, UNIX supporis "environment variables’ which can act sort of like
VAX Logical names , but the space availalle for them is limited to 5120
characters/process. OK for a single, lonely user. Not good for someone
trving to set up the ‘CDF environment’, for example.

11

¢ A somewhat strange view of file structure. UNIX files are viewed by
the systems as ‘byte streams’. This is simple and elegant but totally
inconsistent with, for example, FORTRAN’s record oriented approach to
files. FORTRAN covers the distinction up for you and makes it look like
there are records. But there are some curious effects. For example, ihere
are no ‘headers’ in the file system that tell you about record structure
so you had better remember how you wrote those files. You run into
situations where you move files from a VAX to a UNIX system (loosing
some information about the structure on the way), then move them back
and discover that you can no longer read them (at least in the same way).

® A somewhat strange view of devices. Every device is associated with a
file and all operations on the device are ireated as operations on the file.
This produces some really strange behavior. One gets used to this but it
can be very confusing to a novice.

e The occasional tendency of the system to move you out of the ‘shell’
(command interpreter) that you are working in— at Fermilab typically the
C-sheli into some other shell, usually the Bourne shell. This is akin to
falling out of VMS and into VM.

e The occasional tendency of the sysiem to move your job into ‘background’.
To a novice, this is like falling off the end of the earth.

3.3 The UGLY: Things either completely missing or done
so badly that you wish they were

Under the category of things missing completely or done really badly we have:

¢ Security. This is the stuff out of which legends are made. Also, reputa-
tions! You can read about this in ‘The Cuckoo’s Egg’ by Clifford Stoll[3]
and in many other popular books. Many obvious holes have been closed.
But, be warned that many UNIX systems come ‘out of the box’ with most
of their security features disabled. Specific issues are eight character pass-
words, readable passwords in several places on the system, and lack of
fine-grained granularity in assigning privileges.

¢ Cluster management: UNIX does not have a true ‘cluster’ scheme. This
places a major burden on support staff. This is somewhat mitigated by
the fact that much of the infrastructure for making a kind of cluster en-
vironment, such as NFS and Yellow Pages, are in place and solve some of
the problems. Much better facilities are incorporated into SVR4 and are
planned for future releases. The keepers of UNIX have acknowledged the
problem and are moving towards solving it. They are not there yet.

12

¢ System management. Utilities aze often poor. There are no individual user
disk quotas and no ACL’s (in some UNIX’es). Many of the utilities have
‘bugs’ which are not fixed but simply documented and achieve the status
of features. Some parameters which should be adjustable aze ‘hardwired’
into the kernel and would require a rebuild (assuming you had a source
license).

e There is no real batch system (although third party products are becoming
available).

e There is no real resource management or allocation scheme.

e Tape support is very poor. There is no tape drive allocation scheme.
There is no support for labelled tapes in the system (so this is done from
within the application).

¢ Backup is combersome especially in a large system of workstations.

o There is really no one who takes responsibility for the problems with UNIX
commands and features since ‘your’ vendor didn’t write it.

» There are two competing organisations trying to determine the future
development of the sysiem.

3.4 How does it all add up?

We have come to believe at Fermilab that UNIX is ‘acceptable’ and that we
can live with it. We are drawn to it because of its association with the only
cost-effective solutions to part of our computiing problem and NOT BECAUSE
OF ITS INHERENT DESIRABILITY AS AN OPERATING SYSTEM. In the
grand balance sheet, it not so bad as to erase the economic advantage that it
brings.

4 The Joys and Agonies of the OPEN MULTI-
VENDOR environment

Once Fermilab decided to support UNIX, it became inevitable that we were
going to support more than one vendor and, therefore, several 'UNIX’es. The
reasons for this are:

¢ Law. We are bound by competitive bidding rules so it was impossible to
really restrict ourself to a single vendor even if we had wanted to. In fact,
Silicon Graphics and SUN each won major bids in the early going.

13

s Opportunity. Once you build a ‘UNIX infrastructure’, the cost of adding
an addijtional vendor, while not by any means negligible, is not large com-
pared to your original investment and, at least within limits, you can reap
some benefits by promoting competition for your business. Much more
will be said about this in the remainder of this section.

e Circumstance.

1. A national lab like Fermilab is part of an ‘extended’ enterprise which
includes other laboratories around the world and many universities.
Choices made by these institutions, especially our wniversity collabo-
rators, must affect what we choose to support because making them
efficient is one way to advance the lab’s scientific goals.

2. A national lab like Fermilab is composed of many groups which have
their own unique needs and possess the computing skills to reach
their own conciusions on what platforms are besi for them.

The sum of all these forces proved to be irresistible and Fermilab has already
become a multi-vendor lab for UNIX.

Whatever the perceived benefits of supporting a multi-vendor, multi-platform
environment, there are many, many problems which should not be ignored or
minimised. Obviously, there are major suppott problems. The basic point is
that the answer to every simple question is now a ‘vector' and the answer to ev-
ery complex question is at least a two-dimensional ‘matrix’ or table. Tom Nash
refers to these as ‘M ATRICES OF INCOMPATIBILITY’. Every entry into one
of these matrices represents a significant effort. A few examples will illustrate
this point.

4.1 How good is your FORTRAN compiler?

This question has several components. How many bugs are known to exist
in the present release? How many will you discover as you port your code?
Which VAX extensions are supported and are they REALLY supported? Is the
FORTRAN ‘environment’ adequate to the latgest codes you anticipate running
and does it have all required facilities? How efficient is the compiler for your
application? Each of these questions must be answered for each vendor.

In order to get even an approximate answer to these questions, you must
develop a ‘benchmark suite’ of applications which represents the typical codes
you really plan to run and you must develop & checklist of useful features and
extensions which you can verify. We did this for a recent acquisition and it took
several months and the cooperation of many people. For example, this is the
collection of ‘benchmark codes’ which were contributed:

1. ‘QCD calculation’, & code that emphasized floating point calculations in
a few tight loops.

14

2. GEANT simulation of the DO detector— a very large computationally com-
plex code which reflects the activities of a lazge collider program.

3. E691 tracking code- a ‘fixed target ' event reconstruction code, This read
from and wrote to 8mm tape.

4. E400 tracking code~ a ‘fixed target’ event reconstruction code. This read
to and wrote 8mm tape,

There are many other worthy candidates for inclusion into such a suite. We
may add to it in the future. We are also likely to get some ‘standard’ suites—
like the SPECMARK suite- for comparison, It is important to note that we
were doing much more than just testing compiler and machine performance. We
were checking that the platform supported the peripherals we weze interested in
and that it supported very lazge codes. We were, in particular, very concerned
about the ability to handle programs with many thousands of subroutines and
to successfully read and write 8mm tapes. We have developed a standard list of
mardatory and desirable properties of the so-called ‘developer’s environment’
to make sure that the system is really ‘useable’ in an HEP environment. This
includes, for example, a list of third party products that we expect to be avail-
able.

At Fermilab, we have a large number of VMS-based applications program-
mers. These people use VAX extensions in their code. We can hardly fault them
on this since moat vendots have acknowledged the value of these extensions and
supported some or all of them in their FORTRAN compilers. Moreover, most
of these extensions have been included at least functionally in Fortran 90, a
tacit acceptance of the reality that VAX FORTRAN has been a de facto semi-
standard for the late 1980’s. Fermilab attempted to define a set of ‘mandatory’
extensions for acquisitions and a set of ‘semi-mandatory’ extensions (you were
allowed to miss two) based on a study of various compilers. Below are lists of the
mandatories and semi-mandatories and a table showing which VAX extensions,
of this subset, are NOT supported on each of several sysiems. There is much
more variability in the VAX extensions that fell outside this list.

A program, called Alice, was written to verify that these extensions resily
worked as claimed[4].

Of course, even this table doesn’t tell the whole story. Something as simple
as the ‘OPEN’ statement has all kinds of ‘features’ that affect its ‘portability’.
One amusing one (except to people who discovered it) is that the one compiler
uses a ‘byte-count’ for all logical record lengths whereas a VAX sometimes used
a byte-count and sometimes a (long) word count. However, you can make the
compiler look ‘just like & VAX’ in this respect by using a special compiler switch.

15

Table 3; Fermilab Mandatory Requirements
Symbolic names
INCLUDE statement
Data Types INTEGER*2, REAL*4, REAL*S
Optional DO-loop Label
Cross-language Access
Read/Write 32,760 bytes
Read/Write Unblocked Tapes

=1 G b B

Table 4: Fermilab Semi-Mandatory Requirements
Comment indicator
Debugging Statement Indicator
Tab format lines
Byte Daia Type
Hex, Octal Data Constants
Mixed COMMON BLOCK
IMPLICIT NONE statement
NAMELIST Statement
DO WHILE Statement
Hollerith Constant
Built-in Functions %VAL() and %REF()
O Field descriptor
Z Field Descriptor
Bit Manipuiator Routines
ANSI Flag
Profiler Utility

P et g ek ek b b
e el il el ol =l N I - R S

Table 5: Fortran ‘semi-mandatory’ evaluation for various vendors
system Failed Feature
SUN Hexadecimal Constant
DEC Ultrix Hollerith constant, ANSI flag
IBM AIX INTEGER*2 or similar function type, TAB formatting
5GI Hollerith constant, ANSI
Sony NEWS-0S NAMELIST, Hollerith Constant,ANSI flag

16

VMS Amdahl
CERN X X
D1-3000 X | X
TopDrawer X X
GKS X X
Printing X X

Figure 3: 1989 Graphics support matrix

4.2 How do you support graphics applications under UNIX?

Graphics needs to be availabie on & vatriety of UNIX workstations. Even those
platforms that are being used mainly as reconstruction farms need to have devel-
opment environments and people immediately request graphics for histogram-
ming and event display. These tools can really facilitate program debugging and
validation. Figure 3 shows our ‘graphics’ support matrix about a year and half
ago. Figure 4 shows our present ‘graphics’ support matrix. Life ain't getting
no simpierl!!

4.3 How does 8mm tape support work on UNIX systems?

The use of 8mm tapes for recording data and the output of reconstruction
passes is now ‘standard’ at Fermilab. This medium is also employed at the
workstation level because the drives are 50 inexpensive and they are also used
for system backup of both central and local systems. 8mm is now available on
every cenirally supported Fermilab platform, including the Vax Clusters and the
AMDAHL, and on ACP I farms. We are therefore required to understand the
behavior of these devices on UNIX platforms. There are many aspects of this
problem. There are two modes of recording— fixed and variable block. There are
two kinds of file marks— long and short. There are several options for controllers.
Firmware is always changing. Figure 5 shows a mattix, one of many that must
be considered, of ‘8mm features seen in different envircnments’, at one particular

17

VMS Amdabl SGI SUN Ulgrix IBM
CHERN x b'e b'e x o
DI-3000 —x X]
TopDrawer —-x
DEC-CGKS _x x
sun.cks | X |
GK-2000 —X X X X X .
PHIGS _X X X X .
Printing —_x x x x x]
X Windows _-x x x X .
X terminsls —x x x b'e

Figure 4: Present Graphics support matrix

moment in time. Some of these entries are now already out of date. Figure 8
shows another matrix of how various platforms interface with various controllers
and firmware versions. The point of this is that much more work has to go into
these efforts if we really want to capitalise on the opportunities represented by
the open UNIX environment and the open peripherals marketplace.

4.4 The MULTI VENDOR environment revisited

The point of presenting all these tables is that you have to work hard to realize
the benefits of a multivendor environment. While this may seem like an obvious
point, there are iwo teasons for harping on it:

® It may not be obvious how difficult it really is. If you underestimate the
problem, you will surely get yourself in trouble. If you overestimate, you
will scare yourself out of real opportunities.

¢ It may be very hard to control the number of platforms no matter how
hard you try, for the reasons described above.

18

61

ARA NN - S\
AR A\ -\ -

w0
AR

Y

k3

X

R\

AN\

\\\\%\
NN
W

}S1Q WIISAS 8101SaH

/ §aMmi9eg 10) ojgenns
e
/{,,/{’ 1HOddNS WALSAS DNILYHIJO
y / . uoddng pauniosruisun
WoaHngS FqeTTISNY Uo-Ppy
el LGNS e T RSNV ORI
?: " ONIHNLONHLS 3114
5 S9ANQ . ANPOWWOD),, 95N
// \ ALIDIHANID
h } \ 10ydepy ISOH 494310,
/ X SYIEW Ofl4 BUO'] 10 HOUS 900D
$,-(' A AlNIgv3asvy3
’”f Bujwyy (01U0D
($10413 |9A3]-MOT] 3ulwex3
/n ety demsakg 199)0$
ey KiSedes MO
A O UGG
i 50T WATIER
§550[g difeueA
ﬁgﬁ S0 PIXId
el vLva ONILIHMWONIavId
)

/

3S103HdNI

38 Ol

HONON3
1OVHLISHY «

,SluawiuoJiAug
uasalia

ul usag se
sainjead wweg

5 Major issues for the future

5.1 How extensively will UNIX/RISC systems permeate
the analysis model?

At the moment, UNIX systems are dominating the reconstruction and Monte
Carlo enterprises at Fermilab. They are making great progress on the physi-
cist’s desktop and for physics analysis at Fermilab’s collaborating institutions.
They are ‘naturals’ for compute servers for workgroup clusters. We can not
tell whether they will succeed at ‘event/file serving’, especially where VMS file
compatibility is required, but UNIX networking seems to be leading the way
towards this. I don’t think the issue is yet settled but it would not surprise me
if UNIX came to dominate all aspects of the analysis model at Fermilab. Even
if it doesn’t take over the ‘event/file server’ business, it is clear that whatever
system does must connect easily to systems running UNIX.

5.2 How will UNIX develop?

The UNIX community is attempting to address many of the same issues that
concern us. The workgroup cluster concept, discussed by Tom Nash, is being
developed by several institutions. The recent discussions of ‘PLAN 9°[7] center
on just the same issues that ought to concern us.

5.3 How will users adjust to UNIX?

There are basically three ways to cope with the deficiencies of the present UNIX
environment:

1. Learn to love it as an 'acquired taste’.

2. Fix what we don’t like. We can do this because we don’t have any loyaity
to UNIX. This would include:
¢ Hiding the variations, in the manner of the FERMI UNIX ENVIRONMEN T15].
¢ Fixing the deficiencies with a layer of procedures, such such as Fer-
milab’s ‘cedit’ program.
¢ Adding thizrd party products such as EDT+ or NQS to improve what
is there or provide something which is missing.
¢ Developing what is missing, such as labelled tape support.
3. Hide it. This can be done by developing ‘application environments’ which
si$ on top of the operating system and shield the user from it. The CERN

Physics Analysia Workstation (PAW) package [6] is an example of this
approach,

20

5.4 How can we control and mitigate the escalating sup-
port requirements?

5.4.1 Limit the number of platforms

Fermilab has decided to limit the number of ‘fully supporied’ UNIX platforms
to three. It may be necessary to add partial support for a fourth. We will
review the supported systems periodically to understand whether one cught to
be dropped and another added. We will undoubtedly forgo some ‘opportunities’
but hope that competition in the marketplace will force our selected vendors
to stay attractive. The association with three or four companies should assure
that at least some will stay dynamic.

5.4.2 How can we lighten the load?

The key ways that we can manage the situation are:

¢ Devoie some resources to constant evaluation of new platforms, products,
etc. Keep on top of your preferred vendors and any potentially interesting
competitors. You have to know the market, if for no other reason than to
defend your choice of selected vendors.

¢ Communicate information widely, both formally and informally, so studies
don’t have to be repeated within the organization.

¢ Pursue sources of information at other labs, universities, and with industry
wherever possible.

» Try to standardize the systems support envitonment as much as possible.
This includes adduser utilities, backup utilities, printing, etc. The FERMI
UNIX ENVIRONMENT addresses this issue.

e Try to develop a standard user environment so the different flavors of
machine look similar to an applications programmer. The FERMI UNIX
ENVIRONMENT addresses this issue, as well. This heips the users and
simplifies support and consulting.

¢ Adopt proprietary tools which can be made available on all supported
platforms. Try to chose tools the will be within the budgets of university
groups. Always support at least one solution that is non-proprietary.

Each of the items above could be applied across the HEP laboratories as
well. Iff we can work in collaboration, we can achieve two major goals:

¢ We can distribute the load so that we don’t wind up supporting the same
functionality several times.

21

» We can create an environment in which physicists, computer scientists,
and engineers can move from lab to lab and work with a familiar envi-
ronment. This will be especially important in the SSC/LHC era where
people wili be working on existing programs at Fermilab and LEP while
participating in start up efforts at the new machines.

6 Conclusion

The UNIX world is filled with opportunity. The low cost and high power of
these systems can open up new possibilities at any stage of the data analysis. To
realize these advantages, we must apply more effort to evaluation and support.
We must chose carefully so that we can stay within the limits of the avaiiable
manpower. I would like to summarize the situation by reminding you of the
caption from an cold POGO cartoon:

"We are confronted with unsurmountable opportunities’

At Fermilab and elsewhere, we are beginning to overcome the obstacles and
realize the opportunities, HEP is already benefitting and will continue to do so.
It is worth the effort!

Adcknowledgements:

Many people at Fermilab have contributed to my knowledge of UNIX and of the
issues discussed in this paper. I would like to thank the following groups: AC-
CESS Liaison Group (leader Judith Nicholls); Online Support Group (leader
Ruth Pordes); Central Computing Department (leader Peter Cooper); Dis-
tributed Computing Department (leader Al Thomas); Physics Analysis Tools
Group (leader Paul Lebrun); and Computer Research and Development(leader
Joseph Biel). The fact that this list includes every software group in the Fer-
milab Computing Division reflects the breadth of our effort on UNIX. I would
like to thank the following individuals for specific discussions that were used in
preparing this paper: Frank Nagy; Tom Nash; Randy Herber; Matt Wicks; Don
Petravick; Dick Adamo, Jack Pfister, Irwin Gaines, and Vicky White.

References

(1] Phillip E. Bourne, UNIX for VMS Users,Digital Press,1990

(2] Brian Kernighan and Rob Pike,The UNIX Progremming Environment,
Prentice-Hall, New Jersey, 1984

(3} Clifford Stoll, The Cuckoo’s Egg, Doubleday, New York, 1989

22

(4] F. Abarghoui,O. Evans,U. Pabrai,H. Shah, FORTRAN Compiler Evalua-
tion of Fermllab Mandatory Requirements, Fermilab, TN005T, 1991

(5] J. Nicholls, Ferm.l UNIX Environment, contnbuted paper to CHEPO1,
Tsukuba, Japan, 1991

[6] R. Brun, O. Couet, C. Vandoni, P. Zanarini, PAW, Physics Analysis Work-
station, CERN Computer Center Program Library, Long Writeup, Q121

[7] R. Pike, D. Presotto, K. Thompson, H, Trickey, Plan ¢ from Bell Labs,
ATXT technical memorandum

23

