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ABSTRACT

In this paper we present various treatments of plasma wake-field phenomena
which employ multi-fluid models. These models generalize the one-dimensional,
nonlinear, relativistic single fluid model which has been used extensively in pre-
vious plasma wake-field calculations. Using a two-fluid model, we discuss the
interaction of a low energy continuous electron beam with wake-field generated
plasma waves. The phenomena of continuous beam modulation and wave period
shortening are discussed. The relationship between these effects and the two-
stream instability is also examined. Also, using a three-fluid model, effects due
to plasma electron temperature in nonlinear plasma wake-fields are examined
and compared to previous work. Finally, the consequences of ion motion induced
by large amplitude electron plasma waves are calculated by including the fluid

behavior of the ions.
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1. Introduction

The Plasma Wake-field Accelerator (PWFA), proposed by Chen, Dawson,
Huff and Katsouleas'" in 1984, uses electrostatic fields generated in plasma waves
driven by a relativistic electron beam. Charged particles can be accelerated in
this electrostatic wake-field to ultra-high energies, making this scheme attractive
for future high energy physics accelerators. The linear theory of the PWFA is
well developed, and extensive analytical and numerical treatments exist of such
issues as transformer ratio (the ratio of maximum accelerating field behind the
driving beam to the maximum decelerating field inside the driving beam) and
beam loading of the plasma waves. > Experimental observation, at the ANL
Advanced Accelerator Test Facility, of accéleration by the PWFA mechanism in

both linear and nonlinear regimes has been recently reported.m

Although the experiments performed in the nonlinear regime of the PWFA
displayed interesting three-dimensional effects, 1 only one-dimensional treatments
of nonlinear plasma wake-fields currently exist. This problem has been treated
by Rosenzweigﬁsl Ruth et al.” and Amatuni et al.” The theoretical methods
employed in these works are all based on the approach originally pioneered by
Akhiezer and Polovin in 1956." These general methods, in which the fully rela-
tivistic, nonlinear plasma wave motion was calculated using a cold fluid model,
were simplified for the case of relativistic phase velocity plasma waves by Noble"”
in his treatment of nonlinear plasma waves in the Plasma Beatwave Accelera-
tor (PBWA). Much of the subsequent investigations into the nonlinear plasma

dynamics in the PWFA is derived from these fundamental works. These inves-

tigations predict certain advantages of the nonlinear regime over linear PWFA



schemes. Operation in the one-dimensional limit of the nonlinear regime allows a
novel, straightforward method of transformer ratio enhancement, and lowers the
plasma density needed to achieve hi‘gh accelerating gradients in the -wake—ﬁelds.
There are no theoretical predictions as yet on the effects of transverse plasma

dynamics on this scheme.

The high transformer ratios obtained in the nonlinear scheme depend on
driving the plasma electron density waves to extremely large amplitudes. For this
reason, the maximum wave amplitude, which is limited by trapping of thermal
plasma electrons, has been investigated in detail.”"** For cool laboratory plasmas

(kT 22 10 €V), the transformer ratio R is limited to approximately ten by thermal
considerations. In Ref. 11 the motion of charged particles in the plasma wake-
fields is treated generally, to include both the trapping of background plasma
electrons as they are overtaken by the driving beam and the motion of particles

externally injected into the wake-fields.

Both trapping and injection of charged particles into the plasma wave imply
beam loading of the wave’s accelerating field. This problem is treated in the
- case of rigidly positioned beam charge distributions in Ref. 3 for the linear case
and Ref. 6 for the nonlinear case, and general solutions for the wake-fields in the
presence of beam loading have been obtained. The self-consistent motion of the
beam charge distributions is ignored in these treatments. Below we will provide
a bridge between the two approaches, by calculating the self-consistent effects
of beam loading and equations of motion simultaneously for a continuous, lower
energy electron beam as it is overtaken by an ultra-relativistic driving beam in a

plasma. This calculation requires that we generalize the previous single (plasma



electron) fluid treatment to include a second fluid, that of the continuous beam
electrons. We also discuss the relationship of the two-stream instability to this
result, and examine the potential use of this instability for amplification of plasma

wake-field amplitudes.

Once we have generalized the cold fluid model of these waves to include a
a beam fluid, it is straightforward to model plasma electron thermal effects by
a three-fluid model. In this case, one approximates the thermal distribution
of electrons by an initially stationary component and forward and backward
propagating electron ‘beams’ of initial velocity v = \/m This simplified
approach is quite similar to the waterbag model employed in Refs. 11 and 12; its

results are compared those previously obtained.

Finally, we can relax the assumption, made in all previous wake-field calcu-
lations, of infinitely massive, or stationary ions. The ion dynamics can also be
treated self-consistently as a second fluid in the problem. We discuss below the
effects of the ion motion on nonlinear plasma waves, and the implications these

effects have on the nonlinear PWFA scheme.

2. Modulation of Continuous Electron Beams

We begin our treatment of the interaction of a continuous electron beam
with plasma wake-fields by writing, in the spirit of Refs. 6 - 12, the cold fluid
equations for two fluids: the plasma electrons, and the continuous beam electrons.
We assume that the plasma ions form an immobile neutralizing background of

density no and define the plasma electron density n, velocity v = ¢, and the



plasma frequency w, = /4me’ng/m,). The continuous beam and velocity are
symbolized by n. and v¢ = fce¢, and ultra-relativistic bunched beam densities
and velocities (which are taken to be constant) by n; and vy, = Byc. The fluid

equations are thus

1B

V -E =4ne(no —n — ny — n;), VXE-}——E—:O, (1)
c
10E
VXB=zg-tlwe(nﬁ—{—nbﬂb-l—ncﬂc), V.-B=0, (2)
op
_é—t_ +va = —-C(E+ﬂ X B), (3)

where for the plasma electron fluid motion p = m.v/y/1 — 82 = ym,v is the
momentum. The analogous equation of motion for the continuous beam electrons
is obtained by substitution of v for v in Eq. (3). The equation of continuity for

the plasma electrons is
an
Vv - — =0
(o) + 22 =0, (4)

with an identical expression holding for the continuous beam electrons.

For the one-dimensional treatment we take the direction of beam propagation
to be 2z, and assume that there is no transverse motion. Additionally we assume
the wave motion is a function only of the variable 7 = w,(t — 2/v}), and, taking
the limit that the driving bunched beam velocity (and thus the wave phase ve-
locity) vy — ¢, we can obtain simple nonlinear differential equations for the fluid
motion."* The steps we have just described, which constrain the equations to de-

scribe a one-dimensional, steady state system, are the root of both the strength



and shortcomings of our general approach. These constraints allow integrable
equations which we can solve to yield physical insight into the system’s behavior.
On the other hand, if we try to relax the constraints to study the problems of
transverse effects or instabilities, the mathematics becomes intractable. Thus we
must discuss these problems in an approximate way, outside of the formalism of

the exact results we obtain through our present approach.

Assuming total charge and current neutrality before the arrival of the bunched
beam, and writing the initial unperturbed continuous beam density and velocity

as n.o and v.o = f.0 we have from the equations of continuity

n =1+6(,3¢0—1)

P (5)
and
Ne Beo—1
m =g 1) (6)

where € = nco/no. In analogy with previous treatments, we now introduce the
dependent variables £ = [(1 — 8)/(1 + 8)]Y2 and z. = [(1 — B.)/(1 + B.)]'/2, and

Egs. (5) and (6) become

nio = %(1 + %)[1 + f(ﬂco - 1)] (7)
and
Ze = %(1 = Beo) (1 + _12_) (&)
ng T

c
Under this transformation,the fluid equations derived from Egs. (1) — (3) reduce

6



to one expression

o = ol = et 5~ 1+ el = fuo) (5 — )] ©)

2
Z;

where the a@ = ny/ng; when a is piecewise constant, we can always find the
first integral of these equations. This expression can be understood physically by
noting that are z and z. are proportional to the electrostatic potential " and that
Eq. (9) is equivalent to the Poisson equation. That it is also the fluid equation of
motion can be verified by further noting that x = v(1—8) = (U —pc)/mec?, where
U is the total energy of the electron. Explicitly, we can write the longitudinal

electric field as

E = +(mecwp/e)z’. (10)

There are no magnetic or transverse electric fields allowed in this one-dimensional
model. Thus z, = z — A, where the constant )\ is evaluated from the initial

conditions to be

— [M]lﬂ _ [1 _ ﬂco]l/Z, (11)

M —e(1 + Beo) 1+ Beo

and the fluid equations have been reduced to a single elliptic equation. Upon

substitution of Eq. (11) we obtain the first integral of Eq. (9)

1 1

(@) = C—[2a+z+—+ el - o)z ~ —5))

(12)

The constant C is evaluated from the causal boundary conditions at the bunched

beam boundaries. As a simple example, for the wake-fields behind an infinitesi-



mally short é-function beam of surface charge density o, we have

_ (Wp%y2 1 a1
C—(noc) +z°+xo+€(1 ,Bco)(xo p—

); (13)

where zo = A+ [(1 = Beo)/ (1 + Be0)]/2. The electric field is now known explicitly
as a function of z, as eE = (mecwp)z’, and its maximum deceleration amplitude
is eE,, = 4we?o; directly behind the driving beam. The electric field also attains
this maximum amplitude in the wave’s accelerating phase, when z = ¢ and

' = —zf, = —(wpop/noc).

The solution to Eq. (12) can be written in terms of elliptic integrals, but this
does not illuminate the behavior of the plasma waves or the continuous beam
distribution well. However, one can deduce the prominent characteristics of the
continuous beam loaded wake-fields from inspection of Egs. (8) and (12). If the
beam is relativistic and ¢ <« 1, then 9 ~ 1 and A ~ 1 + € — 1/2v,0 where
Yo = (1 — ﬂfo)l/ 2 is the initial continuous beam Lorentz factor. If the driving
beam charge is large enough then the value of z = z,,;, at the density turning
point in the forward motion of the plasma electrons can approach A from above.
The continuous beam electrons build up a very high density near this point, as
can be seen by rewriting Eq. (8) as n./no = €(1 — Be0)[1 + 1/(z — A)?]. This
concentration of beam electrons is due to the wave potential’s near trapping of
the beam. As these electrons are accelerated to a very high energy ~.me.c? =
1/2(zc + 1/z)mec? =~ mec?/2(zmin — A), they load down the plasma wave and
become detrapped and decelerated after attaining a high energy. This observation
validates the assumptions used in deriving the saturation of wave amplitude due

to background trapping in Ref. 11. The continuous beam loading causes the wave



electric field to turn faster, as can be seen from Eq. (12). For 4.0 > 1, A =~ 1
and even small amplitude waves have nonlinear interactions with the continuous
electron beam, as once z < 1 the last term in Eq. (12) becomes dominant and
nonlinear. The local oscillation frequency increases dramatically in this case
due to the sharp buildup of the continuous beam electrons. The wave period is
shortened by this nonlinear effect, in analogy to the period shortening associated
with thermal effects.””! The modulation of the continuous beam electron energy
density corresponds to the excitation of a very nonlinear positive energy wave in

the electron beam.

.To illustrate the effects of beam modulation and period shortening we display
a numerical example. A wave is assumed to be excited by a §-function beam
with oy = 0.3¢no/wp, which gives an electric field amplitude of eEp,/mcw, = 0.3.
The wave electric field and perturbed plasma density ni/ng = n/ng — 1 — ¢,
in absence of a continuous beam, shown in Fig. 1(a) are slightly nonlinear, as
we have chosen a fairly large wave amplitude in which n;/ng ~ 0.3 is not very
small compared to unity. Upon introduction of continuous beam of initial speed
Beo = 0.99 (7,0 = 7.7) and € = 0.1, we observe the sharp peak of continuous
electron beam density which serves to nearly completely suppress the region
of positive perturbed plasma electron density, as illustrated in Fig. 1(b). The
maximum continuous beam density reached is approximately n. =~ 7.8ny (off
scale), and the maximum energy 7. ~ 62.5. The net wave period has contracted

to approximately 0.6 of the period shown in Fig. 1(a).

A physical criterion for strong buildup of continuous beam electrons can be

formulated by comparing the surface charge density necessary to reverse the wave



electric field to the integrated density of continuous beam electrons overtaken by
the driving beam in the distance it takes a point in the continuous beam to
slip one plasma period behind the driver. This gives a measure of the potential
strength of the low energy beam’s effect on the plasma wave. The criterion is
thus

€ E
> —om
l—ﬁcO mecwp

(14)

This expression shows explicitly the requirement that the continuous beam be
relativistic for significant nonlinear interaction with the plasma wave to occur.
If Eq. (14) is satisfied, then the continuous electron beam loading will cause
a sudden reversal of the accelerating phase of the wave. The concommitant
period shortening is pronounced in small amplitude waves, but not in very large
amplitude waves, as‘'the positive perturbed plasma electron density region is

already very short and spiky in this case. "

It is of interest to place these results in the context of linear plasma wave

instability theory. The dispersion relation for linear waves in the beam-plasma

system we have discussed it

w2 w?

P c
L4 "C -1 15
i (w—kv)2 (15)

where w? = 4me’n, / 'yfome. If we apply the additional wake-field excitation con-
dition w/k = v, then the solution to Eq. (15) must give purely real values for
the frequency and wave-number. Thus no absolutely unstable solutions which
grow exponentially with the distance behind a causal excitation moving at speed

vp can exist (this form of solution is allowed by our steady state assumption).
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The spatial and temporal characteristics of the two-stream instability are much
more subtle, showing both absolute and convective nature. The Green’s function
response of a cold beam-plasma system has been found to be a growing wave-

packet with frequency ~ w,, phase velocity v. and a group velocity two-thirds of

the beam velocity v, = 2v,/3.""

This result suggests that one might use the two-stream instability to amplify
plasma wake-fields. This is problematic for several reasons. The first is that
energy in the instability can only propagate at best at two-thirds the speed of
light, and thus wave energy obtained from the unstable beam can interact in only
a limited -way with accelerating relativistic particles. Also, since we wish to have
a relativistic phase velocity in the wake-fields, and we want to extract energy
from the low energy beam causally, we require the wake-field excitation to have a
speed v, > v.. Unfortunately, waves with phase velocity near v, have a very small
nonlinear saturation level,“sl as could be anticipated from our previous results.

Thus the instability is not likely to be of value for wake-field amplification.

Once the effect of modulation of low energy electron beams in plasma wake-
fields has ‘been experimentally achieved, it could be exploited as a source of
high-frequency high-power fields. By using the tightly bunched beam to excite
an RF cavity one could efficiently extract the beam energy in the form of elec-
tromagnetic waves. This scheme has been utilized by Friedman and coworkers at
NRL" to generate gigawatts of RF power. Plasma wake-field beam modulation
used as a bunching system may be of interest in extending this type of scheme
to high frequency; nonlinear plasma wake-fields have been driven in at greater

than 40 GHz in present PWFA experiments. Alternatively, a sudden lowering of

11



the plésma density at the end of the interaction length would shift the peaks in
the modulated beam density into a decelerating phase, and the wake-field ampli-
tude would grow linearly with distance behind the driving beam, resulting in a

potentially very large accelerating wake-field amplitude.

In order for the modulation of a continuous low energy electron beam to
be experimentally observed, the low energy beam must be stable in the interac-
tion time against plasma-induced instabilities. The two-steam instability growth
rate™” limits the the plasma length to L < (2¢//3)(2/w2w,) /3. The low en-
ergy beam can also be unstable with respect to self-focusing and filamentation.
- Since we have used a one-dimensional model, these results apply only in the
* limit that the beam is very wide compared to a plasma wavelength A, = 27¢/wp.
Previous investigations have shown that in this limit the beam is stable against
self-focusing but prone to filamentation (Weibel) instability. It should be also
noted that, if one assumes as we have here that the beam pulse is both wide
and long compared to a plasma wavelength, then plasma wake-field theory vali-
dates our assumption of charge and current neutralization of the beam to a good
approximation.[m The conditions for stabilization of the Weibel instability have
been studied by Su, et al."® The Weibel instability can be stabilized in this case
by Landau damping. If the transverse temperature T'; of the beam is such that
kT, /m.c? > €/2, then Landau damping will stabilize the beam against filamen-
tation. In terms of the invariant emittance ¢, and radius o, of the beam, this
inequality becomes ¢, > oy \/e/_Z"; Note that in this discussion we have retained

the notation € = ny/no; this quantity does not represent an emittance.

One must allow enough interaction time in the plasma for the modulation to

12



develop, however. This implies that the continuous beam slip by approximately
one plasma wavelength with respect to the driver, which can be written L >
Ap/(1 = Beo). As an example, we take a 2 kA continuous beam of energy v = 4,
emittance ¢, = 10~* m-rad and radius o, = 2 cm. If we choose the plasma
density to be 2.5 x 10'* ¢cm™3, then € ~ 107* and Ap =~ 2 mm. The beam is stable
against filamentation for these parameters. The modulation will develop in a

plasma of length L > 6.4 cm, while the two-stream instability e-folding distance

limits the length to approximately L < 10 cm.

3. Three-fluid Thermal Plasma Model

The thermal limits on one-dimensional electron plasma wave amplitude are
well known. Previous investigations have modelled the problem using plasma
electron trapping argumentsl”] and a warm-fluid waterbag model."” In this sec-
tion, we generalize the results of the previous section to provide a simplified
derivation of the maximum wave amplitude due to thermal effects. We consider
below an initial plasma electron distribution function approximated by three
equal density (no/3) components: a stationary part and forward and backward
propagating streams of initial velocity vy, = \/?W This model preserves
the essential features of the waterbag treatment without the complex derivation

of the nonlinear pressure term; however, it misses some subtle results of the

rigorous treatment given in Ref. 12.

In analogy with the results of the previous section, we can write down the

single equation of motion for the potential variables of the initially stationary,

13



backward and forward electron distribution components as

1.1 1 1

" " n

T =z_=z =~ t+t5+—5—3

v 6[_,52 +zz+x2 l (16)

respectively. By the arguments similar to those leading to Eq. (12), we can

rewrite this expression as

1 1 1

1
g[m+ +—'—2—3], (17)

"_ 4
2 (z—A4)

T

where the At are constants dependent on v;;. For electron temperatures k7T, <

mec?, we have Ay =~ A_ =~ Ao = v /¢, and the first integral of Eq. (17) is

1 1 1 1 1—()\2/322
+—+———+3m]=c—[_%
T —Ao

=) ~C—sleag Tzt G

+z|. (18)
The constant of integration is evaluated, for a é-function driving beam, to be
C =~ A% +2-)2/3, (19)

where again A = wpop/noc. The minimum allowed value of z is clearly i, = Ao.
In contrast to the equations of motion derived from waterbag treatments, how-
ever, Eq. (18) does not become mathematically ill-behaved (z — Xo) for a
certain value of A. On the other hand, we know from the Hamiltonian treat-
ment given in Ref. 11 that the forward component of the velocity distribu-
tion will be trapped when z =~ Xg + 1/-;, where ~; is the Lorentz factor of
the driving beam. The maximum value of A allowed before trapping is thus
Am = \//3%0 = [Yomec?/27kT.]/*, which is similar to the result of the wa-
terbag calculation presented in Ref. 11, up to the factor of '7;/ . The intro-

duction of this factor reflects the difficulty of trapping thermal electrons in an

14



ultra-relativistic phase velocity potential. This qualitative effect is also predicted
in the the more rigorous and physically complete treatment of the full thermal

effects on the one-dimensional wave amplitude found in Ref. 12.

4. Effects of Jon Motion

In this section we relax the assumption of immobility of the plasma ions by
treating the ions as the second cold fluid in the problem. We shall see from this
treatment that ignoring the ion motion is generally a good approximation, except

for certain interesting limiting cases.

Assuming the plasma electrons and ions to be initially at rest, with the plasma
and ion equilibrium density both equal to ny (ion charge state assumed Z = 1),
the equation of continuity for the plasma gives, in direct analogy to Eq. (7), an

expression for the plasma electron density

1

n 1
el

n_ 1 _ Ly,
- 2

=15 (20)

where z is as defined above. Likewise, if we define the variable z; = [(1-8;) /(1 +

ﬁ,—)]l/ 2, where B; = v;/c is the normalized ion velocity, we obtain the ion density

mo ot g @)

Thus the equations of motion for both fluids can be written as two coupled

equations; for the electrons

' = -[2a+ = — =, (22)



and for the ions

n__ _H 1 1
zi = —5[2e+ — - ;5], (23)

)
where p = m,/m; is the electron-to-ion mass ratio. As these equations both have

the same initial conditions, we can parameterize the solution of Eq. (23) in terms

of the solution to Eq. (22) by
z; — 1= p(l —z). (24)

Eq. (24) can be understood by noting that the quantities z; —1 and 1 —z are the
- electrostatic potential energy of the ions-and electrons, respectively, normalized

to their rest masses. Substituting Eq. (24) into Eq. (22), we obtain

_1_ _ 1
2 [L+pl-o)p

1
' = 520+ R (25)
This equation shows-that the effects of ion motion are ignorable unless pz is
not small compared to unity. This means that the plasma electron motion must
be extremely nonlinear — the electrons must have relativistic negative velocities
for this condition to hold. This condition is approached in the nonlinear PWFA

scheme described in Ref. 6. The first integral of Eq. (25) is

1,1
z  p[l+ p(l—z)

() =C—| - 2az], (26)

where the constant C is again determined by the causal boundary conditions in

the problem.
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As an example, for the case where the driving beam is chosen to give o =
ny/no = 1/2, nonlinear theory with stationary ions predicts'® that arbitrarily
large transformer ratios can be achi_eved. The valﬁe of z increases monotonically
within the beam, indicating an approach to total charge neutralization, and thus
a constant decelerating field within the driving beam. The transformer ratio
obtained is related to the final value of z = zy; it is simply R = 1/z. If we take

a =1/2 in Eq. (26) to examine the effects of ion motion on this scheme, we have

n2 _ + 2 —
(=) p 1z p{1+ p(l - z)] ) 27)
inside the driving beam and
N, L 1 1
(=) = f+# [z+ﬂ[1+llf(1—$)]] (28)

in the free oscillations behind the driver. The maximum accelerating field behind

the beam occurs at z = 1, which gives
Ey = (mecwy/e)\/z5 — 1. (29)

Egs. (27) and (28) have an ill-behaved point at z = (1 + p)/p, which corre-
 sponds to trapping of the ions in the driving electron beam’s potential well. This
point represents a strict upper bound on the length I, of the driving beam,

i.e. Iy < Ap/p. From the point of view of maximizing the transformer ratio, this

restriction is much more severe. If we expand Eq. (27) to first order in u, we find
(@) =1- =+ L1 g, (30)
z 2

and note that the maximum in z' occurs at approximately z = p,"l/ 3, which

optimizes the beam length at approximately [, < 2xc/ ul/ 3wp. Taking F= pi/3

17



in Egs. (29) and (30) we have R < p~!/%, which for hydrogen ions gives R < 3.5,
~ which is a tighter constraint than that arising from the trapping of thermal
electrons. Use of heavier singly ionized species ions raises this limit only slightly,

by a factor the one-sixth power of the atomic weight.

This limit on transformer ratio can be theoretically circumvented by allowing
the driving electron beam’s density to rise slightly towards the end of the bunch.
This would negate the effects of the rise in ion density associated with forward
ion motion. Such a scheme would be very sensitive to the exact profile of the
driving beam, and is thus problematic. Concerns of this sort are also present in
‘examining the dynamics of the free oscillations behind the driver. The presence of
nontrivial ion motion indicates the possible onset of the modulational instability.
Previous investigations have speculated that this instability would destroy a very
nonlinear plasma wave (eEy, > mecwy) in less than one oscillation.""” Our result
here helps quantify this concern; a small amount of ion motion during the passing

of the driving beam causes large changes in the subsequent wave motion.

5. Discussion

This work has introduced multi-luid models to examine various physical
phenomena in plasma wake-fields. In particular, introduction of more than one
electron fluid species allows a self-consistent analysis of the modulation of low en-
ergy, continuous electron beams in plasma wake-fields, as well the re-examination
of the thermal limit on plasma wave amplitude. The modulation of intense beams
through this effect could be employed in a source of very high power, high fre-

quency fields.  Addition of ion fluid motion also yields interesting results which

18



have direct impact on the nonlinear enhancement of the transformer ratio in the

PWFA.

These models are constrained to describe one-dimensional, steady state sys-
tems, but are of significant usefulness because they allow exact, tractable analy-
sis which gives insight into nonlinear wave dynamics in plasma wake-fields. It is
hoped that further theoretical work will allow multi-dimensional description of
these phenomena. This is important because the experimental results obtained
thus far show significant, multi-dimensional nonlinear behavior. Also, all experi-
ments are performed on bounded systems, which implies the need for a transient,
non-steady state analysis. It would be of considerable value to have a more com-
plete theoretical description of these effects to guide simulation and experimental

investigation of plasma wake-fields.
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FIGURE CAPTIONS

Figure 1. Perturbed plasma electron density ny = n—ng+ n.o, continuous beam den-
sity n. and electric field E, in wake-field plasma wave driven by §-function
beam with o = 0.3¢ng/wp (eEm/mecwp = 0.3). Densities normalized to ng,
electric field normalized to mecwp/e. (a) No continuous beam. (b) Contin-
uous beam with €=0.1 and 3,0 = 0.99. Maximum beam density n. ~ 7.8n9

(off scale).
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