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Abstract

We derive, from first principles, the equations of K. Lee which ex-
hibit wormhole solutions. The interpretation of such solutions be-
comes more transparent: they are local extrema of the action which
contribute to transition amplitudes between states of definite charge.
Hence the charge carried by the wormhole is quantized. We briefly
review Coleman’s mechanism for the vanishing of the cosmological
constant, with emphasis on the problem of the vanishing of New-
ton’s constant G. A mechanism is proposed that could naturally
.make 1/G a bounded function of the wormhole parameters.
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1 Introduction

For some time now it has been suspected that the solution to the cosmological
constant problem would bring about a revolution of thought in physics[1]. The
recent proposal by Coleman[2], while perhaps not revolutionary, does introduce
new and speculative (and exciting) ideas. It is worth exploring its physical

consequences and testing its formal basis.

Coleman’s proposal builds on earlier work by Baum[3] and Hawking[4].
It improves on it by making the argument valid for essentially all boundary
conditions for the wave function of the universe. Moreover, it explains how
the cosmological constant, and for that matter all coupling constants, may be

dynamically adjustable parameters.

There are two ways in which Coleman’s proposal might collapse. Because
it relies on a variety of technical assumptions, disproving any one of them may
prove the mechanism for the vanishing of A untenable. We have in mind here,
for example, the relevance of Euclidean Quantum Gravity or the assumption
that wormholes make the dominant topology changing contributions(see, e.g.,
ref. [5]). Of course, one could imagine the main ingredients of the argument
to survive closer examination even if some of the details of the analysis might
require modification. On the other hand, if one uses these main ingredients
to derive observable consequences which contradict observation, then it is hard
to see how the proposal is not plainly doomed. Here we are thinking of, for
example, the observation that Newton’s Constant may be automatically set to

zero[6). It is this issue that we address in this paper.

At the heart of Coleman’s argument is the wormhole summation formula[7,8].
We will assume that only wormhole configurations which are actually saddle
points of the action play a role in determining the effect of topology changing
configurations on the effective action at long wavelengths. This will be discussed
in more detail in Section 3. With this in mind we start in Section 2 by giving
the wormhole solution found by K. Lee[9] a proper first principles formulation.
As a result we will find that the charge carried by the wormhole is integrally
quantized. Section 3 begins with a review of the wormhole summation formula.

We will then use the results of Section 2 and rather naive arguments to char-



acterize the form of the vertex operators for wormhole insertions[10] in Lee’s
theory. We will argue then that large wormholes may be destabilized by small

ones.

The problem of Newton’s Constant sliding to zero is reviewed in Section 4.
We then propose a mechanism that may explain the resolution of this problem
for the ‘bare’ constant. In Section 5 we turn to the quantum corrections to this
result. It seems that the quantum corrections have the effect of driving particle
masses up to the wormhole scale, unless protected by some symmetry. But they

normally don’t induce vanishing of Newton’s Constant.

Our results are briefly summarized in Section 6. This is important because,
by the end of Section 5 we will have introduced a number of hypothesis and
proposed several ideas, and the reader might have trouble keeping it all straight
(especially in the light of our admittedly poor style of presentation).

2 Charge Quantization of Lee’s Wormbholes

Several wormhole configurations have been discussed in the literature [10,11,9].
We will focus here on those introduced by K. Lee [9]. As we will see, these
configurations are extrema of the effective action that enters in the calculation
of transition a.mplitﬁdes between states of definite charge. Therefore it is at
least plausible that they may give a non-negligible contribution to the sum over
configurations. An added advantage to studying this particular case is that
the theory considered by Lee is extremely simple. It is simply the theory of
gravitation and two matter fields, a minimally coupled complex scalar. The
action is taken to be invariant under phase redefinitions of the scalar field, and

this U(1) symmetry is spontaneously broken.
The size of these wormholes is determined by the charge @ they carry.

In ref. [9] this was taken to be quantized to integral values. In our view, no
good justification was given for this assertion. In fact, in the very similar cases
studied by Giddings and Strominger[11] ‘string effects’ were invoked to justify
this assumption. It is the main object of this section to put this quantization
condition on firmer basis. As a byproduct we will derive Lee’s equations from

first principles. To be somewhat more precise, we will derive a set of equations
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which agree with those in ref [9] only after one introduces a spherically symmetric
ansatz. The equations are those satisfied by configurations which extremize
the effective action that occurs in the functional integral computation of the
transition matrix element between states of definite charge Q. It will then be
obvious that the charge is integrally quantized.

We begin by considering a simple example[9,12] that well exemplifies the
features of the full fledged theory that we are interested in. Consider a particle
moving in two spatial dimensions under the influence of a central potential V (r).
The dynamics of the system is described by the lagrangean

L=1y i@ v, (1)
2 2
Now the Feynman path integral can be used to calculate the propagator

< 1oy | e HO=8) | £ g, S fb larlirds]e® (2)
where the action S is given by
s=["ar 3)
and ‘b.c.’ stands for the boundary conditions
r(t) = 0(t;) = 6; 1=1,2. (4)

Since angular momentum is conserved it is of interest to compute the propagator
between states of definite angular momentum £. We can choose to label our
states by | 7 £ > instead of | » § >. Now, since angular momentum is the

momentum conjugate to the angular variable # one has
<71 0|73 L >=2n8(rs — 1) (5)

so one can change basis easily. For the propagator between states of definite £

one has
<y by | e HE0) |4y g S /d91d02/ (dr][rdf]i @b —0at)eiS  (g)
b.c.

The integrals over # can be done. A simple trick makes the computation trivial.
Using the identity ,
' 2 .

t1



to remove the explicit dependence on 8,, the integration over 4, removes the
boundary condition on @ at time ¢;3. The trick is to change variables from 4 to
8, so that the § integration has no boundary conditions. The 6, integral yields

a §-function of angular momentum conservation. We finally obtain
<r by | O |1y by > 6ty — 1) [ [dr]en (8)

where the effective action S.s; for the radial coordinate is given by

ta t2 1 .
Seff = Al dt Le_ff = ‘/tl1 dt (—2-1'2 — Ve_f_f(’l')) (9)

2

Vaaslr) = Vi) + o (10)

This is as expected. The reader might be dissatisfied with the formal manipu-
lations just performed, and in particular with the simplifying trick introduced
above. We have performed the same calculation using the canonical expression
for the Feynman propagator, i.e., functionally integrating over coordinates and
their conjugate momenta. The same answer is obtained. We briefly sketch this

computation. The propagator is given by

[ 1dr)d6) |t idpelei4lpe o= (11)
where the hamiltonian H, a function of the coordinates and the conjugate mo-
menta, is

H=p#+ps—L (12)
and oL oL
= — =7 = — = 24
=i =T P=g=T 0 (13)
Using the identity
tz . 2] .
| dtpeb = Gapa(ta) — Oupa(ta) - [ dt b5 (14)
1 1

one finds that in the calculation of the matrix element between states of definite

angular momentum the integrations over 6 yield the factor

6(£y — po(t1))8(£2 — po(t2)) 1:[ 6(pe) (15)



It is interesting that only paths which conserve angular momentum contribute
to the transition amplitude. The delta functions make the remaining integral

over py trivial and one recovers the result of eq. (8).

It is straightforward to rotate into imaginary time, { — —ir. One can

simply take the result in eq. (8) and perform the rotation:

<ryly| e H(m2-m) |rila> = 6(&— &)/b [dr]e=Tess (16)
ta 1 .2
Ieff = ./t‘ dt (ET -|- Kff(’l')) (17)

The dot, of course, refers now to a 7-derivative. This, again, is the correct
answer, but the derivation seems to have sidestepped completely the ambiguities
encountered in ref. [9]. There it was pointed out that if one simply eliminates §
from the imaginary time action I using the constraint 720 = £ then the equation
of motion that obtains is incorrect. To understand this better we can perform
the calculation again, but now rotating first into imaginary time, and only then
performing the functional integrals over the angular variable. Note though that

the argument of the exponential in eq. (11) becomes complex:

¢ Jdt[p,i+peb—H| e Jar[pei+peb+iH®| (18)

Here HF is the imaginary time hamiltonian. The change in basis is performed
as before (cf., eq.(5)). Therefore the integrals over 8 still yield the delta func-
tions for conservation of angular momentum (15). Hence we arrive at the same
(correct) answer. We learn that the ambiguity found in [9] is resolved by asking
the proper question (‘what is the transition amplitude between states of definite
angular momentum?’), and that the corresponding constraint is enforced in the

imaginary time path integral by making the action complex.

The above discussion may be transcribed almost word by word to the case
of interest. Let’s consider first the theory of a complex scalar field with a U(1)
symmetric potential. It is described by the lagrangean density

L = 8,4'0,6—V(V2I4)) (19)

= (@) + 5588 ~ V(o) (20)



The conserved charge is
Q = —i [do(#500) (21)
= / &% p*6 (22)

= [dem (23)

where we have introduced the conjugate momenta

ac
Tp = o= =P (24)
dp
ac y
= — = p“f 25
o % =" (25)

Since the radial degree of freedom p will play no role, we will cavalierly omit it
in the following, and will restore it only at the end of the discussion. We can
introduce a basis of eigenstates of the field operator d, and we can easily relate

it to a basis of eigenstates of the conjugate momentum operator #:
< 0| 7w >= e F=0Eme(®) (26)
This is just what was done in (5). Moreover
Qe | mg >= e P=mo(@) | 7o > (27)

so charge is diagonal in this basis. Let us compute the matrix elements between

eigenstates of 7ry:

< Toa I e""H(ti—tl) | Toy >= /[daz] [dﬂl]e"fds”(01(’7)""01(5)"92(5-")""02(5))g(01, 63ty —tl)
(28)
Here the functional integrals are over functions of (three-)space and G stands for

the path integral expression for the transition amplitude between eigenstates of

a

0,
G(0s, 033t — t1) = /b (28]t #'2 347(0u0)’ (29)
Here the time integral has limits ¢, and ¢; and the boundary conditions are

0(t;) = 0;. To proceed any further we must realize that since only global charge

is conserved we can only expect to obtain delta functions as in (15) corresponding



to the zero mode (with respect to the operator 62) in 6. Therefore it is useful

to introduce the decompositions|12]
8:(2) = 0,(2)+ 0;  b(z) = b(z) + O(t) (30)

~ where the zero modes are denoted by ©; and ©. Now, all the integrations over
the zero modes parallel precisely what we did in the simple quantum mechanical
case. Therefore we can write the result immediately. Restoring the dependence

on p we have finally
< paes | e HO) | pymgy >= 86(Q1 — Qa) [[d][dd]e] #=Ormon=trmn)

Htfda-"l’

vV [Ie f d% p?

e'Serr (31)

x [ [dpllpdd]

where .
S = S(p,b) - 5 [ D LE) (32)
and 1 4 1 2 1 2 a2
S(p,8) = [ata [5(8.0) + 3670, - V()] (33)

The factor 1/4/T]; f d% p? in eq. (31) is simply the determinant that results from
the O integration, and will play no role in determining the configurations that
dominate the integral in the semiclassical approximation. The factor [[; [ d3 p
is the zero mode component of the Jacobian of the transformation from cartesian
to polar coordinates (i.e., [d Re @][dIm @] = [dp][df] [, p). The effective action
is no longer manifestly Lorentz invariant, but this is just a reflection of the
matrix element that is being considered. Note also that there is still an explicit
integration over the nonzero modes at the initial and final times, weighed by
the usual Fourier transform factor. In some sense it would have been simpler to

consider eigenstates of § and # of definite charge

Again it is straightforward to rotate into imaginary time. Again the effective

action is complex, enforcing the constraint automatically. The result is

< pamez | €2 | pymgy >=6(Q1 — Q1) / [dd,][dd;]e'] #= Crmer—b27e2)

x ‘/b..c.[dp][pdé]—n—t—f—g%—pe_ 1 (34)

Y I f d% p?



where

Lsr=I(p,0) + % / ir (& ”fi d{i‘f” ) (35)
I(p,0) = [d'25 [5(0u0)" + 36(Bd)" + V(o) (36)

This expression is the the starting point for the semiclassical approximation
of the transition amplitude in question. In looking for the saddle points of the
effective euclidean action we must keep in mind that the equations we obtain are
complex, i.e., each complex equa.tibn yields two real equations. From variations

with respect to p we obtain

.\ 2
~(fEed) | T g
a2 3\ + V() — ( — 200 L =
9205 [d%p? —2p [ d20%] =0 (38
mp/w—p/wﬂ_— (38)
while from variations with respect to § we have
d’z p*8
—8,(p?9, a)+— ffd%pz] =0 (39)
p?
o)

The structure of these equations is quite simple. If V'(po) = 0 for p # 0, then
there is an obvious solution p = po, § = 0. Let us look for nontrivial solutions, so
let us assume that 1/ [ d® p? does not vanish. Thus, we are looking for localized
solutions. Then eq. (38) states that the r-derivative of § is pure zero mode.
Since there are no zero modes in § then § is constant in (imaginary)-time, i.e.,
6 =o. Now, eq. (40) states that p? is separable, that is p(7,Z) = T(7)X(Z).
One may normalize X to [d% X? = 1. Eqgs. (38) and (40) are easy to solve
because they simply enforce the charge conservation constraint. The remaining

two equations are equations for the functions T and X:

{X

—TX — TV?X + TX(V6)? + V'(TX) - =0 (41)

V(X’V0) =0 (42)



Notice that the last term on the left hand side of eq. (41) has the expected
minus sign, indicating a repulsive force at the origin of field space. If a solution
exists, then as 72 — 73 — oo it must have infinite action (relative to the trivial
nonlocalized solution), for Iy > 3 [[2dr [Tzfda:c (VX)? + T‘zQﬂ .

It is instructive to compare these equations with those proposed by Lee[9].

In that case one has the usual conservation of charge current,
8u(p*8,8) = 0 (43)

with the constraint
/d3m p*0 = Q, (44)

plus the additional wrong sign pseudo-equation of motion
— 8 — p(8,0)* + V'(p) = 0. (45)

To make the comparison more direct we introduce a new variable into our equa-
tions defined by § = § + O(r) where O is defined to be an integral of

OT? = Q1. (46)

Then, in terms of § and p = TX eq. (42) reduces to the current conservation
equation (43), the defining expression (46) reproduces the constraint (44), while
eq.(41) yields

— 8+ o~ + (F8)) + V'(p) = 0. (47)

Thus, while eq. (45) is not quite correct, it will reduce to the correct expression
when one is interested in solutions with # being only a function of . As we
will see, this is precisely what happens when looking for spherically symmetric
wormholes. The reason for the discrepancy is quite apparent. While the func-
tional integral automatically picks out paths with constant global charge (cf.,
eq. (15)), the condition of Lee corresponds to paths with constant local charge.

Including gravity into the above theory is not difficult. We must assume
that, by analogy with eq. (29), the transition amplitude G(¢1, ¢3; X1,X32) be-
tween eigenstates of the field operator qA5 on given spacelike hypersurfaces X; is

given again by a path integral with corresponding boundary conditions. The



lagrangean density for the scalar field is just the covariant version of (19). The
charge is now defined by[13,14]

Q= /E s+ j, (48)

Here dX# = n#dX, where n* is a future-directed unit vector orthogonal to the
spacelike hypersurface £, dX = d3z+v/h is the volume element in ¥ and the
conserved charge current is j, = —z'(qS*g,,qS). Whereas in flat space charge
conservation is the statement that Q is time independent, in a curved space the
corresponding statement is that @ is independent of X1,

We learnt from the flat space case that the charge conservation constraint
was enforced automatically by a term in the effective action which is not ex-
plicitly invariant under Lorentz transformations. Correspondingly we expect
general covariance not to be explicit in the constraint term in the effective ac-
tion when gravity is included. To make as many symmetries explicit as possible

we choose to parametrize the metric in terms of lapse and shift functions[15],
ds? = —(N? — N°NPhg,)dt? + 2k Nodtda® + hopdz®dzb. (49)

For each hypersurface of constant time we can construct normal unit vectors

n?= -1 (50)
n* = (1/N,—N*/N) (51)
n, = (—N,0,0,0) (52)

As we will consider transition amplitudes G(¢1, ¢2; X1, X2) between eigenstates
of the field operator ¢ on given spacelike hypersurfaces ¥;, we will choose a
gauge with ¢ = ¢; = constant defining X;.

Conjugate momenta operators are defined as before and the change in basis
is again given by eq. (26), where the integral is now over the spacelike hyper-
surface 2;. The last ingredient we need before we can transcribe the result in

(31) to this case is the decomposition (30) into zero and non-zero modes in the

1One needs to assume that X is Cauchy[14]. The statement then follows from Gauss’
theorem and the equations of motion.
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path integral. For any fixed background metric this presents no new difficulties.
As in the flat space case the decomposition is analogous to the expansion in
modes in canonical quantization[13]. One can imagine then performing first the

integration over the matter fields and then the one over the metric.
The resulting effective action is

Q1 — JdT* p*8,0)?
Jd% §p?

Sefs = SE + S(p,é) + %/dt ( (53)

where SF is Einstein’s action and S (p,0~) is the generally covariant action for
the matter fields. The result is not explicitly invariant under general coordinate
transformations since we have computed a very particular transition amplitude
in a particular gauge. There remains explicit symmetry under time redefinitions
and under general spatial-coordinate transformations. Under the coordinate

transformation z — y = y(z) with 82°/8y® = 0 and 8z°/8y° = 0, one has

a 0
N - N'= B—;’BN (54)
a a azo aya b
N —» N°t= ——ayo Bab (55)
Ozc Oz?
hab 4 h:|b= a—:aa—ybhcd (56)

and S.;; remains invariant.

It is not quite clear to us how one should continue this answer into imaginary
time. We will use as a guide the requirement that the resulting expression for
the effective action should reduce to the one obtained earlier in the flat space

case. We thus perform the continuation according to
I,ff = iS,ff(N — ZN, N¢ - Na, hab - hab)- (57)

We then have

-1 (Q1—1i [dZ+ p*8,0)?
_ [E 1 9
Is; =1+ I(p,0) + 2 /dt [dZ %fpz (58)
with the Einstein action I® = — L~ fd%,/gR and the matter action I(p,8) =

1% {39"8up0.p + 3079"0,88,6 + V(p)}.
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This is the central result of this section. It allows us to look for saddle -
point configurations that dominate? the transition amplitude between states of
definite charge. p variations yield (assuming Q/(fdEN~1p?)? # 0)

~\ 2
. Q2 + (fdz* p%0,6
—Op + pg*8,08,0 + V'(p) — — ( 4)

N-%p =0 (59)
(Va2 e?)
= [dZ¥p?8,0
k5 f —
Nn*0,0 = [ Lo (60)
Since g#*8,00,0 = (n*8,0)* + h8,08,6 one can use (60) to rewrite eq. (59) as
- . 2 N2
— Up + ph®*3,858,8 + V'(p) — L—,—p =0 (61)
(5399

This displays the repulsive core potential produced by the charge-carrying zero

mode. The § equations are

-5 v o) + 0, (Vine s [0 — (62)

(fn” fdzll 2) =0 (63)

In contrast to the flat space case, this is not the whole story, for we still have
to consider the equations obtained from varying the metric g,,. These are
Einstein’s equations

R — -;-g’“’R = 87 GT™ (64)

where for the energy-momentum tensor T** we find

1 -
= (g"*¢"" — -9" 9" )(8xpBap + p*0268,8) — "V (p)

2
dx’ p*8,0 - v v v

ffdﬁ_,;-p_z (P*OrO)N " (ng™ —n¥g™* — n¥g")

N

-\ 2
1= (JdX° p*3,0
+Q1 (f p . ) N—2p2(_;_gyu _npnu)
(15 4

3More precisely, it is fluctuations about these configurations that dominate the path inte-
gral. The measure for any one configuration is typically vanishingly small[16].
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+1.Q1 (pza;\é)N‘l(n’\g”" . nugAu _ nugw\)

1
[f % %p?
_,Ja%° p*8,0
(122 407)
The imaginary part of Einstein’s equation is

[d2° p?8,0
JdZ p?

1
N7*(59" — n*n") (65)

- 1

(p*020) N~ (n*g™ — n¥g™ — n¥g") = 2 P*N7* (59" —n*n”) (66)
We see, by contracting with g#¥, that eq. (60) is a special case of (66). Con-
tracting with n* one has

" [dZ p28,6

3,;0 = n”W. (67)

In fact this equation is equivalent to (66). Using the explicit form (50) of the
normal vector in our gauge this implies 8,8 = 0. This is a surprising and welcome
simplification. For one thing, it decouples  from the p equation of motion (cfs
eq. (61)), and eq. (62) is trivially satisfied. In fact, § decouples from the real
part of Einstein’s equation as well: using (66) the energy-momentum tensor

simplifies to
Qi

1
T* = (g"*g”" — =g" g*)0rpB,p — g*V(p) + ——2—
(2 i)

5 N "pz(%g“” — n*n”)

(68)
This equation displays also a repulsive-core ‘potential’ for the metric. A simple
picture of Lee’s wormhole emerges. As the metric tends to shrink space down
to reduce Einstein’s action in going from ¥, to ¥,, there is a large enhancement
in the contribution to the action from the zero mode in 4, for § ~ Q /V with V
the volume of the cross-section of the wormhole. It is the competition between

these two terms that gives rise to the wormhole solution.

How are these equations related to those of K. Lee[9]? We can compare the
answers by using the same trick as in the flat space case. Since our equations

don’t involve the @ field anymore, we may introduce a spurious § field satisfying

Q1
6“0 = R“W. (69)
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Then eq. (61) takes the (compellingly covariant-looking) form

— UOp — pg"8,00,0 + V'(p) =0 (70)
which is one of Lee’s equations. Current conservation in ref. (9] is just (63).
The energy momentum tensor (68) can also be recast in the form of Lee:

1
T = (99" — 59" 9 )(9rp,p — p’8:68,8) — "'V () (71)

The point is that Lee has solved the correct equations provided his solution also
satisfies our eq. (69). It is easy to see that the spherically symmetric ansatz
studied by Lee automatically satisfies this constraint.

The quantization condition on the charge of the wormhole now follows triv-
ially from the quantization of the charge of the definite charge states whose
transition amplitudes we are computing. The point is made clear, if it is at all
needed to dwell on this, by referring back to the simple example at the begin-
ning of this section. The change of basis in (5) shows quite explicitly that single
valuedness of the expression on the right hand side and periodicity in 8 by 2=
implies quantization of angular momentum £. The same is true, word by word,

for our field-theoretic examples.

3 Vertex Operators and the Wormhole Summation

Formula

In this section we will extract some features of the form of the vertex operators
for wormhole insertions[10]. The results are quite expected and the methods
quite bold and simplistic. But we feel that it must be included since these
features are the basis for the proposal of the next section, where a solution to
the problem of the vanishing of G is advanced. We will briefly review{7,8] the
wormholes summation formula of Coleman, Giddings and Strominger®. We do

this to recall the role played by the vertex operator in Coleman’s proposal for

3Excellent reviews of the summation formula have been given by Preskill[17]and by Kle-
banov et al.[18]. The original papers [7,8] make additional assumptions valid only in the
semiclassical approximation[17]. Their discussion is somewhat complicated by their consider-
ation of spontaneous emission/absorption of baby universes.
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the solution of the cosmological constant problem[2], and to properly set up the

discussion of the next section.

The primary object under consideration is some transition amplitude be-
tween states ¥(h, ¢) of the universe characterized by a three-metric hq, and some
matter fields ¢. These universe states are large and smooth. By assumption,
the transition amplitude is computed by a euclidean quantum gravity path in-
tegral. Regardless of what makes such an integral a well defined object, one
may still attempt to compute the effect of integrating out short distance fluctu-
ations which induce topology changes. Of course, one may always write down
such configurations, but it is not at all clear that they will have a nonnegligible
effect, i.e., the measure associated with them can, and probably is, vanishingly
small. But if such configurations have finite action and correspond to a saddle
point of the action, then it is not implausible that their effect will not vanish.
This is the case with instantons and bounces for field theories in flat space, and
we have no reason to suspect it would not be in a consistent theory of gravity.

We will refer to these finite action saddle points as ‘wormholes’.

We feel it is important to stress that topology changing configurations that
are not local extrema of the action may not have macroscopic effects. A simple
analogy can be used to make this point clearer. Consider a field theory, on
flat space, with a global symmetry group G. By this we mean, of course, that
the lagrangean exhibits this symmetry. It is easy enough to find finite action
configurations which violate this symmetry, i.e., configurations with a ‘sink’ or
a ‘source’ of charge. Still, and quite obviously so, the Greens’ functions of the
theory are symmetric under G. So the macroscopic effects of such configurations

are negligible, inasmuch as symmetry violations are concerned.

In order to investigate the effect of wormholes on the transition amplitude,
we imagine doing the path integral over short wavelength fluctuations first, hold-
ing the long wavelength ones fixed. This amounts to considering the integration
of short wavelength metric and matter fields in the presence of smooth back-
ground metric and matter fields. We are led to summing over all possible inser-
tions of wormholes onto a fixed background metric that interpolates smoothly

between the states ¥(h, ). We associate with the insertion of a wormhole end
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onto the background at a point ¢ a vertex operator* K(z). This is a local func-
tion of the background fields. Inserting both ends of the wormhole on all pos-
sible points gives a contribution to the path integral of 5% = }(fd% ,/gK(z))>.
The factor of % is included because the wormhole ends are indistinguishable.
Similarly the contribution from n wormholes is 32"/n!. Summing over n and
neglecting wormhole-wormhole interactions(19] (the dilute gas approximation),

one has }°3° 32" /n! = exp(B?). Therefore, the effect of wormholes is to shift the
action for the background fields by 32,

I—ILy=1I- -;- (/ d' \/EK(a:))z (72)

Notice that the shift in the action is bilocal. This can be made to look local by

introducing a ‘wormhole parameter’ a, through the trick

exp(8?) = \/2—/;/_:da exp(—-%—az2 — V2 ap). (73)

The usefulness of this is made clear by the following consideration. If one is
interested in computing the expectation value < O > of some operator O one

must compute a ratio of path integrals as in

— Jiiscldgl[dd)e 1110
Juildg)lddleTerr1

The path integral includes all disconnected graphs, or more properly put, all

<0O> (74)

disconnected universes. Now, for local actions simple combinatorics lead to the
disconnected components (the graphs with no external legs) to cancel in the
ratio, and one is left with the ratio of connected graphs. But the effective action

in (72) is not local. By introducing the wormhole parameters one sidesteps this
difficulty. One has

Lis(@) = I+ a [d/GK(2), (75)

and then
Jiiscldglldle Tess @0 [ dg|[dgle~Lr1(@)O
fu.ldgldpleTers(@1 — [ [dg][dd|eTers(2)1

4Also called a probability amplitude for insertion of a wormhole[7]. We have absorbed the
wormhole action factor, exp(—I,,), in the vertex operator.

=< 0>,. (76)

16



Of course, one pays the price of having to perform the integral over the wormhole

parameter. Defining|2]

Z(a) = [ [dg]ldgle~ters(® (77)
the expectation value is then

_ Jdaei¥Z(a) < O >,

<0> T
Jdae™ 1% Z(a)

(78)

This is Coleman’s master formula. The expectation value < @ >, is what we
would have computed if we didn’t have wormholes and the action was I;().
With wormholes we must average over all such universes with probability distri-
bution P(a) o exp(—1a?)Z(a). The effect of the wormholes is twofold. On the
one hand, it introduces a shift into the action for the longer wavelengths, as in
eq. (72). On the other hand, by linking two otherwise disconnected large smooth
manifolds, it forces us to consider the sum over disconnected components once

the wormholes are integrated out.

The wormhole-induced shift in the lagrangean density (cf., eq. (75)) is just
a times the vertex operator K(z). We would like to obtain the form of the vertex
operator in the theory discussed in the preceeding section. Of course, in that
theory there are many different wormholes, at least one for each nonnegative
integer corresponding to the charge @ carried through the wormhole. Let us
consider what modifications to the above discussion are needed in accounting

properly for the multiple wormhole case.

The effect of multiple types of wormholes of a given size can be accounted
for by introducing an a priori different vertex operator K;(z) for each different
wormhole type (labeled by 7). Correspondingly we may introduce wormhole
parameters a;, and the above discussion goes through replacing the wormhole
parameter by an array of wormhole parameters. When one considers wormholes
of vastly different sizes, though, the situation is quite different. Consider a theory
which, at tree level, exhibits wormholes of two different sizes £ <« L. As one
carries out the program of integrating out fluctuations from the small scale up,
an effective action for fluctuations on scales much larger than £ is produced. This

depends on the small-wormhole parameter ;. After integrating out fluctuations
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with wavelengths between £ and L it is not clear that the resulting action admits
wormbhole solutions of size L for any value of ;. As we will see shortly, the vertex
operator in the theory of the preceeding section carries charge. The effective
action for scales ~ L is not symmetric under the global U(1) symmetry, the
amount of breaking being proportional to a,. But it is precisely the conservation
of this charge that stabilizes Lee’s wormhole. Heuristically, the theory may favor
the exchange of N wormholes of charge Q@ = 1 than that of one wormhole of
charge @ = N. At first sight, the summation over large wormholes will be o,
dependent. But this complication can be avoided knowing, a posteriori, that
the probability distribution P(a) is infinitely peaked about definite values of
the wormhole parameters. There is no reason to expect this value of a; to be
vanishingly small. Thus, it is perhaps plausible that the large wormholes don’t
even really exist in this theory. Since we cannot prove this assertion we will

make it an assumption®.

The calculation of the vertex operator K(z) is in principle understood but
hard to carry out in practice. It was pioneered by Hawking[10]. We want to
consider a transition amplitude < 1, | ¥1 >,, between some states ¥(h, ¢) when
one wormhole end is inserted into the smooth background fields that interpolate
between the initial and final states 9. We then construct K(z) by requiring
that the matrix element of this operator between the states 1 and without the
wormbhole insertion reproduces the transition amplitude < v, | ¥; >,. In what
follows we will have in mind the particular wormhole solutions described in the
preceeding section, but the results might be more generally applicable to other

theories with charge stabilized wormholes.

The path integral expression for the transition amplitude is

< |1 >0= [ [dglldgle”’ (79)

The integral includes only smooth configurations. The boundary conditions are

5Coleman(2] assumes the effect of large wormholes can be neglected. It has been argued that
the effects of large wormholes are disastrous[20]. We have just presented an argument why this
worry may be unjustified, but we needed very specific assumptions: (i)Only ‘real’ wormholes
(i.e., saddle points of the action) are relevant, and (ii)It is global charge that stabilizes the
wormholes. Preskill has presented[17] an argument independent of these assumptions which
indicates that the effects of small wormholes dominate over those of large ones.
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that the manifold have two boundaries where the fields match on to the values of
h and ¢ specified by the states 7;, and a third boundary where the configuration
matches on to that of a wormhole end. It is this last one boundary condition
that we are concerned with here. It is convenient to think of the transition
amplitude as going to a state < 9} X %3 | from the wormhole end ‘state’ | w >.
The transition amplitude between these states is still given by the path integral

in (79). Inserting a complete set of states we have

<9t xva|w>= [[dHIldg) < ¥i x s [ B ><hd|w>  (80)

We intend to use here the one aspect of the state | w > that was emphasized in
the preceeding section, namely that it is a state of definite charge Q. Therefore

we can write

w>= [(dh]dp[dB (K, o', 0) | B, ', Q > (81)

so that
< h,p,8 | w>= Ty(h,p,0)e°. (82)

We can now use eq. (82) in eq. (80). Since we have assumed that the fields
we are integrating over are smooth on the scale of the wormhole, the wormhole
insertion can be thought of as being localized at a point z. Also, smoothness
guarantees that on the scale of the wormhole © ~ §. Finally, the leftover integral
over the fields at  removes the corresponding boundary condition. Thus, we

have

Kq(z) = ¥q(h(z), |4(2)|,0)e ") (83)
This is the result announced earlier. The vertex operator carries charge. This
was not unexpected[21], but we think it is nice to see a simple derivation of
the result. It also tells us that to go any further we have to understand the
‘wormhole wavefunction’ ¥g. All we can offer here is the general statement
that it must be a linear combination of U (1)-symmetric scalar (with respect to

coordinate transformations) operators.

It is also apparent from the above derivation that ¥_o = ¥}, for inverting
the ‘time’ direction simply corresponds to charge conjugation[22]. Correspond-

ingly we have K_q = K} and in the wormhole summation formula one should
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use 8 = | [d*% Kq|*. The corresponding wormhole parameter og is now a com-
plex variable[21], and the lagrangean is shifted by agKg + h.c.

4 The Sliding Newton’s Constant Problem

Coleman noticed that if one is interested in vacuum to vacuum amplitudes, the

expression for Z(a) in eq. (77) exponentiates:

2(a) = exp ([ _(dgldgle="s1() (84)

The path integral is now only over connected graphs with no boundaries, i.c.‘Hartle-
Hawking boundary conditions’[22]. The integral cannot be done, but if one
concentrates on manifolds with the topology of the sphere, one can formally
write

In Z(a) = exp(—Ta) (85)

Here I, is the value of the effective action®, I'rss, at its lowest local minimum.
If the only massless particle in the theory is the graviton, then T.s; has an

expansion in local operators built out of the metric,

Toss = [dbyg (A - ﬁR 4. ) (86)

where the ellipses indicate terms which are higher order in the curvature tensor.
While we don’t have the ability to express the coupling constants in this effective
action as explicit functions of the fundamental couplings of the theory, this
expansion is useful because it is written directly in terms of observable quantities.
A is the cosmological constant which is observed to be essentially zero, and G
is Newton’s Constant. To see this simply imagine introducing observers. This
could be done by performing the path integral with sources or in the presence
of a background metric field. To the extent that T'.y; is written only in terms
of essential coupling constants[23], the observers could perform experiments to

measure them (precisely in the same fashion we do).

8Here by ‘effective action’ we mean the one that results from integrating out the fluctuations
of up to arbitrarily long wavelengths. It is the functional that generates 1PI Greens’ functions.
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The dependence on the wormhole parameters is totally hidden in the cou-
pling constants in (86). Now, for positive A the lowest minimum of Ty is

known to be at the sphere of radius (squared) r? = 3/8xGA, giving

Z(a) = expexp (SC;A) (87)

This lead Coleman to conclude that the probability distribution P(a) is infinitely

strongly peaked at those values of a for which the cosmological constant vanish.

We are ready to review the sliding G problem’. It was noticed in ref [6]
that P is also strongly peaked at values of a for which G vanishes! How do
we compare two infinities? To define the theory properly one must introduce
an infrared regulator. This is not easy to accomplish in general relativity in
a covariant manner, since one essentially is restricting the integration over the
conformal factor in the metric. But we will assume that somehow one can
regulate on, say, the diameter. For the regulated theory one expects the effective
action to stop growing with radius when the radius grows larger than the cutoff

D. Therefore one has

2 < p2
r o { 3/8G*A for 1/GAS D (58)

< D*/G for 1/GA R D?

This is a disaster. The probability distribution P(a) is infinitely peaked at
vanishing G for any value of A. If indeed the wormhole parameters allow 1/G
to run off to infinity, then not only the cosmological constant problem is not

solved, but the whole program is in flagrant contradiction with experiment!

The dependence of 1/G (or, for that matter, the dependence of any param-
eter in the effective action) on the wormhole parameters comes from two distinct
contributions, which we refer to as ‘tree level’ and ‘quantum corrections’ respec-
tively. The tree level contributions are simply the a-dependence in I.4;(a), the
effective action just above the wormhole length scale. Let us refer to these a
dependent parameters as the ‘bare coupling constants’. When one integrates out
the longer wavelengths in constructing the full effective action I'¢44, the resulting

1/G will depend on other bare couplings. These are the quantum corrections.

7For a lucid and more complete explanation see ref. [17]
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Preskill[17] has pointed out that one can worry about the sliding G problem
separately for the tree level and the quantum correction pieces. Let us denote by
Go the bare parameter. Then, as Go — 0 gravity becomes free. The quantum
corrections are non. Thus one must understand why, if at all, the wormhole
parameter dependence in G does not allow it to vanish. An interesting proposal
to that effect was put forward in [17]. There it was pointed out that, if one goes
beyond the dilute gas approximation, the a dependence in I.zs is no longer
linear and the resulting function of a associated with 1/Gy could be bounded
from above. Moreover, ref. [17] argues that whether this occurs depends on the
nature (i.e., attractive vs. repulsive) of the effective force between wormhole

ends, as viewed from the smooth background.

Here we would like to propose an alternative solution. It will not require
that we go beyond the dilute gas approximation, so, if correct, it supercedes
Preskill’s proposal. On the other hand, it applies only to charged wormholes of
the kind we have been discussing so far. As we have had occasion to stress, we
believe that only ‘real’ wormholes should make a contribution to the effective
action, and the charged ones are the prototypical example of such objects. The
restriction to charged wormholes, while a strong assumption, is, we believe, a
reasonable one. As we will see, the result depends crucially on the relative sign
of different terms in the effective action. While we have not calculated these
signs, there is no reason to believe, a priori, that they would go one way or
another. In a sense, the same is true of Preskill’s proposal where we don’t know,

a priori, what the sign of wormhole end interactions is.

Let us focus on the effect of @ = 1 wormholes in the theory discussed
in the above sections. The extension to the higher Q case is straightforward,
and will be postponed. The effective action at the wormhole scale M ~ L1
will have a dependent contributions only in the combination a¢ times U(1)
symmetric operators. In particular, there is no term of the form M2aR, since it
is forbidden by the symmetry. This is not to say that there are no a-dependent
corrections to 1/Go. Indeed, one has a term of the form cMa¢R, with c a
numerical constant. In general one may have also additional terms with higher
powers of |¢|2/M?, but we will discard them here for simplicity. We believe

one may generalize our results in a straightforward manner when these higher
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dimension terms are included. Naively one then expects to have a shift in the
bare Newton’s Constant A(1/Go) = cavM + c.c. where v stands for the vacuum
expectation value (VEV) of ¢. If this conclusion held, then by letting |a] — oo
with —F —arge < arga < § — arg ¢ we would have 1/Gy — oo.

Fortunately, this conclusion doesn’t need to hold. We have missed the fact
that the VEV of ¢ depends on a. It obviously affects the magnitude of the VEV.
But, more importantly, because the scalar field potential is no longer symmetric,
it picks the phase of ¢. This is the central idea. If we insist that |a| — oo,
it is conceivable that the phases of ¢ and a are correlated in such a way as to
decrease 1/Go. Let’s see how this works in a simple model. We take for the
effective potential at the scale L

Vers(#) = 229" — %) + bM3ag + h.c. (89)

where b is a numerical constant. To streamline the argument, let us absorb
the phase of a in ¢, so that we can think of o as a real positive parameter.

Minimizing V' with respect to 8 gives the conditions
alb|psin(f + arg b) = 0 (90)
alb|pcos( + arg h) < 0 (91)
Minimizing with respect to p yields a cubic equation the details of which we are
not interested in. It simply gives the shifted value py of the VEV. The point
is that the VEV of 0 is 8 = v — argb. Now the shift in the bare Newton'’s

Constant is
A (_1_) = alc|Mpocos(8 + argc)
Go
= —alc|Mpo cos(arg c — arg b) (92)

which is always nonpositive for cos(argc — argb) > 0. This is the announced
result. We must admit it is rather simplistic, but we find the simplicity, in
fact, compelling. We can generalize the above argument to the case where the
coefficients ¢ and b are some unknown functions of |¢$|?/M?. Whereas it is hard to
solve the case analytically, it is obvious that there is still a possibility for the two
terms ‘pulling’ in opposite directions. One may simply replace ¢ — ¢(po/M) and
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b — b(po/M) in the above discussion. The case of more than one a parameter
would correspondingly introduce new functions ¥',%",... and ¢, c",..., and we
could imagine that whatever physics determined the relative phase of  and ¢ will
determine the corresponding new relative phases to be the same. If the proposal
works, then clearly the a parameters for which 1/G, is maximized are numbers
of order unity, and if the same holds true for the solution to the equation Ay = 0,
then there is no pressing need to improve the dilute gas approximation in the

manner suggested in ref [17].

5 Quantum Corrections

Even if we succeed in finding a theory where the bare Newton’s Constant is
bounded away from zero, one must worry about the quantum corrections (as
defined earlier). The dependence on the wormhole parameters that 1/G acquires
through its dependence on other bare parameters is very interesting since it

contains implicit information on the values of physical coupling constants.

There is another way in which coupling constants could be fixed. It was
realized by Coleman|2], implemented in [6] and followed up in [24], that once
the probability distribution P(a) picks up the subspace of wormhole parameter
space where A = 0, then P(a) is still infinitely peaked at those values of coupling
constants for which I', is minimized. This could then determine, at least in
principle, some or all of the low energy parameters of the theory. In ref. [6] it
was shown, for example, that the hierarchy problem could be solved, provided
not all of the wormhole parameters were determined by the vanishing of A and

the maximization of 1/G.

One important difference between these two ways of fixing coupling con-
stants is that the former yields information on the bare couplings whereas the
latter gives the result directly in terms of effective low energy parameters. A
more important distinction is that the former must be considered before the

latter, since the corresponding peaking of P(a) is infinitely stronger.

We do not claim to understand the renormalization of 1/G. Some features
of this problem are understood at one loop level (see, e.g., [23,25]). Let us briefly

investigate the effect of a massive particle on 1/G. By dimensional analysis, the
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shift that the massive particle produces on 1/G must be proportional to m?, m
being the mass of the particle. For example, from the one loop effective action

for a real massive scalar propagating on a sphere[6],

A (_ 32;G) - 1611r3 (€ - %)mz In(m*/p*) i%mz (93)

Here £ is the coupling of the scalar to the curvature scalar R, normalized so that

¢ = % for a conformally coupled scalar. For ¢ = 0 this agrees with the result in
ref. [25] (which also gives the result for a free massive fermion, this being again
eq. (93) with £ = 0). We have included a finite renormalization term (i.e., the
no-log term proportional to m?) since the counterterm is proportional to the
combination (£ — %)m’, as evident from the dependence on the renormalization
point u.

If we now consider both m? and ¢ as functions of the wormhole parameters,
we are faced with the problem that they may induce G — 0%. Of course,
the functions m?(a) and £(a) themselves may be bounded functions of the a’s.
Whether this is the case requires a more detailed analysis of the structure of
the theory in question. After all, it was an understanding of the dependence on
the wormhole parameters of the VEV of the charged scalar that led us to the
the finiteness of 1/Gy in Section 4. For example, if the scalar (or, rather, pair
of scalars) under consideration is precisely the charged scalar of Section 4, then
é(a) = 0 and m?(a) = 2A(3p3(a) —v?) at tree level. So we may have G — 0F by
having p3(a) — co. But we must be careful not to upset the result Go # 0. For
if Go — 0% as p3(a) — oo, gravity becomes free and the quantum correction is
irrelevant. We must enquire whether Gom? In m? diverges as p3(a) — oco. In the
simple @ = 1 sector studied earlier, we had po(a) ~ '/ and Gy ~ (apo(a))™ ~
a~4/3, for large a, so that Ggm?lnm? ~ a~?/3Inc and the theory is ‘safe’ (in
the sense that G /4 0). We can go a bit further. For general @, the leading ag-
dependent term in the effective potential is ~ agp?. For Q < 4 and large a one
has po ~ ag -9 g, ~ a‘g (4-9) and Gopl ~ aaz/ (*-9) and the theory is safe
again. The situation is more complicated for Q > 4, for the potential becomes
unbounded from below. Here we simply plead ignorance, and return to our main

argument®. What we want to stress is that there is a need for understanding the

8Many aspects of the @ > 4 case must be understood to proceed further. First and
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particular dependence of bare couplings on wormhole parameters to establish

the behaviour of G, and with it the values of fundamental parameters.

It is instructive to compare the condition G — 0% with the vanishing of A.
In the latter case the wormhole parameters need to be carefully adjusted to be
on the hypersurface A = 0, but this can be achieved with finite values of the
wormhole parameters. On the other hand, the condition G — 0% requires that

either @ — oo or that some coupling constants depend on « in a singular way®.

Consider now the case of a massive fermion field. We see from eq. (93) (with
= 0) that m?(a), if allowed, is pushed towards large values. Of course, we
have argued that we need to know first whether m?(a) — oo is indeed accessible.
Let us assume it is and explore the consequences. We propose that this does
not force upon us the conclusion G — 0%. In fact, it may strike the reader as
inconsistent to include in the effective theory for long wavelength fluctuations
a field of mass m X M (let alone m — oo!). We have a ‘bootstrap’ condition
for m?(a). If m?(a) < M? then P(a) is negligibly small. But there is no way
to consider the case m?(a) 2 M2 consistently other than by integrating out
the fermion field before (or simultaneously with) the wormhole. This seems to
imply that m ~ M with wormhole parameter space restricted to the subspace
m?(a) 2 M2 (We have restricted our attention here to fermions, since for
scalars one may have || — oo even for finite mass). This bootstrap mechanism
seems to be quite general, and should apply beyond the 1-loop approximation.
After all, it only seems reasonable to expect that physics at a scale M could
induce a shift AG,! of at most of the order of M3.

To summarize, we have argued that, as was the case for Gy, to study the

foremost is the possibility, discussed in Section 3, that the small wormholes (say, those with
Q < 4) destabilize the large ones (Q > 4). This would alleviate the problem of the unbounded
potential in a drastic way (i.e., by eliminating it altogether). Secondly, since one is forced to
consider large values of the field p, it is imperative to include in the effective potential the full
dependence on p. The function fg(2) in the term ag¢® fo(|¢|) + c.c. in the potential may
perhaps vanish, as 2 — 0o, more rapidly than 2. These logical possibilities, admittedly,
are at the moment wild speculations.

9Singular behaviour for finite & may arise in a variety of ways. The crucial observation of
[6] was that the coefficient of the O(R?) term in I',y; has the singular behaviour ~ Inm?(a)
as m?*(a) — 0. In the same limit, though, we know from eq. (93) that no singularity arises
for 1/G.
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condition G — 0% one needs to understand the a dependence of bare couplings.
Moreover, our bootstrap condition indicates that particle masses are driven to

the wormhole scale, giving only finite renormalizations of G™1.

Before concluding this section we’d like to present a specific example which
contains a small surprise. We may introduce a majorana fermion with mass mq
into the theory of a charged scalar considered earlier. A Yukawa coupling, g, is
forbidden by the U(1) symmetry, but it may arise when the wormbhole is inte-
grated out, with g o a. This is precisely the form of the coupling that gives rise
to the shift in Gg?, so that Amg ~ AGp ~ apy(a). Therefore Gom? ~ apo(a)
and we are in the situation described in the preceeding paragraph (the sign
of this correction could ‘push’ together with that of the corresponding term
in the potential, cf., Section 4). We must choose mq(a) R M and then the
fermion produces a finite shift in G5! of order M?. We then must maximize
Gy given the condition Amg R M. It is rather surprising, and perhaps amus-
ing, that since the dependence of AGy! on the a’s is the same as that of Ams,,
the maximization of AGy? given Amy R M fixes only a 1-dimensional hyper-
surface in a-space. Of course, this conclusion is upset by any deviation from
Amy/AGy! = constant. But, if this persists, an analysis of the O( R?) terms in
Tess would then be required to fix the remaining wormhole parameters[6,24].

In the absence of a miracle, such as the one described at the end of the
preceeding paragraph, we must conclude then that the maximization of 1/G
fixes all of the wormhole parameters and with them, implicitly, all of the low
energy parameters. Moreover, it generically implies that if a particle’s mass term
is not protected by a symmetry (unbroken by wormhole effects), then the mass
will be order the wormhole scale M. As in ref [17], though through a different
argument, we seem to be forced into the conclusion that the mass scale of low

energy physics must be generated dynamically.

6 Conclusions

Let us review what we have done. We will do so with an emphasis on the

assumptions and conjectures that we have made.

We have found Lee’s wormhole as a saddle point configuration for the effec-
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tive action between states of definite charge. In deriving this result we assumed
a path integral formulation for the transition amplitude in question and a par-
ticular prescription for the rotation into imaginary time. These assumptions
are probably quite safe and therefore we believe this result, while uninspiring, is
quite solid. It may well be the only point of lasting value in this work. From this
it was straightforward to derive the quantization condition on the charge carried
by the wormhole. The generic form of the vertex operator was then derived. The
result is quite as expected, but nevertheless useful for the applications presented

below.

We argued that only wormhole configurations which are saddle points of
the action (and small fluctuations about them), as opposed to any topology
changing configuration, should play a role in determining the effective action for
long distance physics. As this is not on firm ground, it should be taken as an
assumption for what follows. We then conjectured that small wormholes may

destabilize larger ones. Henceforth, this should also be taken as an assumption.

With these assumptions, it was then argued that the model of Lee may
not suffer from the sliding Newton’s constant problem. We proposed a simple
mechanism to explain this, whereby the scalar potential and the coupling of the
scalar to curvature ‘pull’ in opposite directions. Whether this is indeed the case
requires further investigation. We consider this the most important proposal in
this work.

If this mechanism operates for the bare Newton’s constant, then one must
address the issue of quantum corrections to it. We analyzed the contributions
from massive particles to 1/G at one loop. We concluded that, not surprisingly,
a knowledge of the wormhole parameter dependence of the various bare cou-
pling constants of the theory is needed to draw any conclusions. Even without
access to this information, we formulated a ‘bootstrap’ condition which seems to
indicate that the quantum corrections, rather than driving G to zero, will pro-
duce in it a shift of order of the wormhole scale and drive unprotected particle
masses to that scale. We believe this condition, on logical grounds, to be of very
general validity and therefore will apply even when some assumptions (e.g., the
1-loop approximation) are dropped. Direct information on observable low en-

ergy parameters (other than the cosmological constant) seems to be generically
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unaccessible.
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